
To appear in Proc. WSCG’98, Vol. III, Plzen, 1998

1 INTRODUCTION

Tree-recursive data structures like quadtrees, or their
three-dimensional counterpart, the octrees, are widely
used in image processing and computer graphics
[Gross95], [Hanra93], [Green93], [Laur91]. Unfortu-
nately, the construction or reconstruction of these data
structures is very expensive. The use of parallel com-
puters suggests a reduction of the tree construction

time. However, due to the recursive nature of the tree
structures, parallelization is difficult.

In [Gross95] a static parallelization of the first sublevel

of the tree is proposed; each child of the super block of

the tree is processed in parallel. The balance of this

method depends on the regularity of the dataset, there-

fore, some of the processors may become idle very

soon, while the others are still busy.

The development of a balanced scheme without any

PARALLEL CONSTRUCTION AND ISOSURFACE
EXTRACTION OF RECURSIVE TREE STRUCTURES

Dirk Bartz, Wolfgang Straßer
WSI/GRIS, University of Tübingen

Auf der Morgenstelle 10/C9
D72076 Tübingen, Germany

Email: {bartz, strasser}@gris.uni-tuebingen.de

Roberto Grosso, Thomas Ertl
IMMD9, University of Erlangen-Nürnberg

Am Weichselgarten 9
D91058 Erlangen, Germany

Email: {grosso, ertl}@immd9.informatik.uni-erlangen.de

ABSTRACT

The visualization of volumetric datasets is usually limited by the amount of memory and processing power of
computer systems. Several multiresolution methods have been developed in order to adapt the necessary work;
recursive spatial tree structures, such as octrees, are among the most popular. The exploration of a dataset fre-
quently requires a change of parameters, such as color table entries or isovalues. Therefore, the costly update of
an octree becomes necessary. To overcome this drawback, we propose the parallel construction of octrees to
improve their suitability for interactive volume visualization. Based on the thread model of the shared-memory
paradigm, we developed a scheme for a balanced parallel construction. We apply this new scheme to generate
isosurfaces in parallel, using the Marching Cubes algorithm.

Keywords: Volume visualization, octrees, hierarchical data structures, thread model, shared-memory paradigm

knowledge of the data is a difficult task. Apart from the

presented solution, we know of no other scheme at the

moment.

The main problem is the recursive parent/children rela-

tion of tree structures that is necessary for the com-

plete computation. A balanced parallelization requires

a decoupling of this relationship in order to distribute

the work to all processors. We achieve this goal by

processing the tree blocks in a partial order; all chil-

dren of a block are processed before the parent block is

completed, where the last processed child triggers the

completion of the parent.

After the construction of the octree, we apply a load-

balancing scheme to generate a distributed job list,

which is processed by a parallel version of the March-

ing Cubes isosurface algorithm [Loren87]. This appli-

cation is only one of many. Moreover, a lot of work has

been published on parallel Marching Cubes. There-

fore, we will describe our approach only very briefly.

Although our new scheme is valid for general recur-

sive tree structures, we focus on octrees.

Background and Related Work

An octree is a hierarchical, spatial data structure to
represent 3D-data at different levels of details
[Samet94]. Starting with the so called superblock -
representing the whole dataset - each octant (an octree
block) is subdivided into eight children blocks. Each
of these children blocks has a size that is half as large
as the size of the parent (Fig. 1).

Fig. 1: Octree

This subdivision is performed until the lowest level is

reached, where each block represents eight voxels.

Due to the subdivision, the size of each octant is a

power of two. Unfortunately, datasets usually do not

have a size of this scheme. Therefore, some octants are

“empty” - they do not intersect with the dataset -,

according to the alignment of the dataset within the

octree. In order to save space, we use a minimal octree.

The minimal octree approach enumerates only the

octants - and their children - that are not empty.

Octrees are used in several applications to provide a

multiresolution representation. Laur and Hanrahan

presented an octree-based scheme for hierarchical

splatting [Laur91]. Splats of different size and shape

are used, according to the standard deviation of the

color values of the different octree blocks. Greene

et.al. use an octree and an image pyramid for visibility

queries in large polygonal environments [Green93]. In

[Shekk96], Shekkar et. al. use an octree representation

of a volumetric dataset to generate a block-oriented

polygon reduction scheme of its isosurface.

In our approach, we follow Wilhelms and van Geldern

[Wilhe92]. By storing the minimum and maximum

values of the voxels at each block of the octree, the

blocks which do not intersect with the isosurface can

be skipped rapidly. After selecting all contributing

voxels of these blocks, the isosurface is generated.

Apart from hierarchical methods, a variety of thread-

based algorithms for the visualization of volumetric

datasets exist. Nieh and Levoy [Nieh92] propose an

image space parallel ray casting to visualize the struc-

tures of the dataset. Additionally, other parallel volu-

metric methods have been examined [Singh94], such

as the octree-using hierarchical radiosity approach of

Hanrahan et. al. in [Hanra93].

Koning et. al. presented an approach similar to Nieh’s

[Konin96]. The algorithms were implemented and

measured on a Convex SPP 1000 and on a SGI Chal-

lenge. However, the replication of the dataset through

all hypernodes of the Convex limits the feasible size of

the datasets severely. Therefore, this technique is not

applicable to our approach.

Our paper is organized as follows: in section two, we

discuss our approach for a parallel and balanced con-

struction of a recursive tree structure. Section three

briefly presents an application of our scheme and is

followed by our results in section four. Ultimately, we

state our conclusion in section five.

2 PARALLEL OCTREE
CONSTRUCTION

The main contribution of this paper is a scheme for an
asynchronous, balanced and scalable parallel construc-

tion of a recursive tree structure, in our case an octree.
We achieve this by combining the well-known concept
of a workload-splitting job queue and our new asyn-
chronous push-up.

In general, octrees are constructed in two stages; a

split-down of a parent into several children, and a

push-up of the results of the children back to the par-

ent, i.e. the standard deviation, or - in our case - the

minimum and maximum voxel values.

The parallelization of a recursive split-down is a rather

simple task. Depending on the workload and the avail-

able processors, a subtree can be assigned to a thread.

Usually, the second stage causes difficulties for a bal-

anced parallelization. Due to their recursive relation-

ship, we need to maintain the parent/children

information. On the other hand, a balanced paralleliza-

tion requires a decoupling of the structure.

A simple distributed top-down subdivision, as sug-

gested for the first stage, only provides the top-down

information; every parent knows its children. For a

push-up, we also need the bottom-up information - i.e.

which block is the parent of the current block.

We solve the problem by triggering the push-up of the

parent with the completion of the processing of the last

child.

First stage: split down

Fig. 2: Split-up and queueing

In an initial step, the superblock of the octree is added

to the job queue. After being started, each thread reads

a job from the queue and checks the size of the octree

block of the job. If this size is above a specified granu-

larity value, the thread splits this octant into children

of smaller size, adds these children blocks to the job

queue (Fig. 2), and gets a new job from this job queue.

If the octant’s size is not above this specified value, the

thread proceeds with this block and all its children

sequentially. This differentiation is necessary to guar-

antee a balance between the queue and synchroniza-

tion overhead, and the parallelization benefits.

Second stage: asynchronous push up

Fig. 3: Asynchronous push-up at child m,2
and thread t3

As mentioned before, the decoupling of the parent/

children relation in recursive data structures is crucial

for the successfully balanced parallelization of the

construction process. However, this relationship must

still be preserved. We obtain this goal with an asyn-

chronous push-up.

Fig. 4: Level mutexes

We provide each parent block with a counter of all

valid children blocks and result fields for these chil-

dren of the parent block. Each child that has finished

its computations updates the appropriate result field of

its parent, decrements the counter, and the thread -

which processed this child - requests another job from

the job queue. As soon as a thread realizes that it is

parent block n

five children

child n,4

child n,3

child n,2

child n,1

child n,0

current job new jobs

queueingsplit-up

parent m

child m,0 child m,3child m,2child m,1

four children

thread t0

thread t1

thread t2

thread t3

thread t2, t3

block l

block l,nblock l,m

level mutex l

block

......

l,m,0
block
l,m,1

block
l,m,3

block
l,n,0

block
l,n,5

....

level mutex l,m level mutex l,n

processing the last uncompleted child, the thread con-

tinues processing the parent of this child (thread t3 in

Fig. 3). We call this semantic the asynchronous push-

up.

The access to the counter and the children result fields

is protected by a mutex. We call this mutex a level

mutex. The level mutex only protects one parent.

Therefore, we obtain an optimized exclusive access

and a minimal obstruction for other threads (Fig. 4).

Discussion

Our algorithm has two potential bottlenecks; the job
queue and the asynchronous push-up. Both are pro-
tected by mutual exclusion.

Optimally, each job generates eight additional jobs.

Therefore, the queue contains a rapidly growing num-

ber of jobs until the algorithm reaches the granularity

of this process. This number depends on the number of

threads that were started and the size of the dataset.

Apart from the access to the mutex protected job

queue, the bottleneck of the queue arises from a possi-

ble undersaturation of jobs in the queue. Due to our

experiments, it turned out that this happens only in the

final phase, while the threads are waiting for the shut-

down notification from the thread which is processing

the superblock. The second bottleneck, the level mutex

of the asynchronous push-up, is only within the direct

siblings of one parent block. Although the split-down

stage of the construction is realizing a kind of breadth-

first order of processing, due to the parallel processing,

the order is soon completely unsynchronized.

In the experiments, the time needed for locking and

unlocking of all of the mutexes increased from 0.6% to

5% of the octree construction time1, each time the

number of threads/processors doubled. Compared to

the saved time, we consider this amount insignificant.

Overall, our closer examination showed that the con-

struction of the octree is a highly balanced process,

even with unbalanced trees.

3 PARALLEL ISOSURFACE
EXTRACTION

After the construction or the reconstruction of the
octree, we need to calculate the contributing cells. In

1The increase on the SGI Challenge was slightly
lower.

our case, the contributing cells are the cells which are
intersected by our isosurface, that is our isovalue is
between the minimal and the maximal voxel value of
our cell.

In order to generate a load-balanced work distribution,

we recursively and sequentially traverse the octree and

select all contributing bottom-level blocks2 into a job

queue for each thread. Depending on the number of

available threads, we assign the selected blocks in a

round-robin manner. Using this scheme, the workload

of the threads only differs by one block at most. Con-

sidering the usually large number of selected blocks,

we have generated a balanced work distribution.

After the load-balancing, each thread starts its own

Marching Cubes process to compute the isosurface in

its assigned cells and stores the triangles in a FIFO-

queue data structure. Due to the distributed job queues,

no additional overhead is introduced.

4 RESULTS

Our measurements were performed on two different
memory architectures; on a SGI Challenge and on a
Convex SPP 1600 (Table 1).

SGI Challenge

The SGI Challenge is implementing a physical shared-
memory scheme on a UMA3 architecture. All 16 pro-
cessors are connected via a 1.2 GB/s system bus, using
up to 3.0 GB of memory. For our implementation, we
used the pthread library of SGI.

2Each bottom-level block contains eight voxels.
3Uniform-Memory-Access

Architecture SGI Challenge Convex SPP 1600

#Processors/
Hypernodes

16/- 16/2

Processor 64bit 194 MHz
R10000

32bit 120 MHz
HP PA7200

Memory
Architecture

UMA
physical shared-

memory

NUMA
virtual-shared-

memory

High Level
Interconnect

./. Toroidal bus
4 x 600 MB/s,

2µs latency

Low Level
Interconnect

Global Bus
1.2 GB/s

200 ns latency

5 port Crossbar
1.25 GB/s,

500ns latency

Table 1: Architectures

Convex SPP 1600

In contrast to the SGI Challenge, the Convex SPP is a
dedicated MIMD parallel computer, implementing a
virtual-shared-memory scheme on a NUMA1 architec-
ture. It consist of several virtual machines - so called
subcomplexes - which can be considered as indepen-
dent computers. We used a 16 processors/two hyper-
nodes subcomplex with 1.3 GB of virtual-shared-
memory. The processors within one hypernode are
connected via a five port crossbar at 1.25 GB/s and a
memory latency of 500 ns. The hypernodes are con-
nected with a toroidal bus at 2.5 GB/s and with a mem-
ory latency of 2 µs. The CPS-library (Compiler
Parallel Support) is used as implementation of the
thread model.

Discussion

We measured the performance of our algorithms on
four different cartesian grid datasets; two medical and
two CFD datasets. A is an abdominal CAT-scan of a
male patient, and B is a MRI-scan of a human head.
Datasets C and D are vortices of two different flu-
ids.The analysis shown in table 3 and table 4 are per-
formed using dataset B on the Convex, and dataset A
on the SGI Challenge. Two measures are provided; the
wall clock time2 of the experiments and the parallel
efficiency

 (1)

where tseq is the sequential execution time, nthreads the

number of used threads, and tparallel the parallel execu-

tion time.

Within one hypernode on the Convex, memory alloca-

tion is limiting the construction of the octree and the

isosurface extraction using the Marching Cubes3 algo-

rithms. While the parallel efficiency of both phases is

in the mid-nineties, the memory allocation is a mutex

protected sequential operation. Therefore, its contribu-

tion to both of the phases of our process is increasing

from 5.1% to 9.4% of the construction phase (Table 3),

and from 4.5% to 15.6% of the extraction phase (Table

4). The memory access to the data volume after its

allocation scales nicely with an efficiency always

1Non-Uniform-Memory-Access
2Note that the profiling process increases execution
times. Therefore, only the measured efficiencies of
the different experiments can be compared.

3Memory allocation is due to the storing of the gen-
erated triangles and vertices in FIFO-queues.

above 90%.

Using more than one hypernode deteriorates the per-

formance severely, because the memory latency of the

hypernode interconnect is approximately four times

higher. Besides the memory allocation, the memory

access introduces an additional slow-down. Due to a

missing memory distribution strategy in our imple-

mentation, the systems default round robin strategy is

used. A theoretically possible - yet not developed -

explicit distribution would presumably improve the

observed situation.

On the SGI Challenge, we can see a similar picture as

in the one-hypernode measurements on the Convex.

Memory allocation is limiting the scalability. Approxi-

aNo malloc-locking required. We use the two-
thread measurements for normalization.

e tseq nthreads tparallel⋅()⁄=

Dataset/
size

Total number
of cells in octree

Selected
cells

#Triangles

A: Patient abdomen
514x514x183

48,348K
100%

3,204K
6.6%

4,960K

B: MRI Head
256x256x107

7,012K
100%

96K
1.4%

955K

C: Cavity vortex
191x191x191

6,968K
100%

115K
1.7%

432K

D: Vortex breakdown
45x45x55

111K
100%

290
0.3%

3K

Table 2: Selected cells

#threads 1/[s] 2/[s] 4/[s] 8/[s] 16/[s]

octree
code

140.77
100%

71.68
98.2%

35.98
97.8%

18.42
95.5%

11.84
74.3%

memory
allocation

17.96
100%

14.45
62.1%

10.30
43.6%

4.63
48.5%

56.13
2.0%

memory
access

195.44
100%

100.65
97.1%

50.67
96.4%

26.46
92.3%

17.21
71%

total on
Convex

354.42
100%

186.78
94.8%

96.95
91. 4%

49.51
89.5%

85.18
26%

octree
code

0.32
-

4.08
100%

1.12
182.1%

2.09
48.8%

1.67
30.5%

memory
allocation

39.00
-a

63.89
100%

51.58
61.9%

40.06
39.9%

31.47
25.4%

memory
access

0.88
-

2.17
100%

0.23
471.7%

0.42
129.2%

-
-

total on
SGI

40.20
-

70.41
100%

52.93
66.5%

42.57
41.3%

33.14
26.6%

Table 3: Convex and SGI profiling of octree
construction: wall clock and parallel efficiency

mately 80% of the allocation time is spend in the lock-

ing mechanism of the operating system. Additionally,

the floating point operations of the isosurface extrac-

tion is introducing additional traffic on the system bus

and therefore, establishs a potential overhead for this

phase.

There are several pros and cons of shared-memory

architectures. We firmly believe that an important

aspect is the easy straight-forward parallelization using

threads without an architecture-dependent memory

distribution strategy. However, a trade-off between the

costly development of such strategies and the high

costs for memory access of virtually-shared-memory

must be considered.

Comparing the measurements on our two memory

architectures, we made the observation that the one-

hypernode Convex produces a better scaled scheme

than the SGI Challenge. We suppose this is due to the

better applicability of the crossbar of the Convex than

of the system bus of the Challenge during data access.

Depending on the dataset size, the costs of the octree

construction and computation of the workload distri-

bution for the rendering varies between less than 58%

(dataset C) and less than 41% (dataset D) using only

one processor. Considering the obtained cell reduction

rate of approximately 95% due to the octree, this

seems to be a small price1. Nevertheless, the overhead

of the octree construction has a considerable impact on

the scalability with small datasets (i.e. dataset D).

Fig. 5: Build measurements

Fig. 6: Render measurements

5 CONCLUSION AND
FUTURE WORK

We presented a method for an asynchronous, balanced
parallel construction of recursive tree structures, in our
case octrees. In addition, we implemented a parallel
version of the Marching Cubes algorithms, using the
cells selected by the octree. Both schemes are based on
the shared-memory paradigm and are implemented
using different thread models and memory architec-
tures.

We were able to obtain a good speed-up within one

hypernode on the Convex. Using more processors led

to rapidly increasing communication costs on the Con-

vex. An explicit memory distribution strategy would

improve this situation, due to the reduced communica-

tion overhead. However, this strategy would also vio-

late our concept of a virtual-shared-memory

1Running a Marching Cubes process without the pre-
selection of contributing cells results in multiple
execution times of this phase. However, only the
classification of the cells is performed, which
approximately is 50% of the total execution time.

#threads 1/[s] 2/[s] 4/[s] 8/[s] 16/[s]

Marching
Cubes

95.92
100%

51.43
93.3%

26.25
91.3%

13.86
85.5%

7.52
79.7%

memory
allocation

13.82
100%

8.26
88.5%

6.52
56.1%

7.48
24.4%

17.08
5.3%

memory
access

195.27
100%

100.31
97.3%

50.56
96.5%

26.23
93.0%

18.79
64.9%

total on
Convex

305.01
100%

160.00
95.3%

83.33
91.5%

48.07
79.3%

43.39
43.9%

Marching
Cubes

65.96
100%

46.63
70.7%

23.72
69.5%

22.06
37.4%

8.15
50.6%

memory
allocation

13.78
100%

8.34
82.6%

4.14
83.2%

2.93
58.8%

3.15
27.3%

memory
access

44.85
100%

26.29
85.3%

10.48
107%

9.07
61.8%

3.89
72.1%

total on
SGI

146.40
100%

73.16
100%

56.76
64.5%

37.83
48.4%

19.07
48.0%

Table 4: Convex and SGI profiling of isosurface
extraction: wall clock and parallel efficiency

1

10

100

1 10

seconds

#threads

Cavity vortex dataset C, octree build

pthreads on sgi
cps threads

1

10

100

1 10

seconds

#threads

Cavity vortex dataset C, extract isosurface

pthreads on sgi
cps threads

architecture, as a foundation for easy and fast paralleli-

zation.

On the SGI Challenge, memory allocation and system

bus were limiting the speed-up. The succeeding

Onyx2-architecture uses a crossbar as interconnect.

Comparing our results with results on that architecture

update would produce meaningful comparison of the

pros and cons of these interconnect technologies.

Overall, the octree construction time is small com-

pared with the total extraction time of the datasets. In

comparison to a non-hierarchical, straightforward par-

allelization of the volumetric datasets this seems to be

a small price for an approximately 95% reduction rate

of cells (Table 2).

In the presented work, the use of the octree is limited

to the search for contributing cells. However, this is not

the most beneficial application for octrees in 3D-ren-

dering. Therefore, a future focus will be on direct vol-

ume rendering techniques, such as ray casting, and on

visibility queries in large dynamic environments.

A drawback of the current implementation is the limi-

tation to cartesian grids, while most datasets in CFD

are based on curvilinear grids. The octree data struc-

ture only depends on a rectilinear topology. Conse-

quently, an extension for the processing of curvilinear

grids is another future focus.

Acknowledgements

The abdominal patient dataset is courtesy of the Visu-
alization Laboratory of the State University of New
York at Stony Brook. The cavity dataset is courtesy of
the Institute of Fluid Mechanics of the University of
Erlangen-Nürnberg.

We like to thank Martin Steckermeier, Matthias Gente,

and Michael Schröder for their support using the Con-

vex at the Computing Center at Erlangen. Addition-

ally, we like to thank Rüdiger Westermann and Philipp

Slusallek of the Computer Graphics Group at Erlangen

for useful discussions and support using the local com-

puting environment. Last but not least, we thank Arie

Kaufman and Pat Tonra for support using the SGI

Challenge at Stony Brook, and our reviewers for their

helpful comments.

This work has been partially supported by DFG

project SFB 182 and the MedWis program of the Ger-

man Federal Ministry for Education, Science,

Research and Technology.

References

[Conve95] Convex Computer Corporation:Exemplar Pro-
gramming Guide2, 1995.

[Green93] Greene, N., Kass, M., Miller, G.:Hierarchical Z-
Buffer Visibility, in Proc. SIGGRAPH’93, pp.231-
238, 1993.

[Gross95] Grosso, R., Ertl, Th., Klier, R.:A Load-Balanc-
ing Scheme for Parallelizating Hierarchical Splat-
ting on a MPP-System with Non-Uniform Memory
Access Architecture, in Proc. HPCGV’95, pp.125-
134, 1995.

[Hanra93] Hanrahan, P., Salzman, D., Aupperle, L.:A
Rapid Hierarchical Radiosity Algorithm, in Proc.
SIGGRAPH’93, pp.197-206, 1993.

[Konin96] Koning, A., Zuiderveld, K., Viergever, M.:Vol-
ume Visualization on Shared-Memory Architectures,
in Proc. First Eurographics Workshop on Parallel
Graphics and Visualization, pp.129-143, 1996.

[Laur91] Laur, D., Hanrahan, P.:Hierarchical Splatting: A
Progressive Refinement Algorithm for Volume Ren-
dering, in Proc. SIGGRAPH’91, pp.285-288, 1991.

[Loren87] Lorenson, W. E., Cline, H. E.:Marching Cubes:
A High Resolution 3D Surface Construction Algo-
rithm, in Proc. SIGGRAPH’87, pp.163-169, 1987.

[Nieh92] Nieh, J., Levoy, M.:Volume Rendering on Scal-
able Shared-Memory MIMD Architectures, in Proc.
Workshop on Volume Visualization’92, pp.17-24,
1992.

[Samet94] Samet, H.:The Design and Analysis of Spatial
Data Structures, Addison-Wesley, Reading, 1994.

[Shekk96] Shekkar, R., Fayyad, W., Yagel, R., Fredrick, J.:
Octree-Based Decimation of Marching Cubes Sur-
face, in Proc. IEEE Visualization’96, pp.287-294,
1996.

[Silic94] Silicon Graphics Inc.:Power Challenge Techni-
cal Report, Silicon Graphics Inc., Mountain View,
1994.

[Singh94] Singh, J.P., Gupta, A., Levoy, M.:Parallel Visu-
alization Algorithms: Performance and Architectural
Implications, in IEEE Computer Vol 27, No. 7,
pp.45-55, July 1994.

[Wilhe92] Wilhelms, J., van Geldern, A.: Octrees for Faster
Isosurface Generation, in ACM Transactions on
Graphics, pp.201-227, July 1992.

aMeasurements are inclusive memory allocation.

aDue to insufficient memory, no FIFO-queue is
used. Therefore, no memory allocation is per-
formed.

Fig. 7: Dataset D - Vortex breakdown of an
injected fluid at time frame 300

Fig. 8: Dataset D - Vortex breakdown of an
injected fluid at time frame 360.

Fig. 9: Dataset C - Cavity vortex:
Particular z-components of velocity vector field
of a fluid within a cavity. Two sides of the cav-
ity are heated differently.

Processor
s/Dataset

1/[s] 2/[s] 4/[s] 8/[s] 16/[s]

A:octree

isosurfacea

170.50
100%
156.78
100%

100.42
84.9%
87.144
90%

56.40
75.6%
60.72
64.6%

35.20
58.9%
33.52
58.5%

39.87
26.8%
24.85
39.4%

B:octree

isosurface

25.58
100%
29.07
100%

17.97
71.2%
18.34
79.2%

12.88
49.6%
11.71
62.1%

9.51
33.6%
7.57
48%

8.51
18.8%
5.37

33.8%

C:octree

isosurface:

24.53
100%
22.59
100%

17.01
72.1%
12.67
89.1%

11.91
51.5%
7.70

73.3%

8.38
36.6%
5.02

56.2%

8.87
17.3%
4.11

34.3%

D:octree

isosurface

0.40
100%
0.49

100%

0.26
57.7%
0.47

51.9%

0.19
50.9%
0.61

20.2%

0.32
15.3%
1.05
5.8%

0.44
5.7%
2.11
1.5%

Table 5: SGI Challenge/Pthreads:
wall clock and parallel efficiency

Processors
/Dataset

1/[s] 2/[s] 4/[s] 8/[s] 16/[s]

A:octree

isosurfacea

491.93
100%
261.14
100%

339.16
87.2%
131.82
99.1%

201.47
73.4%
66.11
98.8%

135.67
54.5%
33.89
96.3%

642.71
5.8%
17.63
92.6%

B:octree

isosurface

81.08
100%
76.17
100%

45.92
88.3%
41.29
92.2%

26.92
75.3%
24.59
77.5%

18.00
56.3%
19.25
49.5%

79.86
7.8%
16.44
29%

C:octree

isosurface:

79.88
100%
59.99
100%

45.77
87.3%
29.69
101%

26.47
75.4%
15.64
95.9%

17.69
56.5%
8.98

83.5%

64.12
7.8%
8.72
43%

D:octree

isosurface

1.39
100%
2.34

100%

0.82
84.8%
1.64

71.4%

0.57
61.4%
2.01

29.1%

0.65
26.7%
4.96
5.9%

2.29
3.8%
8.45
1.7%

Table 6: Convex SPP/CPS threads:
wall clock and parallel efficiency

