JAZ: JAVA ALGORITHM VISUALIZER.
A MULTI-PLATFORM COLLABORATIVE TOOL FOR TEACHING
GRAPH ALGORITHMS

Giancarlo Bongiovanni
Dipartimento di Scienze dell’Informazione
Universita degli Studi di Roma “La Sapienza”
Via Salaria 113, 00139 Roma, Italy

bongio@dsi.uniromal.it

Pierluigi Crescenzi
Dipartimento di Sistemi ed Informatica
Universitd degli Studi di Firenze
Via Cesare Lombroso 6/17, 50134 Firenze, Italy

piluc@dsi2.dsi.unifi.it

Gabriella Rago
Dipartimento di Scienze dell’Informazione
Universita degli Studi di Roma “La Sapienza”
Via Salaria 113, 00139 Roma, Italy

rago@dsi.uniromal.it

Abstract

In this paper we propose a new graph algorithm
visualizer, called JAZ (Java Algorithm visualiZer),
whose main features are: (a) JAZ is basically
machine-independent; (b) JAZ is a post-mortem SV
system; (c) JAZ heavily uses colors and it allows to
show multiple views of program executions; (d) JAZ
is based on an imperative approach; (e) the inter-
action between the user and the system is based on
the Java Application Programming Interface; (f) the
main purpose of JAZ is novice classroom demonstra-
tion and algorithm development and debugging. In
our opinion, JAZ is very simple to be used. The
main characteristic of JAZ, however, is that it can
also be used as a multi-platform distributed collab-
orative tool for teaching graph algorithms (over any
network supporting the TCP protocol, such as Inter-
net or any intranet).

Keywords: Graph algorithms; Algorithm anima-
tion; Visualization.

1 Introduction

The last years have seen remarkable improvements
in the development of frameworks for the so-called
area of algorithm visualization, which is understood
to be the visualization of a high-level description
of a piece of software. It is well known to people
who develop algorithms that their brain (or, bet-
ter, its right side [14]) automatically does an imag-

-73-

inative work, consisting in creating mental images
that correspond to the main characteristics of the
different phases of analysis, development and imple-
mentation of an algorithm. Therefore, as it is ex-
plained in {18, 19], automatic visualization can be-
come a useful aid for teaching as well as for de-
veloping and understanding algorithms (both in the
design phase and in the analysis and development
ones). A survey on the more general subject of soft-
ware visualization (in short, SV) can be found in [21],
where twelve visualization systems (that is, SOS (3],
BALSA [9], Zus [7], TANGO [24], ANIM [6}, Pas-
cAL GENIE [12], UWPI [17], SEE [4], TPM [15], Pa-
VANE [22], LocoMEDIA [16] and CENTERLINE OB-
JECTCENTER [11]) are briefly described and com-
pared with respect to six main categories which can
be summarized as follows: (a) the scope (that is, the
kind of hardware, operating system, language and ap-
plications that can be handled by a given SV system),
(b) the content (that is, what subset of information
is visualized by the SV system and whether the vi-
sualization is produced as a batch job (post-mortem)
or as the program executes (live)), (c) the form (that
is, the medium and the graphical objects by means
of which a visualization is specified), (d) the method
(that is, the style in which a visualization is specified
(procedural or declarative)), (e) the type of interac-
tion existing between the user and the SV system,
and (f) the effectiveness of the system.

We have noticed that the main visualization pack-
ages, such as ZEUs, TANGO and PavANE, suffer of

Graph file

;

JAZ Runner

I

JAZ
libraries

Java user
source code

Snapshot
file

JAZ SV

Java
Compiler

Java

[=]

file class

Figure 1: Software architecture of the JAZ SV system

two main drawbacks: they are machine-dependent
since they make use of machine-dependent graphic li-
braries and, being general-purpose algorithm anima-
tion systems, they require a very high learning effort
for a person who want to visualize a given algorithm.
In this paper we propose a new algorithm visualizer,
called JAZ (Java Algorithm visualiZer), that over-
comes the first drawback, being developed in Java
language [2], and is very simple to be used, having
restricted the class of algorithms to be animated to
the class of graph algorithms.

According to the six categories described above,
the main features of JAZ are the following:

1. Being written in Java, JAZ is basically machine-
independent. Indeed, the only requirement is
that a Java virtual machine is available on the
machine and the operating system on which JAZ
has to be executed. So far, JAZ has been tested
on the following operating systems: MAC-OS,
Windows 95, and Unix.

2. JAZ is a post-mortem SV system.

-74

3. JAZ heavily uses colors. Moreover, it allows to
show muitiple views of program executions (thus
allowing, for instance, to compare different algo-
rithms for the same problem).

. JAZ is based on an imperative approach, that is,
the data structures that can be used for the vi-

sualization are constrained by the functions con-
tained in the JAZ Library.

. The interaction between the user and the system
is based on the Java Application Programming
Interface.

. The main purpose of JAZ is novice classroom
demonstration and algorithm development and
debugging. In our opinion, JAZ is very simple
to be used.

The main characteristic of JAZ, however, is that,
similarly to other SV systems such as GASP-II [23],
MocHA [5], and CAT [8], it can also be used as a
maulti-platform distributed collaborative tool for teach-

¥ Maove selaction

Figure 2: The graphic interface for the JAZ graph drawer

ing graph algorithms (over any network supporting
the TCP protocol, such as Internet or any intranet).
The paper is structured as follows. In Section 2
we briefly describe the philosophy behind JAZ and
its software architecture when viewed as a single-user
SV system. In Section 3, instead, we describe the
network deployment of JAZ when used as a multi-
platform collaborative tool for teaching algorithms
and how JAZ can be used as a teaching tool in an
electronic classroom. In Section 4, finally, some di-
rections for future research are briefly outlined.

2 The JAZ SV System

JAZ is a Java SV system which allows to visualize
a sequence of slides intended to represent the exe-
cution of a graph algorithm. It uses a post-mortem
technique for making animations out of the execu-
tion of a graph algorithm, similar to the one used by
GAIGS [1, 20]. In other words, the visualization can
be displayed only after the program executed.

The software architecture of the JAZ SV system is
shown in Fig. 1. The user who wants to animate a
graph algorithm can use the JAZ Graph Drawer to
draw a graph and save it into a file with a specific

-75-

format. Then, in order to load the graph and create
a file representing snapshots of the execution of any
graph algorithm, the user has to annotate the pro-
gram, by inserting at interesting points of the source
code some Java methods, contained in a set of JAZ
Libraries (to this aim, the inclusion of these libraries
in the source code is needed). This set of libraries
contains methods that allow a Java programmer to
load a graph, to modify its structure (by either adding
or deleting nodes and edges or changing the color of
its nodes and edges), to take pictures of the graph at
interesting points of the execution of the source code,
and to save these slides into a file with a specific for-
mat. The code, compiled with any Java compiler,
will produce a class file. Therefore, the user can call
the JAZ Runner that takes this class and the graph
file as input and produces as output a file contain-
ing an animation of the algorithm. At this point, the
user can execute the JAZ Snapshot Visualizer, which
reads the animation file, interpret it and displays the
snapshots representing the execution of the program.

The graph drawer The graph drawer allows the
user to either load a graph or draw a new one. To this
aim, a simple and almost auto-explaining interface
has been implemented (see Fig. 2). At the present

import java.lang.*;
import java.awt.*;
import java.io.*;
import java.util.*®;
import jaz.graph.*;
import jaz.flles.”;

public class DFSApplication implements Alginterface{
boolean{] n;
boolean BT = false;
JazAlgGraph g = new JazAlgGraph();
JaxAlgFiles files = new JazAlgFiles();
PrintStream outputStream = null;

public DFSApplication() {}

public void algStart() {
g.loadGraph();
outputStream = files.openShowfile();
g.initNodeColors(Color.black, Color.white);
files.snapshot(“Initial graph”, g, outputStream);
n = new boolean[g.computeNumberOfNodes()];
for (int j= 0; j < n.length; j++) n[j]=false;
DFSearch(0);
files.closeShowfile(outputStream);

}

public void DFSearch(int i) {
nfi] = true;
g.setColorsOfNodeOfIndex (i, Color.black, Color.green);
flles.snapshot(“Visit node” +i, g, outputStream);
g.setColorsOfNodeOfIndex(i, Color.green, Color.black);
for (int j = 0; j < n.length; j++) {

if ((g.existsEdgeBetweenlIndices(l, j)) && (n[j] == false)) {
g.setColorOfEdgeBetweenIndices(i, j, Color.green);
DFSearch(j);
if (BT) {

g.setColorsOfNodeOfIndex (i, Color.black, Color.green);
files.snapshot (“Backtrack to node” i, g, outputStream);
g.-etColor-OfNodeOﬂndex(i, Color.green, Color.black);
BT = false;
}
}

BT = true;

Figure 3: The code for the DFS problem

time, the graph drawer is quite basic, especially if
compared to more powerful specific software. The
interface is composed of three panels: a palette panel,
a command panel and a drawing panel. By clicking
with the mouse on any of the buttons of the palette
panel, the user can perform on the drawing panel one
of the possible drawing actions (such as deleting a
node or an edge, inserting a node, an edge, or a loop,
setting a node or an edge label, reversing an edge
direction, moving a node, and selecting and moving
a set of nodes). After a graph has been drawn, the
user can save it, by clicking on the Save... button
of the command panel. In the current version of the
graph drawer, it is not possible to edit several graphs
simultaneously on the same drawing panel neither to
perform any kind of graph combination. Moreover,
the node or edge label can only be a float value.
Finally, no graph drawing algorithms are available
even though they will be included in the near future.

The libraries JAZ offers a set of Java libraries,
that the user must import in the source code in or-
der to animate an algorithm. An example of a Java
program, annotated with some JAZ primitives (the

-76 -

ones written in bold), that implements a depth-first
search algorithm, is shown in Fig. 3. In order to
produce a file of snapshots representing the graph
at different times of the execution of the program,
the standard main() method is substituted by the
algStart() one, that loads the graph and opens an
outputstream, where the snapshots will be printed.
This method also initializes the colors of the nodes
of the graph and takes an initial snapshot of the
graph by means of the files.snapshot() method
that causes the description of the graph at that mo-
ment to be printed on outputStream.

The kernel of the program is the recursive method
DFSearch() which receives as parameter the current
visited node i. The first visualization step within
this method consists of coloring node i with green
in background and black in foreground by means
of the method g.setColorsOfNodeOfIndex(). A
snapshot of the graph is then taken. Succes-
sively, when the edge between i and j is selected,
this edge is colored with green by means of the
method g.setColorOfEdgeBetweenIndices() and,
once again, a snapshot of the graph is taken. The
last visualization step consists of changing again the
background and the foreground colors of node i in
order to emphasize that this node has been already
visited.

The snapshot visualizer The JAZ snapshot visu-
alizer is the heart of the toolkit. Its interface is shown
in Fig. 4 where different steps of the execution of the
program previously described are presented. After
having loaded a file of snapshots (through the Load
button), the user can either show the slides one-by-
one both in forward and in backward mode (by click-
ing on the Step or on the Back button) or visualize
them (by clicking on the Go button) until the end of
the execution of the program is reached or until the
Pause button is clicked. Notice that a snapshot de-
scription is composed of a text which is visualized in
the text area positioned in the upper part of the inter-
face and of a graph specification which is visualized
immediately below the text area. The meaning of the
Broadcast button and of the lower part of the inter-
face (which supports a chatline) will be explained in
the next section.

3 The JAZ Collaborative Tool

The network deployment of the JAZ collaborative
tool is shown in Fig. 5. Basically, the interaction
between the teacher and the students is allowed by
means of a server which broadcasts any incoming

Figure 4: Four screen dumps of the execution of the Jaz Visualizer

message to all connected clients (i.e. the teacher and
the connected students). This server is part of the
teacher tool: it communicates with the teacher inter-
face through a pipe connection and with the student
tools through TCP connections (thus, there are no
limits on the “geographic dimension” of the virtual
classroom). Since the messages traveling through the
network can be either snapshot descriptions or chat-
line messages, all connections need a multiplexor and
a de-multiplexor in order to correctly handle two dis-
tinct message streams traveling on a single connec-
tion. Observe that, in the current version of JAZ,
the visualization of the snapshots is not interactive:
that is, the student cannot interfere with the sequence
of the visualized snapshots.

The teacher interface The teacher snapshot vi-
sualizer (see lower part of Fig. 6) is exactly the
same as that described in the previous section. The

-77-

Broadcast button allows the teacher to send the de-
scription of the currently visualized snapshot to all
connected students (observe that only the teacher can
send snapshot descriptions). The lower part of the in-
terface regards the chatline. This part is composed of
(a) a text area where all messages traveling through
the network are visualized, (b) a text field where a
new message can be composed, and (c) a Send but-
ton that allows to send the message contained in the
text field.

The student tool The student interface is similar
to the teacher one (see upper part of Fig. 6). There
are two main differences: (a) the student interface
does not contain the visualization buttons (indeed,
the student can only receive snapshot descriptions
from the broadcast server), and (b) the interface con-
tains a connection part where the name of the student
has to be specified and the connection can be estab-

»
5
2
3
2

Snapshot
visualizer §

-Ehad_irle

connection

Broadcast Server

1001 JayoRa],

Snapshot
visualizer

Ehatfne

Pipe connection

Figure 5: The network deployment of the JAZ collaborative tool

lished by means of the Connect button (to be precise,
this part is contained in the Html document that the
student opens with any browser).

An example In Fig. 6, an example of the be-
ginning of a typical network class is shown. In
this case, two students, Alice and Bob, are con-
nected with the teacher, professor Duke (observe
that Alice is running Netscape Communicator under
Windows 95 while Bob is running it under MAC-
0S). Whenever a student starts a new connection,
the default message hello to everybody is broad-
cast through the network (observe that any chat-
line message is shown in the text area preceded
by the identification of the sender). In our ex-

278 -

ample, after the connection of Alice and Bob, the
teacher sends the two messages Welcome, Alice.
Welcome, Bob. I am professor Duke. and I
will now show you DFS in action. Successively,
he broadcasts the description of the snapshot pre-
viously loaded and currently visualized. The class
can now continue: the teacher can alternatively load
and, eventually, broadcast new snapshot descriptions
or answer to any question that the students pose
through the chatline.

4 Conclusion

In this paper we have briefly described a new SV
system, called JAZ, which can also be used as multi-

=

T e o Sverghody
3 , Al Vo, Beb.
Sanher ;| Wil v show pos IVt astion.

e

L=

Figure 6: An example of a JAZ multi-platform classroom

platform distributed collaborative tool for teaching
graph algorithms. With JAZ programmers can easily
obtain animations to support the development, the
debugging, and the explanation of graph algorithms.
To this aim, they just have to annotate their Java
code with JAZ primitives.

Three main research directions will be followed in
the near future:

e To experiment the system in actual electronic
classrooms. The main goal of these experiments
should be to understand whether animations can
really aid understanding an algorithm. Similar
experiments have already been performed (see,
for example, [10]) but, as far as we know, there

-79-

are no results regarding electronic classrooms.

To develop a fundamental graph algorithm base
to be distributed along with the system. To this
aim, we will mainly refer to the graph algorithm
part of [13].

To compare JAZ with other similar SV systems
for electronic classrooms, such as GASP-II [23],
MocHA [5], and CAT [8]. Two examples of cri-
teria that will be used to perform such a com-
parison are the ease-of-use and the delay induced
by the visualization object transmission.

References

[1] Anderson J.M. MacGAIGS: General Algo-
rithm Visualization Software for Macintosh,
http://www.uis.edu/%7Egrissom/VISU-
ALS/algorithms.html#MacGAIGS.

[2] Arnold, K. and Gosling, J. The Java™ Pro-
gramming Language. Addison-Wesley Pub-
lishers, 1996.

[3] Baecker, R. M. Sorting Out Sorting. ACM
SIGGRAPH Video Review T, 1983.

[4] Baecker, R. M. and Marcus, A. Human Fac-
tors and Typography for More Readable Pro-
grams. Reading, MA Addison-Wesley, 1990.

[5] Baker, J.E., Cruz, LF., Liotta, G., and
Tamassia, R. Algorithm Animation over the
World Wide Web. Proc. of ACM AVI 96,
203-212, 1996.

[6] Bentley, J. L. and Kernighan, B. W. A Sys-
tem for Algorithm Animation. Computing
Systems, 4:5-30, 1991.

[7] Brown, M. H. Zeus: A System for Algorithm
Animation and Multi-View Editing. Proc. of
IggEE Workshop on Visual Languages, 4-9,
1991.

[8] Brown, M. H. and Najork, M.A. Collabora-
tive Active Textbooks: a Web-based Algo-

rithm Animation System for an Electronic
Classroom. SRC Research Report 142, 1996.

[9] Brown, M. H. and Sedgewick, R. A System
for Algorithm Animation. Proc. of ACM
SIGGRAPH 84, 177-186, 1984.

[10] Byrne, M. D., Catrambone, R., and Stasko,
J.T. Do Algorithm Animations Aid Learn-
ing? Technical Report GIT-GVU-96-18,
August 1996.

[11] CenterLine Software ObjectCenter Refer-
ence. Cambridge, MA: CenterLine Software,
Inc, 1991.

[12] Chandhok, R., Garlan, D., Meter, G,
Miller, P., and Pane, J. Pascal Genie, Char-
iot Software Group, San Diego, CA, 1991.

[13] Cormen, T.H., Leiserson, C.E., and Rivest,
R.L. Introduction to Algorithms, MIT Press,
1990.

[14] Edwards B. Drawing on the right side of the
brain. Fontana Collins Publishers, 1979.

[15] Eisenstadt, M. and Brayshaw, M. The
Transparent Prolog Machine (TPM): an ex-
ecution model and graphical debugger for
logic programming. Journal of Logic Pro-
gramming, 5: 1-66, 1988.

-80 -

[16] DiGiano, C. J., Owen, R., and Rosenthal,
A. J. LogoMedia, Department of Computer
Science, Toronto, 1992.

[17] Henry, R. R., Whaley, K. M., and Forstall,
B. The University of Washington Illus-
trating Compiler. Proc. of the ACM SIG-
PLAN’90, 223-233, 1990.

[18] Jones, V. Visualization and Optimization.
Kluwer Academic Publishers, 1996.

[19] McCormick B.H., Defanti T.A., and Brown
M.D. Visualization in scientific computing,
Computer Graphics, 21: 1-14, 1987.

[20] Naps T. GAIGS: General Algorithm Vi-
sualization Software for PC Windows,
http://wuw.uis.edu/%7Egrissom/VISU-
ALS/algorithms.html#GAIGS.

[21] Price, B.A., Baecker R. M. and Small LS.
A Principled Taxonomy of Software Visu-

alization, Journal of Visual Languages and
Computing 4: 211-266, 1993.

[22] Roman, G.C., Cox, K. C., Wilcox, C.
D., and Plun, J. Y. Pavane: a System

for Declarative Visualization of Concurrent
Computations. Journal of Visual Languages

and Computing, 3: 161-193, 1992.

[23] Shneerson M. and Tal A. GASP-II: a Ge-
ometric Algorithm Animation System for

an Electronic Classroom. WISDOM Techni-
cal Report in Computer Science CS96-21,

1996.

[24] Stasko, J. T. Tango: A Framework and Sys-
tem for Algorithm Animation. JEEE Com-
puter, 23: 27-39, 1990.

