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ABSTRACT
This paper presents a new technique to extract, in noisy digital pictures, regions whose pixels fall, with a
degree of uncertainty, in a given range of gray levels. The proposed method uses fuzzy numbers to
describe in a compact way, at the early vision stage, the relevant information of the picture together with
the uncertainty due to noise. This fuzzy model of the original picture is hence interrogated with a
Marching-Cube-like algorithm to obtain, for a specified level of presumption, the pixels in a prescribed
range. The quality of the obtained results is comparable with those obtained with more traditional, but

less efficient, non-linear smoothing techniques.

1. INTRODUCTION

The construction and visualization of iso-curves is a
standard technique for the investigation of bi-
dimensional data. For example, the use of systems of
iso-curves to gain insight into large collections of
2D geographic data predates the digital era.
Similarly, in many cases, volumetric data can be
efficiently and effectively presented through a
sequence of iso-surfaces, or “shells”, relative to
successive density levels.

Construction and visualization of iso-surfaces, as
regarded in this paper is an early vision task: further
elaboration is needed to assign a semantic relevance
to the detected surfaces. Iso-contouring, moreover,
here takes into account only one of the features of
each pixel at time (gray level, response to Sobel
filter etc.). This grants efficiency but a price is paid
to the accuracy of the classification. In applications
that are not accuracy-critical iso-contouring is a
viable alternative to more precise, but more costly,
techniques based on neural nets or on extraction of
principal features (eigenvalues, PCA etc).

In this paper we assume that for a digital picture or a
digital volume an iso-curve, or an iso-surface, is the
set of the pixels whose characteristics, like gray
level, gradient magnitude etc. are constant, or in a
prescribed range. Notice that, according to this
definition, an iso-curve is not a one-dimensional set
but a sub-region of the original picture (generally of
elongated shape or “strip-like”): here the term
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“curve” is hence used somehow improperly. The
classification of the pixels whose characteristics fall
in a prescribed range or “window” is also known in
literature as “windowing” and is widely applied. For
example when, in the image under examination,
objects and background are characterized by well
separated values of gray, windowing is a simple,
powerful way to detect the object/background
boundary.

When the data (pixels or voxels) have been collected
with a smaller sampling resolution than the
resolution required in the visualization and the
windowing range is reduced to a single value a
popular approach to windowing is the Marching
Cube Algorithm (MCA) [Loren87]. This technique
assumes that the observed characteristic changes
linearly from one point of the sample the closest
sample points and makes use of few local rules to
locate the segments (respectively polygons, in the
3D case) where the windowing value is attained.

Many variations of the Marching Cube Algorithm
are known, but all seem to have two major source of
difficulties: noise sensitivity and topological
ambiguity. Even a small amount of spurious or
erroneous data can confuse the windowing process
destroying the topological integrity of the extracted
region. Several heuristic rules have been proposed
(see for example [Karro92]) to resolve topological
ambiguities in applying the MCA, but none of them
seem to avoid all the possible problems.

A common cure to noisy data is to apply a
smoothing filtering like, for example, the non-linear



median filter whose robustness to noise is rooted in
the analogous property of the statistical median
indicator. Median filtering, however, s
computationally expensive and its use in real time
processing of images, as required by many medical
imaging procedures, is limited and becomes non
practical for 3D data.

MCA, moreover, provides only a “hard”
classification: points are classified as members of
the approximating polyedral surface or outside of it
and any information about the uncertainty coming
from the noise in the original image is lost. The final
user, hence, in many cases, has no clue about the
validity of the results. It is clear that even a simple
qualitative information of this kind can be extremely
useful in the daily applications.

The simple algorithm described in this paper for bi-
dimensional data tries to address the three above
mentioned issues: noise reduction, topological
soundness and uncertainty estimation, using Fuzzy
Arithmetic.

According to the proposed approach, noise and
uncertainty are naturally incorporated, in a
controlled way, into a fuzzy model of the original
image. The interrogation of this fuzzy model, done
in a marching-cube-like fashion, provides in output
regions where, with a given level of presumption,
the pixels values fall in the required range. The
regions relative to lower presumption levels
naturally contain the regions relative to higher
presumption levels: coloring these regions with a
slowly changing LUT an immediate visual
information, suggestive of the validity of the
windowing process is provided.

The paper is organized as follows: Section 2, quickly
reviews Fuzzy Arithmetic and reports the two
fundamental steps of the proposed technique, i.e.,
the fuzzification procedure of the original image and
its interrogation. Section 3 reports experimental
results and compares them with similar results
obtained with a non-fuzzy approach. The paper
concludes with a summary and with some notes
about further related researches.

2, FUZZY WINDOWING
IMAGES

IN DIGITAL

2.1. Fuzzy Arithmetic

In order to make this paper self-contained in this
subsection we review some fundamental concepts of
Fuzzy Arithmetic. Definitions and results not
explicitly mentioned here can be found in
[Zimme91], [Anile95]. A fuzzy real number F is an
interval [ab] of the real line together with a
“membership function”, m(t) from the set of the real
numbers to the unit interval [0, 1] such that:

i) m(t) =0 for tin R\ Ja,b[ ;
ii) There is at least a point ¢ in [a,b] such that
m(c)=1.

m(t) can be a general function, however, for the
application of this paper only triangular fuzzy
numbers are used. A triangular fuzzy numbers F =
([a,b],m(1)) is a fuzzy number such that there is only
one point ¢ in [a,b] such that m(c) = I and the
function m(t) is linear and monotonically increasing
from a to ¢ and linear and monotonically decreasing
from ¢ to b. Examples of two triangular fuzzy
numbers are diagrammed in Fig 1.(a).

Given a real number s in [0,1] the interval F. s is the
subinterval [ lohg] of [a,b] such that for every ¢ in
[lphg], m(1) is greater or equal to s. F is said “s-cut”
of the number F.

A fuzzy number F can be equivalently assigned as a
pair ([a,b],m(t)) or as a family of intervals F s with s

in [0,1] such that if s>1, F s is contained in F| S

Making use of s-cuts it is possible to introduce
arithmetic operations over fuzzy numbers: if OP is a
binary operation over real numbers the interval [aq, bJ
OP [cd] is the interval defined as [min(t OP s),
max(t OP s5)] with tin [a,b] and s in [c,d].

0 3 10 252629 32
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Fig.1 (a) Triangular fuzzy numbers with bases [5, 25] and [26, 32] and vertexes 10 and 29; (b) the sum of

the two fuzzy numbers of Figure 1.(a).
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If OP is a binary operation over the reals F OP G is
the fuzzy numbers described by the collection of s-
cuts Fg OP G with sin [0,1].

If OP is a linear operation triangular fuzzy numbers
generate a new triangular fuzzy number. This is not
necessarily true if OP is non-linear. Fig.1.(b) shows
the sum between the two fuzzy numbers in Fig.1.(a)

Linear interpolation between two fuzzy numbers F
and G, L(F, G, t), is defined over the unit real
interval and takes value over the set of the fuzzy
numbers. More precisely, in terms of s-cuts:

Ly(F, G, t) =F (1 - )+ Gg t

In Fig.2 some s-cuts of the fuzzy numbers
interpolating the triangular numbers with bases [0,6]
and [6,9] and vertexes 3 and 7.5, are diagrammed.

0 §2033 1

75

0 $=2086 1 0 s=1 1

Fig. 2 The linear fuzzy interpolation of the two
fuzzy triangular numbers with bases [0, 6] and
[6, 9] and vertexes 3 and 7.5.

A possible extension of the windowing procedure to
the fuzzy case can be defined as follows. Given a
presumption level s and a range [a,b], the set:

H[a,b],s = {tin [0,1] such that L(F, G, t) and
[a,b] have a non-empty intersection/

is the set where the fuzzy function L(F, G, t)
assumes, with presumption s, values in [a,b].

The fuzzy subset Hy, p; of the unit interval, defined
with the s-cuts H[a,b], s is the answer to the

windowing query of L(F, G, t) with respect to the
range [a,b].

The results of querying the fuzzy function in Fig.2
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with the range (2,4] are shown in Fig.3 for the
presumption levels s=0, s=0.33, 5=0.66 and s=1.

s=1
s=0.66
s=0.33
Is=0
0 279 275 6711 2.3 1

Fig.3. s-cuts of the answer to the query of the
function in Figure 2 with respect to the query [2,
4].

2.2. Fuzzy digital pictures

The first step of the proposed procedure is to obtain
a fuzzy version of the original data set.

Let B be a positive integer. Let M x N be the
dimension in pixels of the original picture. The
fuzzy version of the picture is a lattice of M/h x N/h
data point. . In the experiments the parameter k has
been equal to 30 or 20.

To each point (i,j) of the lattice, { = I.M/h, j =
1..N/h, can be assigned a triangular fuzzy number as
follows:

1. consider the square sub-region of the original
picture of side 2k pixels, whose center is the pixel
(ih.jh);

2. compute the median, MED, the first quartile, FQ,
and the third quartile, TQ, of the values of the 4h2
pixels in the square;

3. assign to the point (ij) the fuzzy triangular
number whose basis is the interval [FQ, TQ] and
with vertex MED.

This simple procedure provides a, somehow
qualitative, statistical summary of the original
picture and uses indicators that are well known for
their robustness to noise and outliers. The fuzzy data
in the lattice realize, indeed, a form of data reduction
through a sub-sampling of the original data set,
maintaining, at the same time, minimal information
about the spatial variability.

Notice that the status-of-the-art methods in the
analysis of spatial data [Cress96],[Viert96],
[Kruse87], provides generally more information than
the simple approach taken here. However this is
achieved with a greater computational effort. We
found experimentally that the proposed fuzzy



technique balance well the complexity issues with
the precision required for the present application.

2.3. Interrogation of the fuzzy data set

In this subsection we show how to interrogate the
fuzzy summary obtained in the previous subsection.

The kind of query considered here is a pair (/a, b],s).
The first component of the query is a real interval:
we are looking for regions of the image whose
pixels, prior the degradation due to noise and errors,
assume presumably values in the range [a, b]; the
second component of the query, s, is a real number
in {0, 1] and represents the presumption level
required.

The query is processed with an approach that is
reminiscent of the MCA. This is a reasonable choice
because the fuzzy image has a far lesser resolution
that the original picture and, in most situations, local
linearity can be safely assumed.

The interrogation algorithm considers, one at the
time, the unit rectangles of the lattice of fuzzy data.

Let UL (Upper Left) be the fuzzy number associated
with the vertex (i,j) of the rectangle.

Let UR (Upper Right) be the fuzzy number
associated with the vertex (i + 1, j) of the rectangle.
Let LL (Lower Left) be the fuzzy number associated
with the vertex (i, j + 1) of the rectangle.

Iet LR (Lower Right) be the fuzzy number
associated with the vertex (i+l, j + 1) of the
rectangle. For an example see Fig.4.

Gy 1.0

UL=({10,16),14};
UR={(12,14),13);
LR=((8,10),10);
LL=((0,10),2);

4 Ge1,1+1)

Fig.4 An example of a rectangle of the lattice.
The fuzzy triangular numbers are assigned as
pairs (base, vertex).

The linear interpolations L(UL, UR, t), L(UR, LR, t),
LR, LL, t) and L(LL, UL, t) are queried, at the
presumption level s, with the interval [a, b] as
shown in subsection 2.1. As a result one obtains at
most four sub-segments of the edges joining the
points (i, j), (i + 1, j), (i + 1, j + 1), (i, j + 1) of the
lattice. The answer to the original query, inside the
rectangle, is obtained as the convex hull of the sub-
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segments. The union of these convex hulls over all
the rectangles in the lattice provides the output of the
query. The process is illustrated in Fig.5 for few
values of s.

3. EXPERIMENTAL RESULTS

The procedure in Section 2 has been applied to three
kind of pictures: echocardiograms, text with uniform
noise and gradient magnitude of some test image.
For comparison the picture have been, in alternative,
smoothed with a median filter and windowed with a
traditional “hard” classification. Some results are
shown in Fig 6 to Fig.9.

A relevant difference is in the efficiency of the
process: traditional median filter applied to all the
pixels in the image is much more time consuming
than the computation of the fuzzy summary of the
picture. Notice that this summary, in the proposed
method, requires median computation as well, but
only for a very small subset of the pixels in the
original image.

If a box of 5 times 5 pixels is used for median
smoothing the proposed procedure requires about
half of the time required for traditional median
filtering, while, if the smoothing box is as large as
15 time 15 pixels, the proposed procedure requires
about ten time less computing time than the
traditional median filter. For example, in our,
implementation, traditional processing with median
filter of Fig.7 required about 69 seconds, while
fuzzy processing required 7 seconds.

Moreover while to extract semantically satisfying
sub-regions the proposed method needs very narrow
ranges (generally a single threshold value is
sufficient), traditional smoothing and windowing
requires significatively larger, harder to optimize,
ranges.

The fuzzy approach, finally, provides very good
visual clues to the quality of the segmentation
obtained. Coloring with an appropriate LUT the
regions extracted at different presumption levels a
user is presented in a single picture the results of
several interrogation and discrimination and analysis
is hence greatly simplified as Fig.9 dramatically
shows.

4. Conclusions

We have described a new approach, based on fuzzy
arithmetic, to pixel classification in digital pictures.
The proposed method provides results of
comparable or better quality than similar more
traditional windowing techniques. Its low
computational cost makes the technique a good real
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Fig.5 Results of some interrogations of the rectangle in Fig.4

time tools for image analysis and enhancement. A
great advantage of the algorithm is in the ability to
provide qualitative information about the validity of
the results obtained incorporating in a simple and
natural way statistical information about data
variability and uncertainty. As shown in the example
this can be an invaluable tool for practical purposes
in real time medical image processing.

The new algorithm can be extended in
straightforward way to higher dimensions and
research in this direction is in progress.
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(b)

CIAQ

Fig.6 (a) A fragment of text with added uniform noise; (b) the output of fuzzy classification for s = 0.8
relative to the range [0,0]; (c) the output of hard classification of the median filtered image relative to the
range [0,0]; (d) the output of hard classification of the median filtered image relative to the range [0,100].
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Fig.7. (a) Original echocardiography; (b) fuzzy classification relative to the window [38,38]; (c) hard
classification of the median filtered image relative to the window [36,40].

)

Fig 8. The gradient magnitude picture of the standard “Lena” photograph has been computed. (a) The

gradient has been fuzzy windowed relative to [128,128]; (b) the same gradient windowed relative to
[128,128].

Fig.9 An enlarged copy of the same echocardiography of Fig.7 with the fuzzy classified pixel reproduced
with a slow changing LUT overlaid to the original picture.
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