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ABSTRACT

This paper presents a method taking global illumination in ray tracing into account. A vector approach is
introduced which allows to use any type of material, in particular with directional properties. This vector
is decomposed into a direct component associated to light sources and an indirect one which corresponds
to light having been reflected at least once. These components are estimated at a small number of points
within the scene. A weighted interpolation between known values allows to reconstruct these components
for the other points, with the help of a gradient computation for the indirect component. Computed images
are thus more accurate, at almost no additional cost, and no discretizing of the geometry of the scene is

needed.
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1 Introduction

Realistic images of scenes can be generated
by high quality physically-based rendering algo-
nthms that accurately calculate the distribution
of light in an environment.

A well known technique for this purpose is ray
tracing [Whi80] that samples light by tracing rays
from the eye point into the scene and looking
for intersections with the objects in the scene.
Thus standard ray tracing can generate images
with shadows, specular surfaces and transparency.
However, the treatment of diffuse interreflections
between surfaces is approximated by a constant
ambient term, which does not fit any physical law.
Improvements to standard ray tracing were made
by adding stochastic sampling to the deterministic
source and specular calculation by Cook [CPC84].
This method was later extended to path tracing by
Kajiya [Kaj86]. Ward et al. [WRC88] improved
on this by devising a coherence method that is
based on the fact that the amount of diffusely re-
flected light received by a surface changes gradu-
ally over the surface. Storing sampled values at
the first sample points and reusing them for later
samples in the same region of the scene consid-
erably reduces the sampling effort. This method
led to the well-known Radiance rendering system
[War94].

Yet, Ward’s caching method does not allow to take
directional properties of materials into account for
the computation of the indirect component. This
paper offers a vector approach of the modeled phe-
nomena which will allow us not to be restricted

" to the diffuse component of illumination. Thus,

we shall define the concept of Light Vector, in-
spired by Arvo’s Irradiance Vector [Arv94], which
allows to find the correct value of reflected radi-
ance again. To permit an accurate simulation of
global illumination, two types of Light Vectors are
introduced: Direct Light Vectors, which describe
light coming directly from light sources and Indi-
rect Light Vectors, which represent light having
been reflected at least once before hitting the cur-
rent point.

The remainder of the paper is organized as follows.
Section 2 presents basic definitions in the domain
of illumination simulation. Section 3 introduces
our fundamental concept, the Light Vector. The
direct component of this vector is studied in sec-
tion 4 and its indirect component in section 5.
Some results are discussed in section 6, some fur-
ther developments are suggested in section 7, and
a conclusion is given in section 8.
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2 INlumination concepts

In this section, we shall briefly present the main
concepts used in our work and we shall define the
notations.

Radiance L(z,w) [NRH*77] (whose unit is
Wm~2sr~1) is, for a given point z, the power per
unit projected area perpendicular to vector w per
unit solid angle in direction @,

Another important concept is that of irradiance
E(z) (whose unit is Wm™2), which gathers the
whole energy on a given point z, taking the inci-
dent angle, but not the BRDF into account.

E(z) = /n L,’(:c,c;:-) cos 8; dw; (1)

The concept of bidirectional reflection distribution
function (whose unit is s7~!) is well known to
model reflections on materials :

dL(z,wr)

L(:z:,u?,-) cos 0; dw;

Fr (2, @i—0r) =

BRDF is also dependent upon wavelength, even if,
for writing convenience, this parameter does not
explicitly appear in the notation.

In this work, we shall assume that the BRDF
can be split into a purely specular component f, ,
and another component f, 4 which includes a dif-
fuse component and a specular lobe component

[HTSG91] :

Fr(@,Gim0r) = fr,o (2, W5007) + fr,a(2, @i —r)

(2)
We implemented Schlick’s analytic model [Sch94],
because it is both physically plausible and inex-
pensive. But any other model fulfilling the physi-
cal laws of reflection may be used, without modi-
fication.

The rendering equation, now well-known in com-
puter graphics, stems from the formulation by Ka-
Jjiya [Kaj86]. This equation provides the best foun-
dation for building a physically-based rendering
system.

Lo(z,&r) = Le(z,0)
+/ fr (2, @i—3@y) Li(z, @) cos b; duw
Y]

= Le(x)‘;:') + Li',r(xa‘;:‘)

3)
The obvious simplicity of this formulation ob-
scures the great complexity of simulated phenom-
ena. Recursiveness, the need to evaluate the in-
tegral at every surface point and an only partial
knowledge of the main terms appearing in the
formula, practically forbid any analytic solution,
even for very simple scenes.

3 A vector model

3.1 Radiance components

The reflected radiance may be split into three
components, which will be investigated separately: .

Li,r (z;‘;:‘) = Ldir(-"",E‘)"l’Lspec(x;‘;;)"'Lind(x;‘;:)

where Ld,-,.(m,c;;) is the direct component due to
light sources, L,pec(x,c:)t) is the pure specular
component, and L;nd(x,u_):) is the indirect com-
ponent.

Component L,pec(2, o.—::) is computed by a classical
ray tracer, in which reflected and refracted rays
are cast when necessary.

3.2 Light Vector

We first introduce the concept of Light Vector,
which allows to find the correct value of reflected
radiance again, for each point in which it is com-
puted.

This concept is derived from the Irradiance Vector
investigated by Arvo [Arv94] to model partially
occluded polyhedral sources. However, the ma-
terial and the sighting direction have to be taken
into account for the computation of this Light Vec-
tor. Our goal is to restrict reconstruction errors
in the reflected direction, i.e. for the hght dis-
cerned by the eye. Such a description, which is
independent of the radiance components, gives a
really homogeneous representation for global illu-
mination.

The Light Vector is composed of two fields: an

_’
average incident direction D and an energy mag-
nitude P (expressed in Wm~2). P is computed
with the help of equation:

Lir(2,5}) = P fra(z, D=&))  (4)

The Light Vector has n + 3 components, where
n depends on the representation model for colors
(n = 3 in the RGB space, much more with a spec-
tral model).

This vector may be seen as a virtual point light
source simulating the effect of the whole incident
energy at point z.

When it is unknown, an approximate value of this
vector may be deduced from already computed
values by a voector interpolation (and not a scalar
one like previous methods). By using additional
parameters, the interpolation may be refined and
validity bounds may be set. BX, taking the BRDF

fr and a privileged direction D into account, er-
rors made are noticeably reduced.

-449 -



PFigure 1: The Light Vector simulates the set of
incident contributions by a unique virtual point
light source.

Incident radiance may be decomposed into two in-
dependent components: a direct one (coming from
light sources) and an indirect one (which has been
reflected at least once). Thus, we shall introduce
two types of light vectors: Direct Light Vectors,
denoted m s, and Indirect Light Vectors, de-
noted TLVs.

3.3 Computing a picture
3.3.1 Creation of a seed

Standard row by row computation of a picture
could introduce significant errors: interpolation
between known values would systematically ignore
half the neighbourhood of the current point. To
avoid this problem, a seed of randomly distributed
points in the scene is chosen. For each such point,
direct and indirect components of Light Vectors
are computed and stored. The storage of these
vectors is made with kd-trees [Ben75], which al-
lows to perform efficient search of space neigh-
bourhoods. Several distinct kd-trees are used: one
of them contains all the TLV. s, whereas each of the
others contains the DLV's associated to a given
light source.

3.3.2 Traversal of the set of pixels

The second step is a usual traversal of the picture,
with possible generation of reflected and refracted
rays. The main difference in relation to standard
ray tracing is the search, in a neighbourhood of the
current point, of known values for direct and indi-
rect radiances in their respective kd-trees. When
it is possible, the result of the interpolation is used
in place of a complete calculation. When a com-
plete calculation is made, the result is stored in
vector form and may be used for later interpola-
tions.

We shall now explain in the next two sections how
DLVs and ILVs are computed and how the va-
lidity of the interpolation used is estimated.

4 Direct component

In this section, we present a method which allows
to speed up the computation of direct illumina-
tion, by reusing, when it is possible, already com-
puted values in a neighbourhood of the current
point. This method is inspired by Jensen’s photon
map {Jen96] and adapted to our vector model. It
is especially beneficial when complex light sources,
requiring a costly sampling process, are used.

4.1 The concept of Direct Light
Vector

The Direct Light Vector, denoted DIV , repre-
sents, at a given point in the scene, the energy
supplied by a given light source. It is composed of
three fields:

—_
e An average incident direction D, which is
the direction of Arvo’s Irradiance Vector;

o A solid angle subtented by the light source;

e An energy magnitude P satisfying equation

(4).

Currently, direction Dis computed by weighting
the n sampling directions J; of the light source
by incident radiance L; and by the projected solid
angle €; associated to wj: D = 2 i Ll

This computation is easily made when shadow
rays are cast towards the light source. In partic-
ular, when dealing with a point light source, the
calculation is reduced to its simplest form. The
DLV is stored even when the light source is com-
pletely occluded, in order to reduce the number of -
rays to be generated later.

4.2 Direct interpolation
4.2.1 Search for neighbours

A set of usable and already calculated DLV's is
chosen before doing the interpolation. This set is
made up of the nmaz nearest neighbours of the
current point, located inside a neighbourhood of
radius rmaz. This set is rejected if the number of
DILV's found is less than some threshold nmin. In
this case, a full calculation is started.

The choice of these three parameters is mainly
dependent on the size of the scene. In practice,
for indoor scenes, nmin = 5, nmaz = 50 and
rmaz = 0.08m give good results with an initial
seed of 5000 D—_L%s.
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4.2.2 Validity test

Dispersion between suitable candidates for inter-
polation must be beyond a given threshold. As
the direct component may have great changes, dis-
persion is measured by calculating the variance of
the set of brightness values (I = 0.299r+ 0.587¢ +
0.114b in the rgb color space) of the samples. In
practice, a low threshold of 20% is used, which
is weak enough to detect quick changes for direct
irradiance.

In fact, this method allows to more or less com-
pare the Y component of the vectors in a XY Z
color space. The good solution for our problem
would be to work with a spectral model in a color
space provided with a perceptual metric. But this
problem still is a current research theme.

4.2.3 Interpolation

The value of a DLV is obtained by a weighted in-
terpolation of the directions 13,- and of the energies
P; of the selected sampled vectors. The weighting
function f is a tight polynomial approximation of
a Gaussian:

f(d;) = [2(rmaz — d;)® — 3(rmaz — d;)* + 1]2

where d; is the distance between the current point
and sample :.

= Sor J(di)Ds Y J(di)Ps

b= > f(di) and P = S 1(d)

For each light source in the scene, the value of
the direct component Lg;, (x,a—)’,) of the reflected
radiance L; , (z,w}) is given by equation (4). The
direct component of the reflected radiance at point
z is obtained by adding all the components asso-
ciated to each light source.

5 Indirect component

In this section, we shall explain how the indi-
rect component of the reflected variance - denoted
Lind(z,w;) in section 3.1 - is computed.

5.1 General principle

The indirect component of reflected light is com-
puted with a Monte Carlo method, by sampling an
hemisphere centered on the current point. Only
light having been reflected at least once is taken
into account here. Power coming directly from
light sources is evaluated with Lg;,. Because of
the recursive formulation of equation (3) and of
the great number of rays to be generated in order
to reduce the variance, the computing time is very
long.

The following assumption is usually admitted in
computer graphics [War94]: Indirect illumination
changes gradually over surfaces. By agreeing with
this hypothesis, we may consider that around ev-
ery point in the scene, there exists a neighbour-
hood in which the changes of indirect illumina-
tion are less than a given threshold. Then, it is
possible to reconstruct the value of a given point
from the values of close points, provided the valid
neighbourhood of the latter contains the former.

An irradiance gradient is evaluated at the same
time as the indirect component, at almost no ad-
ditional cost. This gradient is not accurate enough
to be used outside of a small neighbourhood of the
given point, because of the too many unknown
data. But it is a very good gauge of the degree of
perturbation of the current zone. Thus it is use-
ful to refine the computation of the validity of the
zone.

Before doing a complete computation, we must
check if there exist already computed valid val-
ues. In this case, the current value is estimated
by a simple weighted interpolation of known val-
ues. The weight assigned to each known value is
inversely proportional to the errors that may be
introduced. This error estimation is mainly de-
pendent on the distance between the samples, the
change in surface orientation, and the gradient. In
the opposite case, a Monte Carlo computation is
done and the obtained value is stored, in order to
be re-used, if necessary.

5.2 Monte Carlo method

5.2.1 Computation of the indirect compo-
nent

Figure 2: Sampled hemisphere

To make our computation, the hemisphere is de-
scretized into cells. Each cell of the hemisphere
has a constant solid angle. In this way, we may ac-
cess explicitly the directional information for the
gradient computation. Angles ; and ¢x are cho-
sen in such a way that they define a random direc-
tion inside each cell (4, k) of the hemisphere. The
solid angle subtended by each cell is wjx = Mz—’;v—,
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wd 0y = cort (MSEE), 60 = (647
where X and Y are uniform random variables in
[0,1] and where M is the number of samples ac-
cording to the polar angle and N the number of
samples according to the azimuthal angle.

So, after discretization of the hemisphere, render-
ing equation (3) becomes:

This sampling method is recursively used, but
with a small predefined level of recursiveness.

5.2.2 Average incident direction

-
Vector D shows the average incident direction at
-
point z: D= [, L,'(:c,c;:) w; cos 0; dw;.

The computation of B may be done in the same
loop iteration than (5), for a small cost. To facil-
itate the interpolation, this vector is normalized
before being stored, only its direction being useful
for us.

5.2.3 Irradiance gradient

A gradient computation is made when rendering
equation (5) is evaluated. As these calculations
are done during the same iteration of the loop,
the extra computational time is negligible. The
gradient is different from the one introduced by
Ward and Heckbert [WH92], because we do not
use the same sampling of the hemisphere.

The gradient shows indirect illumination varia-
tions in a neighbourhood of the given point. Its
numerical value gives a good indication of the de-
gree of pertubation of the zone taken into account.
It is used to associate, to each v , a validity zone
inside which interpolation is possible.

The gradient is obtained by deriving irradiance
expression (1) according to displacements in a
(=, y, z) coordinate system tangent to the surface:

0E _ 2m Mz-:l”z‘:l B(Li (65, ¢x) cosb;)

da MN e fwar Oa

M-1N-1
27 <6L, (9_1', éx) cos;
da

0 cos b;
+ 10,0022

with a € (z,y, 2).

fr,d(w,w;tk—')‘;:)Li(f, 0;, ¢x) cosb;

However, Qﬂg;ﬂl is unavailable. Thus, we must
assume that displacements in the neighbourhood
of point z are small enough to admit Mg‘;ﬂﬁ"—l =
0. With this assumption:

M~-1N-1

0F 27 . 08;
AT Dy —L,-(o,-,qsk)sme,-a—; (6)
Jj=0 k=0

% may be computed by examining the changes
of incident angle for small displacements of the

. F) —cosb;
center of the hemisphere: —-'-31 = —Cf-s—j'fm ;
89; — cos 8 si 88; ing;

- cos #; sin di and _8_1,1_ — smb; s where R

.0y . .
is the distance between the current point and the
first object hit in direction (6;, ¢ ).

5.3 Indirect Light Vector

As the interpolation process is a little more so-
phisticated for Indirect Light Vectors than for Di-
rect Light Vectors, the Indirect Light Vector has
more additional fields: the gradient, the tangent
coordinate system to the surface, and the average
distance to the other objects of the scene.

These data are used to control interpolation er-
rors, and thus allow to reduce the total number of
Tﬁ s computed with the expensive Monte Carlo
method.

5.4 Validity zone

Let B be a point in which T2V (B) must be com-
puted. To be accepted as usable in point B,
v (A) computed in point A must satisfy several
conditions:

e A and B must belong to objects having the
same BRDF. This condition is due to the
fact that the TLV is used through the BRDF
of the material;

o Distance || AB || must be less than or equal
to the mean arithmetic distance dmean be-
tween A and the rest of the scene. We im-
pose this condition in order to prevent errors
between close objects;

¢ The relative change of irradiance due to

the gradient must be less than or equal to
some user-specified accuracy tolerance Sg:
—_— —

AB.AE SE
- )

e The surface curvature must be less than or
equal to some predefined accuracy tolerance

- -

Seurv: c08(Na,NB) > Scurv. This condi-
-

tion is warranted by the fact that D shows

the average incident direction at point z

coming from a hemisphere, and not from a
sphere.
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To fulfill the conditions above, I IVs are stored
in kd-trees, with one kd-tree associated to all the
objects in the scene having the same BRDF.

5.5 Weighted interpolation
5.5.1 Number of vectors

The number n of TLVs used for interpolation
must range between two predefined bounds, nmin
and nmaz. The choice of these bounds influ-
ences the filtering level induced by the interpola-
tion. In practice, empirical values nmin = 3 and
nmaz = 16 give good results.

5.5.2 Weighting function

The goal of the weighting function is to give less
importance to the samples liable to introduce ac-
curacy errors, following the criteria defined in sec-
tion 5.4. A weight w is associated to each ILV;
its value is one when point B coincides with point
A, less than one otherwise:

S
1 1 cos(N4,NB) — Scurv
i_lABl AB.AE - r
1 * dmean 1 > Ea -
(7)
5.5.3 Interpolation

A standard vector interpolation scheme is used,
with the weights computed in equation (7):

TT¥(s) = St T4

As the maximum number, nmaz, of samples is
small, this computation is fast.

6 Some results

This method was implemented in the ray tracing
software YART, developed at Ecole des Mines de
Saint-Etienne by Marc Roelens [Roe93].

The following pictures are intended to illustrate
the use of the method described in this paper.

Figure 3 shows a Cornell box. The walls of the
room are diffuse, one cube is diffuse and the other
is purely specular. With an area light source, the
computing time is about 8 minutes on a Silicon
Graphics Indigo and for a 512 x 512 pixels picture

size.

The series of pictures in figure 4 proposes a com-
parison between three methods for a given scene.
This scene is composed of a closed diffuse room, a

Figure 3: Cornell box.

table and six spheres with complete BRDFs. Al-
though it seems very simple, this test scene cannot
be rendered correctly by a standard ray tracer.
Actually, interesting objects are located on the
ground, and only a small part of the ceiling is
directly lit up. So, the greatest part of the pic-
ture would be made visible by the ambient term,
without any physical justification.

The left most picture is computed with a naive
Monte Carlo method, with 128 samples per hemi-
sphere. For a 400 x 400 pixels picture size, the
computing time is about 3 hours. The right most
picture is computed with a standard ray tracer,
with an ambient term. The computing time is
about 2 minutes. The picture in the center is
computed with our method. With 4200 1V s, the
computing time is around 10 minutes. Notice that
the central picture is much less noisy than the left
one and shows a more realistic penumbra under
the table than the right one.

Figure 5 shows a more complex scene, with 3D
(wood and marble) and 2D (the painting) tex-
tures. There is a mirror hung up on a wall and
many shiny surfaces. The volumic light source has
been simulated by using 32 point light sources ran-
domly located inside a sphere enclosed in a spec-
ular reflector. This scene includes about 500 ob-
jects. The picture size is 800 x 600 pixels and the
computing time is about 3 hours, with an adap-
tive antialiasing process and the computation of
about 15000 D—Lﬁs and about 11000 TLVs.
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7 Further developments

The work presented in this paper is only a first
sketch on the subject, and we are considering sev-
eral developments:

e improvement of the implemented Monte
Carlo method, by using an importance sam-
pling, in order to reduce the variance of the
calculation of Light Vectors and thus to de-
crease the requested accuracy;

o use of a spectral model for colors when the
rgb model is too rough for the requested ac-
curacy;

o estimation of the error made, by taking
psycho-visual data into account ;

¢ physical computation of caustics [Jen96];

e incremental and adptive improvement of the
accuracy, without losing already computed
data;

e taking area light sources into account in a
more optimized way than point sampling.

8 Conclusion

We have presented a method taking global illumi-
nation into account in a ray tracing environment,
whose advantages are preserved. No preliminary
discretization of the surfaces of the scene is needed
and all the types of BRDF's are handled. The over-
head is moderate, for an application the aim of
which is to produce physically plausible pictures,
with an adaptive error control.
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Figure 4: Some comparisons between 3 methods.

Figure 5: An indoor simulation.
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