The High Resolution Hemicube Algorithm

Karel Nechvile
Masaryk University
Botanick 68a, 602 00 Brno, Czech Republic

e—mail: kodl@fi.muni.cz

Abstract

In a process of the radiosity computation, the most demanding part is to evaluate a
form factor (FF). Therefore, a lot of investigation has been done in order to speed up
the part while preserving accuracy of the result. One of the first methods used for the
form factor evaluation was the hemicube (HC) approach. Nevertheless, the original
HC method still consumes too much time and memory, so that high resolution could
be afforded only on really powerful hardware. In this paper we show, how can this
method be used for fast and accurate form factor computation. We have implemented
and compared several variants of the original scheme and propose a new algorithm
which drastically reduce memory requirements of FF evaluation.

1 Introduction

The well-known hemicube approach [1] represents one of the first applicable methods
for the form factor computation. However, this solution has several limitations (e.g.
appearance of alias). Increasing the HC resolution can solve the problem, but it raises
HW requirements as well. Therefore, the original method was modified [2] and more
practical ways were found [3]|. Efficiency of the methods depends also on a space
sorting process. BSP trees [4] are frequently applied for this purpose in recently
published algorithms [5, 6, 7], We show how BSP trees and hemicube algorithm can
be merged to the fast and accurate computation.

2 Hemicube and BSP

In the classical HC method patches in environment are projected onto the faces of
a hemicube. Patches are clipped against the hemicube edges to obtain the set of
pixels the patch projects onto. The occluding or intervening problem is solved by
maintaining and comparing the depth coordinate like in the Z-buffer algorithm. In
addition to patch ID the HC pixel contains also the depth information (fig. la).

The lookup table for pixel values is maintained, too. Pixel values called delta form
factors determine the form factor value for a particular pixel of projection. Hence,



the memory requirements for higher HC resolutions limit applicability of this method.
Insufficient memory can cause too much swapping, which prolongs or even stops the
computation.

A way how to decrease the memory requirements is to involve visibility technique
different from the Z-buffer algorithm. In our approach we use the BSP tree, which
makes possible to determine the visibility from arbitrary viewpoint [4]. Thus, the
memory requirements for a HC pixel are reduced to a patch ID (fig. 1b) and the time
requirements for projecting a patch onto a HC face are also lowered. We will not
discuss the memory requirements for BSP tree here. They depend on input scene
polygon complexity and are small relatively to the HC memory requirements for
medium complexity scenes. They were only about 1 kB in our test scenes.

Patch ID
Patch depth

)

C) 0/1

Figure 1: Memory requirements for the HC pixel

In the Z-buffer algorithm, depth coordinate needs to be interpolated first along
the edges, then along HC raster line. Within the BSP based approach, the scan-line
interpolation is not necessary. Unfortunately, the speed-up reached cannot be fully
estimated, as it depends on HC resolution and environmental geometry. In our tests,
depth interpolation steps make about 85 % of all interpolation steps. This number
does not represent exactly the Z-buffer overhead, because some initialization routines
needed are not taken into account.

In altered process, the faces are projected onto the hemicube using BSP tree.
Back-to-front approach solves the visibility problem. When all patches have been
projected, delta form factors are summed forming the patch form factors. New form
factors are used for radiosity values update in shooting step.

3 New Front-to-Back Approach

The back-to-front approach is intuitively more efficient than the front-to-back. It is
not necessary to test each pixel when projecting a patch. But if we decide to involve
the front-to-back approach, we can take advantage of following properties.

We know, from the projection fashion, a patch will be projected only to free
pixels. After processing the patch, no more patches can be projected on occupied



pixels. For a patch, we need to determine its form factor. A form factor is computed
from projected pixels.

Using front-to-back approach we can compute the form factors simultaneously
while projecting patches onto the hemicube. When we find a free pixel, we sum the
delta form factor for a patch and change the pixel FREE/OCCUPIED value. In this
manner, maintaining the label part of the pixel is no more necessary. All we need to
know is, whether a pixel is free or occupied. Space requirements for a HC pixel are,
therefore, reduced to one bit (fig. 1c).

For example, if we count 32 bits for a patch ID and for a depth value, 64 bits
for a delta form factor, 2048 x2048 resolution then the HC memory requirements are
108MB, 60MB, and 24MB for the Z-buffered, BSP, and new bit buffered approach

respectively.

4 Implementation and Results

We have implemented the FF evaluation using hemicube and BSP tree. As an alterna-
tive we also implemented the classical HC algorithm, which use the depth coordinate
to solve the visibility problem. This method is signed as Z-buffer in graph 4. In the
case of applying the BSP tree, following approaches were tested: back-to-front, front-
to-back and bit-buffered front-to-back. The implementations of front-to-back and
back-to-front methods are straightforward. For bit-buffered front-to-back approach
more sophisticated way is needed.

The FREE/OCCUPIED value is stored as a bit in an integer. When projecting a
patch the corresponding memory fragment for bit operations is determined (fig. 2a).
The bit mask for a polygon is built up (fig.2b) and free pixels are found out by
applying the bit operations (fig. 2¢). The delta form factors are summed to a patch

N BHEEEEE 2 EEEETr

o [T I~ g0 ma
o LITT NN ([ B roepies
o [ [ I o BitBUffer

Figure 2: Bit operations

form factor for free pixels. Pixels covered by the polygon are signed as OCCUPIED
and written back to the bit buffer (fig.2d). This process is sequently applied for all
integers overlapped by the projecting polygon.

Usually the whole integer overlapped by a polygon is processed. An optimalization
can be achieved if we use a special code when manipulating only small part of the
memory. This situation occurs when we project some polygon part that is close to



Figure 3: A polygon overlapping small part of the bit buffer

the polygon vertex (fig. 3). In this case the whole processed scan line often lies within
one integer. We can use bit shift operations for faster treatment.

600 T
A AR - Z-buffer
5001 K
A back-to-front
400 )
2 s — — — front-to-back
g 300 1 !
R R EEEREE new front-to-
200 4 . back
100

128
256
384

1
640 T
768
896

1024

HC resolution

Figure 4: Time requirements of tested methods

Our test scene consisted of about 5000 elements. Methods described above were
implemented and compared in combination with various HC resolutions. Graph4
summarizes time requirements of these methods. Tests have run on SGI Indy (R4600

100MHz,32MB RAM).

5 Conclusion

As we expected, the slowest method is the (SW) Z-buffer approach. It is caused by
more interpolation steps then in the BSP approach. More memory is also maintained
and accessed. The fastest method (in lower resolutions) is the front-to-back BSP
method. However, tests present that other modifications of the BSP based approach
are also reasonable. We prefer our bit-buffered approach, because its lower memory
requirements allow for high HC resolutions. In our tests the resolution reached up to
2048x2048 pixels (6 sec. pro iteration). We consider the new method presented as
valuable alternative for fast and accurate form factor computation.



References

[1]

7]

Cohen, M., Greenberg, D.:"The Hemi-Cube: A Radiosity Solution for Complex
Environments.", Proc. SIGGRAPH’85. In Computer Graphics, 19:3, July 1985,
31-40.

Baum, D., Rushmeier, H., Winget, M.:"Improving Radiosity Solutions Through
the Use of Analytically Determined Form-Factors.", Proc. SIGGRAPH’89. In
Computer Graphics, 23:3, July 1989, 325-334.

Wallace, J., Elmquist, K. and Haines, E.:"A Ray Tracing Solution for Diffuse
Interreflection.", Proc. SIGGRAPH’89. In Computer Graphics, 23:3, July 1989,
315-324.

Fuchs, H., Kedem, Z. and Naylor, B.:"On Visible Surface Generation by A Pri-
ori Tree Structures.", Proc. SIGGRAPH’80. In Computer Graphics, 14:3, July
1980,124-133.

Chin, N., Feiner, S.:"Near Real-Time Shadow Generation Using BSP Trees.", in
Computer Graphics, 23:3, July 1989, 99-106.

Campbell TII, A. T., Fussel, S.:"Adaptive Mesh Generation for Global Diffuse
Hlumination.", in Computer Graphics, 24:4, August 1990, 155-164.

Lischinski, D., Tampieri, F. and Greenberg, D.: "Discontinuity Meshing for Ac-
curate Radiosity.", IEEE Computer Graphics and Applications, 12:9, Nov 1992,
25-39.



