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ABSTRACT

In engineering, it is often needed to determine the deformed shape of thin flexible surfaces, such as fabrics,
paper, etc. under the action of applied loads. In this paper, a variational formulation was developed for such
cases. It serves as the foundation for developing the numerical solution scheme. Through the variational
formulation, the governing differential equation of motion was derived. The widely used Terzopoulos model is
shown to be an approximated solution. The constitutive relationship for thin flexible surfaces was established.
Finally the draping effect of a skirt was simulated based on this model. The formulation is suitable for most
large deformation problems and is extendable to cover the non-linear materials.
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INTRODUCTION

In recent years, cloth animation has become an
important subject in computer animation. It has the
potential to revolutionize the traditional 2D process of
garment design, and allow users to visualize the fitness
of garments before they are actually manufactured.
Whereas, to simulate the deformation behavior of such
thin flexible surfaces as fabrics, many unusual
characteristics of deformation, such as large rotation
and small strain, non-linear stress-strain relation, two-
dimensional parametric surfaces, etc., should be
considered in the formulation.

There existed three main methods to simulate the
deformation behavior, such as draping, of thin flexible
surfaces. The first approach is the finite element models,
e.g. [Aono90], [Kang95]. They used classical plate or
shell elements to model the flexible surface. The
associated numerical analysis was complicated and
computationally expensive for such large deformation
problems coupled with dynamic contact boundary
condition and non-linear material behaviors. The second
approach is the particle-system model [Reyno87],
[Breen94], [Eberh96] in which the cloth was
represented by many interacting particles. By simulating
the trajectories of every particle, one can obtain the
deformation pattern of the cloth. It is a even more time-
consuming process and the equivalence between the
cloth with the set of interacting particles needs to be
improved. The third method , which can be called as the
deformation surface model , was mainly developed by
Terzopoulos and his colleagues [Terzo88], [Qin95],

[Qin97]. It has been widely used in draping simulations
of cloth [Celni91]; [Guduk94]; [Carig92]. It is a well-
known fact that the deformation surface model
developed by Terzopoulos et al. is an approximate
model, and it is not easy to incorporate the cloth
properties, such as Young’s modulus, Poisson’s ratio
and bending rigidity into the model. In this paper, a
two-dimensional parametric variational formulation was
developed to derive the exact governing differential
equation for the flexible surface with the coefficients of
the equation related directly to the material’s constants.
The derivation corrects the bending term in Terzopoulos
et al’ equation. The draping effect of a skirt was used to
demonstrate the result of the finite difference solution
based on the formulation.

VARIATIONAL FORMULATIONS

The position of any point on a thin surface in Euclidean
space can be described by

X(u,t) =[x,(u,t),x,(u,t),x,(u,t)} )]

where u(u;, uy) represents the surface’s local coordinate
in the parametric space. It is assumed that the external

forces acting on the moving surface are: (1) the inertial
2
- X

force f1 = —pa-[ , where p is the mass density, in

the direction opposite to the acceleration; (2) the

-
—_

velocity-dependent damping force, f, = —’Yg , in the

direction opposite to the velocity; (3) the applied force
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P, such as gravity, or the restricted forces acting on the
surface. If X(u,t) is denoted as the equilibrium position

at time t, according to the principle of virtual work
[Pilke94], we know that the sum of the external virtual
work and the internal virtual work is zero for virtual
displacement 0X that satisfies the kinematic equations
and kinematic boundary conditions. The external virtual
work can be written in the form as

9’%  o%
W, = l{(-p=5— Y= +D) 0Xdu,du ()
-[! at> ot 2

where (2 is the domain occupied by the surface.

The internal virtual work is given by [Axelr87]
W, = -8[[F(G,,B)du,du, 3)

where F(G

and G;;, By are the first and second fundamental forms
of the surface, which are given by

jj»Bjj) is the strain energy per unit area,

ax ox L 3%

i~ au au ""_"'au,.au,.

“

where 11 is the unit surface normal which is given by
dx y ax

du, du,
dx o%

du, % du,

&)

=)
I

Expressing the strain energy density F(G;;,B;)as a

function of Gy, B is sufficiently general for thin flexible
surface deformation. Therefore

oW, +0W, =0 ()

from which one can derive the governing differential
equations for determining the equilibrium positions.
The variation of the strain energy, equation (3), can be
written in the form as

8

IF
8 jﬂj F(G,,B,)du,du, = Iﬂj(aT, +35 8B, )du,du, (7)

and using Green’s theorem,

oF o ox

H—SG du du, faG . ~a, +8_,a )oxdl ©
oF ox 0 JF oX
-1f [—(aG 3, 3 3 (aG u, ——)15%du,du,

where I is the contour of the surface, and a; is the
projection of the normal on u; axis. The transformation
of the second term in equation (7) is somewhat more
lengthy. It can be written in the form as

H 3, 0Bidud; = H a8, & a?u i a?:g: ydu,du, &)

The second term in equation (9) can be written in the
form as

I35, @5

Hauau

9°8% oF _ 9% 9 oF _
)du,du2= ——j—n-xajm—ig(an)48xaidl(10)

n) d%du,du,

If we write the normal vector fi given by equation (5)
in the following form

1 R _ o
ﬁ=§(nxi +n,j+n,k) 1n
where

ox, 0x, O0x; 0
n = Xy O0X3 OX; 0X, 12)

* du, du, du, du,

_0x; dx;  dx, OXx, 3
ny_au1 du, odu, du, 13

dx, dx, dx, 0x,

n,=—.——>-—=. 14
=3, du, u, ou, 9
/a2 2 2\4

N =(n, +n; +n;) (15)

one obtains

(i6)
where
ox, ax, ax, ox,
a,=n,—>—-n,—-,a,, =N, ——-n,—
"TYGu, *ou,”® fou, You,
ox ox ox ox
b,=n —-n —=,b,, =n, ——-n, —(17)
11 z aul x aul 22 x auz z auz
ox ox ox ox
¢, =N, —>—-n,— L —=

= —,C,p,=0,=———n
*9u, You, 2 You, *odu,



and
A =g a’x, +(ax, n _ d'x, _'L) a’x,
" “ N’ dudu, ‘ou " Nz auau au hNe du du,
n, 9K ax, n,_ d'x, . n,_ d'x,
A=t ouau  (au, TN au au, +(_‘anﬁ) udu
n, d&x ox, n n, . d'x,
By =0 N 2ugu (o, ~ b"ﬁ)auau '(Su"”b"ﬁ)auau
, Ox,  Ox, n, _ d&x a'x,
B. "b"T@éEéI*(au, - N”Taﬁfau_“(ﬁ’”bﬂﬁ)auau
D n, ..?l (?L c .I_l._) a’ __(ai ) —y— az
=T dudu, odu, "N’ ay au du, ‘N 3u au
D n, Ix, +(8x n) a'x ax n,) a'x,
== ”N’E)uau du, =N auau au ToN aui)u
(18)

By substituting equation (16) into equation (9), one
obtains

& d'%
II i .
(B,a +B ,.2,)8x, +(D,a +D .2,)8%,1d1— HH 8%du,du,

u“s: n“z

———dudu, —f [(A a,+A,a)0x + 19

where

H=H,i+H,j+Hk (20)

and

H_a(A aF)+a(A BF)
'"Qu,  "oB; ou E)B--

H, = J B oF + J (B )21
2 =30, ”aBij) du, = * 9B @
H_a(D 8F)+8(D BF)
37 ou, M oB;,” du,  ” 9B

Along the contour of the surface, if the positions are
given, then 8X =0, and all the terms in the contour
integrals are zero. For the case where the external force
is given along the contour, one should add the terms of
external virtual work along the contour. Thus
substitution of equations (8), (9) and related terms into
equation (7) gives both the surface and contour
integrals. Since the variation OX in both integrals is
arbitrary, the integrals can therefore vanish only if the
coefficients of OX are zero. Equating the coefficient in
the contour integral to zero gives the boundary traction
equilibrium condition. Whereas, that the coefficient in
the surface integral is zero gives the following equation

x %2 OF O
Pt 73 " 3u, 3G, au,

> oF x. 3 _oF . P
3. 3G, 2, " w0 g, M=

i
where His given by Eq.(20), and P is the external
force acting on the surface. In Terzopoulos and

subsequent works, the term H was neglected. In the
following part, we will give the expression of the strain
energy density for linear elastic materials, and show
how to determine the constants through experiments.

THE STRAIN ENERGY DENSITY OF A LINEAR
ELASTIC SURFACE

For a general linear anisotropic elastic material, the
strain energy density can be written as

F(G,.B, )——(G -G)CL(C.=CD)

+(B, B)C (B, —B,)

where Einstein’s summation convention has been used.
The associated errors is at most at relative order of

I%I + (%)2 , where h is the thickness of the surface, R

denotes the smallest principal radius of curvature, and L
is a characteristic wave-length of the deformation

pattern [Axelr87], and G? B0 are the first and second

l]’
fundamental forms of the surface at the undeformed
state. In equation (23), the tensors C! and C? have the
same symmetry properties as the elastic modulus tensor

1 1
Cukl = Cpkl ijlk Cui ij
Cukl =C; ikl = quk = Ckhj 24)

If the surface is made of orthotropic material with uy
and u; as the principal symmetry directions, one can
show that

1 1 2 2 2
Cllll ’C2222 ’C1212’C1111 ’ C2222 ’C1212 # 0(25)

while all the other components are zero. Therefore
equation (23) becomes

1 1 1
F=5Chn(Gyy = Gh)* + 5 Chon (G - G)* +4Clas (G - G3)*(26)
+ Clzlll(Bll - B?l )z + C:m(Bzz - B‘z)z )2 + CIIZIZ(BlZ - B‘IJZ)Z

Compared with Terzopoulos et al’s result, one can find
that the coefficients Ciljkl,ijkl are the weighting

functions. Whereas through comparison with the exact
form, equation (22), which we have derived, it is very
clear that their tension and shear terms associated with
G; are correct, whereas, the bending terms associated
with By only approximate the correct expressions. It can
also be found that by considering the bending terms, one
cannot derive the uncoupled equations for the
components of X as Terzopoulos did. If we assume that
u; and x; have the same dimension of length, the
dimension of the bending terms in Terzopoulos et al’s
equation is not consistent with the other terms.
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In what follows, the coefficients Ciljkl,Cgkl will be

jj
determined  from  suitably  selected  solutions

corresponding to the experimental measurements. For
thin flexible surfaces, such as fabrics, papers and non-
wovens, the mechanical properties can be measured by
using the Kawabata’s Evaluation System. It can
measure not only the tensile and bending properties
along different directions, but also the shear modulus on
the surface. Through these experimental data, we can

determine the weighting functions Ciljkl,Cizjkl. For

orthotropic materials, the six non-zero components can
be determined as follows.

Pure Tension Along w Direction

In such case, if Young’s modulus is measured as E;, the
strain energy in unit area is given by

1
F= 3 E.lh 27

1
where €,(= -2‘(G11 - G(l)1 )) is the tensile strain along

u; direction and h is the thickness of the surface. From
equation (26), one can write

1 1
F= -Z—C:Hlef + Eyzclmzef (28)

where 7Y is the Poisson’s ratio. In deriving equation

1
(28), we have used €,= E(G22 ~G) ="1e,.
Through equations (27) and (28), one finds

1 21
Cin+7Cyup=Eh (29)
Pure Tension Along u, Direction

In such case, if Young’s modulus is measured as E,
along u, direction, the strain energy in unit area is given

by
1 2
F= 5 E,e;h 30)
1 0 \y: . .
where €,(= —2'((}22 —G,,)) is the tensile strain along
u, direction. From equation (26), one can write

1 1
F= '2"YZC:1118§ + Ec‘zmeg 3D

Therefore one can find

‘YZC}m + C12222 =E,h (32

Combining equations (29) and (32), one can obtain the
coefficients C:m ,Cl2222 as functions of material’s
constants E,,E,,Y.

Pure Shear Test

In such case, if the shear modulus on the surface
denoted as G, the strain energy in unit area is given by

1
= EGefzh (33)
1 0 \y: .
where €,(= E(G12 —~G,,))is the shear strain. From
equation (26), one can write
1 g2

F=Cpntp, 34)
Therefore, one finds
Cl,,=Gh (35)
Pure Bending Along u; Direction

In such case, if the bending rigidity is measured as K;,
the strain energy in unit area is given by

0
F=K,(B,-B%)’ (36)
From equation (26), one can write
2 012 2 ~2 02
F= Cun(Bu - Bu) +v C2222 (Bu - Bu) @37
where Y’(B,; — B?l) =B,, - Bgz is the bending
component along u; due to the bending component

(B, —B(I)l) along u;. Through equations (36) and
(37), one finds

Clin+71°Chn =K, (398)
Pure Bending Along u; Direction

In such case, if the bending rigidity is measured as Ky,
the strain energy in unit area is given by

F=K,(B,, —-B%)’ (40)
From equation (26), one can write
F=y? C12111(B22 - B(z)z)2 + ngzz (By, — B(z)z )’ (40)

Through equations (39) and (40), one finds
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C§222+Y C1111 K, 41

Through equations (38), (41), one can solve the
coefficients C12111 ’ngzz as functions of the material’s
constants K, K,,7y".

Pure Twist Test

In such case, if the torsion constant is given by J, the
strain energy in unit area is given by

0 \2
F= J(B12 - B12 42)
From equation (26), one can write

0 \2
F= 2C1212 (B, - By, 43)
Therefore, one finds
sz “4
If the parametric material coordinates u; , u, are chosen
arbitrary, the strain energy density must be expressed as
a function of the measured material constants and the
equivalent strain which is expressed by u; , up firstly.

Then the same methods as above can be used to
determine the weighting functions.

SOLUTION SCHEME

Equation (22) is integrated in time steps of Af. By
substituting the following approximations

d2

d_t_- -~ (Xt+At 2§t +§t-At) / Atz

dx

E = (X —Xea )/ 2At 45)
into equation (22), one obtains
AXin =8, (46)

where the MNXMN matrix A  is as follows

1
A (x,) =KX )+(—M+—C) (47
2A
and the effective force vector can be written as
g =1 +(—1—M+——C)x +(1 M- —c) L -y (48)
2At At 2 At

Applying the above semi-implicit procedure, the
dynamic solution can be obtained for given initial

conditions X, and X, at t=0. During each time step, a
system of sparse linear algebraic equations for the
instantaneous configuration X, ,, is derived from the

preceding solution X, .

Construction of the Stiffness Matrix With The
Quadratic Interpolation Method

Suppose that the node x[m,n] and its neighboring nodes
constitute a quadratic surface q[m,n](t;,t,), where

~1<t, <1, -1<t,<1,and

q[m,n](-1,-1) = x[m-1,n-1],
q[m,n](-1,0) = x[m-1,n},

q[m,n](-1,1) = x[m-1,n+1],
¢[m,n](0,-1) = x[m,n-1],

q[m,n](0,0) =x[m,n], 49)
q[m,n](0,1) = x[m,n+1],

q[m,n](1,-1) = x[m+1,n],

q[m,n](1,0) = x[m+1,n],

q[m,n](1,1) = x[m+1,n+1].

dq[m,n] 9q[m,n] 9q*[m,n] 9q’[m,n] and

ot, ' o, ~ otdt, = ot}

1 2 1942 1

0q’[m,n] . :

—3—{2_ can be determined from the interpolated
2

surface and are used for the calculation of the first and
second order derivatives of x[m,n].

The local quadratic surface is given as follow,

e(t,)
qm,n](t,,t,)=[e(t,) £t,) gt)IXml, | )

&(t,)

(50)
where

xim-1,n-1] x[m-1,n] x{m-1n+1]
x[m,n—1] x{m,n] x[mn+1] {’
x[m+1,n—1] x[m+1Ln] x[m+1n+1]

[Xm]3x3 =
and blending functions are
) 1, 1
e(s)=—s" ——=s
2 2

f(s)=—s*+1

(s)--l z+—1-s
Y= M2

and the local parameters {, and t,are

t, =(y,
» =(u,

—m)/h,
-n)/h,

Let T,x[m,n], T,x[m,n], T,x[m,n], T;;x[m,n]
and T,,x[m,n] represent the first and second order
derivatives of x{m,n]. By using eqn.(50), we have
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dq[m, n}(0,0) _ x[m+1,n]—x[m—1,n]

T,x[m,n} =

results, small time steps were used in the numerical
analysis. In this example, the non-woven cotton cloth
was used, whose material constants were measured
using the Kawabata’s Evaluation System: tensile
modulus E;;=21300 N/m, E;;=4300 N/m; bending

T,x{m,n] = dq[m,n](0,0) _ x[m,n +1]-X[m,n — 1] ;;sigity B,= 175 pNm/m B,= 45 pNm/m; shear

ot, 2h,
(51)

o, 2h,

(52)
9? 10,0) x{m+1,n]—2x{m,n]+x[m—1,n]

(53)
_ 9*q[m,n](0,0) _ xX[m,n +1]-2x{m,n] + x[m,n -1]
T, x[m,n] = 8t§ = h§
(54)

Construction of the Deformable Surface with C1
Connection of Coons Patches

USing the x[m’n]’ Tlx[m’ n] ’
T,x[m,n], and T,,x[m,n], the corresponding bi-

cubic Coons patch can be constructed as follow

grid functions

fo(t,)
f(t,)
Xt =[H) i) £:(t) &)Xl
8o(ty)
g(ty)
(55)
where
x[m, n] xX[m,n+1] T,x[m,n] T,x[m,n+1]
X _ x[m+1,n] xim+1,n+1] T,x[m+1,n} T,x[m+1,n+1]
(Ko = Txm,n] Txma+1  T,x(mp}  T,x[mn+1]

Tx[m+1n] Tx{m+lLn+1] T,x[m+Ln} T,x[m+1n+1]
and the Hermetic base functions are

f, () =2t> -3t% +1

f,(t)=-2t> +3t°

g, =1t>—2t* +t

g )=t>-t>

So, the whole deformable surface can be constructed by
multi-patches that are connected together with C1

x(u,,u,) = {x. (t;,t,)} (56)
where 1<m<M-1, 1<n<N-1.

SIMULATION EXAMPLES

The first test is an example of a square piece of cloth
dropping on a ball under gravity. To prevent the cloth
penetrating into the obstacle and obtain good simulation

modulus G=54 N/m; mass density p[i,jl=74.5 g/m’; and
damping factor {i,j]=10.0g/ms. In the simulation, a
21x21 grid was used and the time step was At=0.01s.
The results of simulation by using Terzopoulos’ model
and the thin flexible surface model developed in this
paper were shown in Fig.1 and Fig.2 for time step at 0,
100At, 200At and 300At, respectively. The CPU time of
the computation is about 6 minutes on a Pentium PC
200. It is obvious that the present formulation gives
more realistic results.

The second example is a multi-fold skirt worn on a
mannequin. In this example, the geometric model of the
mannequin consists of 22 NURBS patches satisfying G1
continuity requirements.

In this test, the skirt was divided into 28x14 grids, and
the skirt was assumed to be fixed at the waist line of the
mannequin and the longitudinal lines on the skirt were
initially straight. Figure 1 (a) shows the initial position
of the skirt. Setting the constraint at the nodes on the
waist line with a spring constant k=80.0, the mannequin
repulsive collision constant c=120.0 and with a time
step At=0.01s, the results of the simulation for the time
step 0, 200At, 400At and 600At are shown in Fig.3
(a,b,c,d) ,respectively. The total CPU time is about 40
minutes on a Pentium PC 200.
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Figure 1a (t=0)

Figure 1b (t=100 At )

Figure 1c (t=200 At)

Figure 1d (t=300 At )

Fig.1 Cloth Falling On A Ball (Terzopoulos’ Model)
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Figure 3a

Figure 2a (t=0)

Figure 2b (t=100 At )

Figure 3b

Figure 2c¢ (t=200 At ) Figure 3¢

o

Fi 3d
Figure 2d (t=300 At) e
§ : AB in Flexible Surf Figure 3
Fig.2 Cloth Falling On all (Thin Flexible Surface Simulating A Multi-fold Skirt Model

Model)
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