RAY TRACING OF NONLINEAR FRACTALS

Peter Wonka

Micheal Gervautz

Technical University Vienna
Institute for Computer Graphics
Karlsplatz 13/186/2, A-1040 Vienna, Austria
email: {wonka|gervautz}@cg.tuwien.ac.at

ABSTRACT

We present a new kind of parametric Lindenmayer-systems called nonlinear CSG-pL-Systems,
which are useful for the modeling of nonlinear fractals and fractal like objects. Nonlinear CSG-
pL-systems describe cyclic CSG-Graphs, which can include several nonlinear transformations.
To render the given objects a ray tracing algorithm is introduced, that is independent of the
transformations and the under laying CSG-primitives. We use tapering, twist and bend as
nonlinear transformations for our implementation. The new modeling possibilities and their
visualization for abstract fractals and natural phenomena are investigated.

KEYWORDS: nonlinear fractals, nonlinear ray tracing, CSG-pL-systems, natural phe-

nomena.

1 INTRODUCTION

Fractals are a powerful and memory saving ap-
proach to model complex three dimensional ob-
jects. With the short description of a fractal it
is possible to generate a geometric structure of
an arbitrary amount of detail, that could hardly
be described with an enumerative approach. To
make fractals a useful modeling tool, it is neces-
sary to use a flexible, parameter controlled class
of fractals, which makes it possible to have suf-
ficient control over the outcome. Since nonlinear
transformations have been proven to be intuitive
and convenient aids in the modeling process, it is
our goal to develop a modeling tool that combines
the advantages of nonlinear transformations and
fractal modeling.

One observation that can be made when studying
natural phenomena like plants is the highly com-
plex structure and the strong degree of nonlinear-
ity of the geometry. For the modeling of natural
phenomena procedural modeling techniques are
the most adequate and produced the best results
up until now. Therefore we want to use the non-
linear CSG-pL-Systems for the modeling of plants.
In order to get a high quality picture the objects
will be rendered with ray tracing.

In the past Demko, Hodges and Naylor [DHN85]
used iterated function systems(IFS) for the defi-

nition of complex objects. Although they limited
their approach to two dimensional objects their re-
sults looked very promising. Ray tracing of three
dimensional IFS was investigated by Hart and De-
Fanti [HD91] using the concept of object instanc-
ing to construct the fractals dynamically during
rendering. Nonlinear transformed IFS were inves-
tigated by Zair [ZT96] using free form techniques
and Groller [Gro94] presented a method for mod-
eling and rendering nonlinear IFS. The problem
with IFS modeling is that the constructed objects
are strictly self similar, which is too restrictive to
make them useful for the modeling of real world
objects. Another concept which is adequate for the
description of these objects are L-Systems which
were introduced 1968 by A. Lindenmayer [Lin68].
Their use for the modeling of plants was shown
by Prusinkiewicz and Lindenmayer [PLH+90] with
several extensions like parameter passing, stochas-
tic behavior and context sensitive rules. The limi-
tation of their approach is the rendering technique
which uses huge amounts of memory, because the
scene description is built up in advance, which also
makes nonlinear extensions difficult. A solution
to overcome the memory limitation are CSG-pL-
Systems [GT96], which provide similar modeling
possibilities and provide a useful basis for nonlin-
ear extensions. Therefore we use CSG-pL-systems
as a basis for our approach to include nonlinear
transformations in fractal modeling.

-424 -

2 BACKGROUND

CSG-pL-systems [GT96] are parametric string
rewriting systems that can be represented by
cyclic CSG-graphs, which need much less mem-
ory than the explicit CSG-expressions. The pa-
rameters are treated like global variables, so that
any node can access all the parameters it needs. A
graph consist of the following elements:

o The leaves of the CSG-graphs are geometric
primitives like cylinder, box or sphere.

e Sub-graphs are combined with the CSG-
operators op € {\,U,N}.

o Affine transformations are described in
transformation-nodes (T-nodes), so that
they can be applied to primitives and whole
sub-graphs as well. A T-Node consists of a
transformation list, so that several transfor-
mations can be stored in one node. The trans-
formations can depend on certain parameters.
e.g. scale (a,0,2b).

e Calculation nodes (C-nodes) are used to
modify the parameters. New values can be as-
signed to any parameter according to math-
ematical expressions. This is very similar to
the assignment of a value in a programming
language. e.g. a=a*a+2%c.

e Selection-nodes (S-nodes) are used to con-
trol the construction of the CSG-expression
and have more than one successor in the
graph. They select the actual successor based
on a boolean expression. The boolean expres-
sion depends on given parameters. S-nodes
behave like if-then-else statements: e.g. if (b <
3 x ¢) then select nodel else node2.

CSG-pL-systems describing smaller objects can be
rendered interactively with Z-buffering to obtain
a quick result [SG97] during modeling. For high
quality pictures they are used directly for ray trac-
ing.

Figure 1 shows an simple example graph represent-
ing a Sierpinski-tetrahedron. Beside IFS CSG-pL-
systems are mainly used to describe complex mod-
els like plants, shells and architectural objects.

3 NONLINEAR
EXTENSION

For our system design we have to consider two
major points: modeling and rendering. The use
of nonlinear transformations should enrich the
range of possible models without making the de-
sign of new objects too complicated. For the ren-
dering part we choose ray tracing, because it pro-
duces highly realistic images especially for outdoor
scenes. These are our design goals:

¢ It should be possible to apply nonlinear trans-
formations to geometric primitives and whole
CSG-graphs as well.

e The used class of transformations should be
an intuitive modeling aid.

e The transformations should fit into the con-
cept of ray tracing CSG-graphs.

¢ The computational effort should stay in an
acceptable range.

Tapering, Twist and Bend [Bar84] were proven to
be very useful to describe the structure of nat-
ural phenomena like plants. Branches for exam-
ple are almost always bended and tapering can
be used to modify the thickness of the branches.
Oppenheimer [Opp86] successfully used the con-
cept of tapering and twist for the creation of com-
plex tree models. The result of tapering and twist
applied to a twig can be seen in figure 2. There-
fore we extended CSG-pL-systems to allow these
three transformations. Nonlinear transformations
can be used in transformation nodes, together with
linear transformations. In this way whole CSG-
graphs can be transformed with one nonlinear
transformation.

4 RENDERING
ALGORITHM

The idea of ray tracing three dimensional fractals
is to use the concept of object instancing to con-
struct only parts of the fractals dynamically dur-
ing rendering. The major advantage of this ap-
proach is to render fractals with very low mem-
ory consumptions. Hart [HD91] presented this ap-
proach for IFS and Groller [Gro94] extended this
concept for ray tracing nonlinear IFS.

The ray tracing algorithm for linear CSG-pL-
systems uses a ray transformation instead of an

-425-

A?;J (oouw&-o)? ':)No counter -1 '
] &
D calculation L?
N 2
Om | 1O S D
Q = i 4

Figure 1: The CSG-graph on the left represents the Sierpinski-tetrahedron and can be used for ray

tracing(right picture).

Figure 2: A set of twigs created with tapering and
twist applied to a simple twig model.

object transformation to calculate the ray-object
intersections. To calculate an intersection point
with an object represented by a CSG-Graph the
ray traverses the graph. When a transformation
is encountered the ray has to be transformed so
that ray-primitive intersections can be calculated
in the local coordinate system of the primitives.

To keep the advantage of object instancing it is
necessary to transform a ray immediately when-
ever it encounters a nonlinear transformation.
This transforms the linear ray into a three dimen-
sional curve, which makes the representation of
the ray consisting of an eye and direction vector
no longer sufficient. Another representation has to
be found.

The main idea is to use a piece by piece linear
approximation as proposed by Groller [Gro95)].

Within a transformation area the ray is split into
N linear segments defined by N +1 points p;. Since
it is hard to determine how many segments are
necessary for an accurate representation, an error
metric has to be found which guarantees, that the
maximum distance of the linear pieces to the ana-
lytically correct ray does not cause noticeable er-
rors in the picture. To maintain a certain accuracy
without time intensive computations adaptive re-
finement is used.

4.1 Adaptive Refinement

Given a nonlinear transformation fy, the ray de-
fined by p;, 1 <1 < N +1 is transformed with
the inverse transformation f,;'. After this trans-
formation the accuracy of the representation does
not hold the error bound in general and differs for
different ray segments. To improve the approxi-
mation for every three points p;,p;+1 and pjio
the maximum error is estimated with the dis-
tance from the point f,'(pit1) to the chord
F7 () £} (pi+2). This is the height of the trian-
gle defined by the three points. If this distance ex-
ceeds a defined threshold new points are inserted
between p;,pi+1 and between p;i1,pit2. The re-
finement takes place until the condition is met for
all points. The process of the adaptive refinement
is illustrated in figure 3. As the ray traverses the
graph down to a primitive it passes many non-
linear transformations. Therefore the process of
adaptive refinement has to be repeated after each
transformation.

In our implementation a T-node consists of a list
of m linear or nonlinear transformations f;. The

- 426 -

transformation of a whole T-node is defined by
Fr—node = (f10 fa -+ -0 frm). Adaptive refinement is
done once for the transformation fr_no4e. instead
of calculating each transformation f; separately,
gaining speed.

> AN

insert points

s

h > hmax ?

h > hmax

Figure 3: Adaptive-refinement of two ray seg-
ments. If the height of the triangle defined by the
three points is greater than a certain threshold,
the ray segments are refined.

For our final pictures we used a threshold of
10~ 5units for objects which are about 1 units
big. This conservative estimation was empirically
found because of test measurements. A maximum
bound for the occurring error cannot be given with
this method.

4.2 Ray-primitive intersection

As the nonlinear ray consists of linear segments
the ray-primitive intersection can be calculated by
successively intersecting a single segment with the
primitive using existing linear intersection algo-
rithms. This means all primitives of a ray tracer
can be used in combination with nonlinear trans-
formations. In many scenes only union-CSG op-
erators are used. For these cases an additional
speedup can be achieved. The calculation can stop
after the first intersecting segment, because no fur-
ther intersections can be visible.

4.3 Normal vector calculation

" To handle nonlinear transformations in ray tracing
it is necessary to know not only the transformation
function but also the inverse transformation func-
tion and the normal vector transformation. Ta-
pering and twist, in the most general case, use an
arbitrary function f : R = R to control the trans-
formation. For the calculation of the normal vector
transformation the first derivation of this function
is needed. Numerical calculations during the ren-
dering process are much too expensive. Therefore
only certain transformations are used, where the
first derivation can be calculated easily in advance.

For the most cases a piece by piece linear function
is sufficient.

5 IMPROVEMENTS

5.1 Bounding Boxes

D

I

m) 1~

. 2
>

Figure 4: This figure shows the bounding box
problem for 2 dimensions: I) A cylinder is trans-
formed with linear transformations. The 4 points
are sufficient for a bounding box calculation af-
ter the transformation. II) The cylinder is bended
and the cylinder is no longer surrounded by the
bounding box determined by the four points. III)
The solution is to use additional points for the
bounding box calculation.

Bounding boxes are very essential for the perfor-
mance of the ray tracing algorithm. They provide
two advantages:

¢ Bounding Boxes reduce significantly the in-
tersection calculation for hierarchical struc-
tures.

¢ Bounding boxes guarantee a finite transfor-
mation area. The nonlinear ray can be clipped
with each bounding box reducing the number
of ray segments to be considered for further
calculations.

The bounding box calculation for linear CSG-pL-
systems was investigated by Traxler et al. [TG95].
Their approach used hyper bounding boxes for
each node of the CSG-Graph instead for each in-
stance of each node. Traxler used eight points
to approximate the convex hull of primitives.
These eight points together with all transforma-
tions along the path to the primitive can be used

-427 -

to calculate the contribution of a primitive to
the bounding box of an intermediate node. Their
method calculates bounding boxes which are tight
enough for ray tracing.

To adapt this algorithm for nonlinear CSG-graphs
we have to consider, that a set of 8 points might no
longer be sufficient to approximate the convex hull
for a nonlinear transformed primitive (see figure
4). To solve this problem we extended the point
set to form a mesh defined by the original box.

These points are used as the new approximation
of the convex hull. With the new approximation
it is very unlikely, that a part of the transformed
primitive lies far outside the transformed point set.
However even a fine mesh cannot guarantee a cor-
rect bounding; small parts of the object may lie
outside the bended mesh.

Therefore the point set of the original bounding
box is scaled up a bit before the fine mesh is con-
structed. In this way we reduce the probability
that parts of the object lie outside the bounding
mesh after transformation.

This approach satisfies two important conditions:
The calculation works exact enough, so that no
bounding errors occurred in our tests and the com-
putation is inexpensive compared to the rendering
time.

5.2 Strip Trees

The straightforward approach to successively in-
tersect each segment of the ray with a bounding
box works well, but can further be improved. A
faster solution would be a hierarchical handling of
the ray. We use strip trees to subdivide nonlinear
rays and create hierarchical bounding boxes for
them.

The strip tree was introduced by Ballard [Bai81]
and first used by Kajiya for ray tracing [Kaj83].
The strip tree used in our approach is quite simi-
lar to the strip tree proposed by Groller [Gro95],
who uses axis aligned bounding boxes for a three
dimensional ray described by an explicit mathe-
matical function.

We will also use axis aligned boxes for our ray.
Since our ray is represented by linear segments
the construction of the strip tree is straightforward
and very fast.

The leaves of the tree are linear ray segments
bound by a box. The inner nodes of the tree com-
bine the boxes of their successors. To construct the

/ N\
.m{}. -

/\ / \
“A ,,EI = —=
I\ I\ /I \ /I \
211NN~ —m N

Figure 5: The figure shows a strip tree for 8 ray
segments.

tree the bounding boxes are combined bottom-up
from the leaves up to the top.

For the ray-object bounding box intersection test
it is important to note, that we do not need the
exact intersection point. It is enough to deter-
mine which segments of the nonlinear ray are com-
pletely outside the object bounding box and clip
them. For this calculation the strip tree is tested
against the object bounding box. Starting with the
root node, the bounding box of the strip tree node
is intersected with the object bounding box. Three
configurations are possible:

e The bounding box of the strip tree node is in-
side the object bounding box. In this case all
segments of the ray are considered for further
calculations.

e The boxes have no overlapping area. This
means that the parts of the ray bound by the
strip tree node can be clipped.

e The boxes partly overlap. In this case the ob-
ject bounding box is tested against the two
successors of the strip tree node. If the con-
sidered strip tree node is a leaf node the ray
segment can not be clipped .

Traversing down the graph this way, only ray seg-

ments reach a primitive which lie inside the prim-
itive bounding box.

6 MODELING

We used nonlinear CSG-pL-systems for the mod-
eling of abstract fractals and plants. Since nonlin-

-428 -

ear IFS are a subset of nonlinear CSG-pL-systems
we can render nonlinear IFS and nonlinear trans-
formed IFS. The use of nonlinear transformations
gave us several advantages:

e The modeling of complex transformations ap-
plied to a whole graph is possible. We can take
any object represented through a CSG-Graph
and apply a nonlinear transformation to it.

e For complicated nonlinear geometry it is
sometimes too expensive to approximate it
with linear transformed primitives. A strongly
twisted stem for example would need a large
amount of primitives for an adequate repre-
sentation.

e A great variety of similar objects can be pro-
duced by applying different nonlinear trans-
formations to them. An example can be seen
in picture 2.

7 RESULTS

Nonlinear CSG-pL-systems were implemented as
an extension to the well known free-ware ray tracer
Povray. The implementation is very modular and
uses the core functions of POV 3.0 so that nearly
all primitives and features offered by Povray can
be used. Nonlinear fractals can be seen in the pic-
tures 6 and 7. They show the use of nonlinear
transformations in each level of recursion. Both
fractals were produced by a variation of the Sier-
pinski tetrahedron definition described in figure
1. Nonlinear tapering is applied within the recur-
sive description of the fractal. In figure 6 an ad-
ditional tapering is used to transform the whole
object. Picture 8 shows the construction of palms
and the hut in figure 9 demonstrates the use of
twist for the construction of climbing plants. The
plants are constructed with linear transformations
and a twist is applied to obtain the final geometry.
The memory requirements for all scenes are under
100 Kbyte.

8 CONCLUSION

Nonlinear transformations were used to create a
new kind of pL-Systems called nonlinear CSG-pL-
systems. We showed that the given system is a
useful modeling tool for abstract fractals and nat-
ural phenomena. Our experience was, that the ray

tracing algorithm and the bounding box calcula-
tions are very stable and even extreme transfor-
mations do not result in visible errors in the final
picture. But one has to be cautious using nonlinear
transformations for the modeling of real world ob-
jects because transformations applied to a whole
CSG-Graph might result in unwanted side effects.
The leaves in picture 9 for example are all twisted
around the stem. This is not a problem for the
shown picture, but for close views the modeling
artifacts become visible.

9 ACKNOWLEDGMENTS

Thanks to Christoph Traxler for his useful com-
ments on that project and Wolfgang Deutsch for
parts of the implementation.

References

[Bal81] Dana H. Ballard. Strip trees: A hierar-
chal representation for curves. Commu-
nications of the ACM, 24(5):310-321,

May 1981.

[Bar84] A. H. Barr. Global and local deforma-
tions of solid primitives. In H. Chris-
tiansen, editor, SIGGRAPH ’84 Con-
ference Proceedings (Minneapolis, MN,
July 28-27, 1984), pages 21-31. ACM,

July 1984.

[DHNS85] S. Demko, L. Hodges, and B. Naylor.
Construction of fractal objects with it-
erated function systems. Computer

Graphics, 19(3):271-278, July 1985.

[Gro94] E. Groeller. Modeling and rendering
of nonlinear iterated function systems.
Computer & Graphics, 18(5):739-748,

1994.

[Gro95] E. Groeller. Nonlinear ray tracing: vi-
sualizing strange worlds. The Visual

Computer, 95(11):263-274, 1995.

[GT96] M. Gervautz and C. Traxler. Represen-
tation and realistic rendering of natu-
ral phenomena with cyclic CSG graphs.
The Visual Computer, 12(2):62-71,

1996. ISSN 0178-2789.

[HD91] John C. Hart and Thomas A. DeFanti.

Efficient anti-aliased rendering of 3D

-429 -

[Kaj83]

[Lin68]

[Opp86)

[PLH*90)

SG97]

[TG95]

(ZT96]

linear fractals. In Thomas W. Seder-
berg, editor, Proceedings of the ACM
SIGGRAPH Conference on Computer
Graphics (SIGGRAPH ’91), pages 91—
100, Las Vegas, Nevada, USA, July
1991. ACM Press.

James T. Kajiya. New techniques for
ray tracing procedurally defined ob-
jects. Computer Graphics, 17(3):91-
102, July 1983.

Aristid Lindenmayer. Mathematical
models for cellular interaction in devel-
opment parts i and ii. Journal of The-
oretical Biology, 18:280-315, 1968.

P. E. Oppenheimer. Real time design
and animation of fractal plants and
trees. Computer Graphics, 20(4):55-64,
August 1986.

Przemyslaw Prusinkiewicz, Aristid
Lindenmayer, James S. Hanan, et al.
The Algorithmic Beauty of Plants.
Springer-Verlag, 1990.

D. Schmalstieg and M. Gervautz. Mod-
eling and rendering of outdoor scenes
for distributed virtual enviroments. In
Proceedings of ACM Symposium on
Virtual Reality Software and Tech-
nology 1997 (VRST’97) ,Lausanne,
Switzerland,Sep. 15-17, 1997), pages
209-216. ACM, September 1997.

C. Traxler and M. Gervautz. Cal-
culation of tight bounding volumes
for cyclic csg-graphs. Proceedings of
11th Spring Conference on Computer
Graphics, Bratislava, 11, 1995.

C. E. Zair and E. Tosan. Fractal model-
ing using free form techniques. Compu-
ter Graphics Forum, 15(3):C269-C278,
September 1996.

Figure 6: Nonlinear IFS that was transformed with
one additional tapering. The rendering of this ob-
ject took about two hours (A comparable linear
version would need 40-60 minutes).

Figure 7: Nonlinear IFS that was transformed with
one additional tapering (120-180 minutes render-
ing time).

- 430 -

Figure 8: These palms were created using different twigs from picture 2.

Figure 9: The left picture shows a fence full of climbing plants. The plants and the fence together are
represented as one nonlinear CSG-pL-system (about 300 minutes rendering time). The right picture
shows a conifer.

