
The High Resolution Hemicube Algorithm

Karel Nechv�le

Masaryk University

Botanick ��a� ��� �� Brno� Czech Republic

e�mail	 kodl
��muni�cz

Abstract

In a process of the radiosity computation� the most demanding part is to evaluate a
form factor �FF�� Therefore� a lot of investigation has been done in order to speed up
the part while preserving accuracy of the result� One of the �rst methods used for the
form factor evaluation was the hemicube �HC� approach� Nevertheless� the original
HC method still consumes too much time and memory� so that high resolution could
be a�orded only on really powerful hardware� In this paper we show� how can this
method be used for fast and accurate form factor computation� We have implemented
and compared several variants of the original scheme and propose a new algorithm
which drastically reduce memory requirements of FF evaluation�

� Introduction

The well�known hemicube approach 	
� represents one of the �rst applicable methods
for the form factor computation� However� this solution has several limitations �e�g�
appearance of alias�� Increasing the HC resolution can solve the problem� but it raises
HW requirements as well� Therefore� the original method was modi�ed 	�� and more
practical ways were found 	
�� E�ciency of the methods depends also on a space
sorting process� BSP trees 	�� are frequently applied for this purpose in recently
published algorithms 	�� �� ��� We show how BSP trees and hemicube algorithm can
be merged to the fast and accurate computation�

� Hemicube and BSP

In the classical HC method patches in environment are projected onto the faces of
a hemicube� Patches are clipped against the hemicube edges to obtain the set of
pixels the patch projects onto� The occluding or intervening problem is solved by
maintaining and comparing the depth coordinate like in the Z�bu�er algorithm� In
addition to patch ID the HC pixel contains also the depth information ��g� 
a��

The lookup table for pixel values is maintained� too� Pixel values called delta form
factors determine the form factor value for a particular pixel of projection� Hence�



the memory requirements for higher HC resolutions limit applicability of this method�
Insu�cient memory can cause too much swapping� which prolongs or even stops the
computation�

A way how to decrease the memory requirements is to involve visibility technique
di�erent from the Z�bu�er algorithm� In our approach we use the BSP tree� which
makes possible to determine the visibility from arbitrary viewpoint 	��� Thus� the
memory requirements for a HC pixel are reduced to a patch ID ��g� 
b� and the time
requirements for projecting a patch onto a HC face are also lowered� We will not
discuss the memory requirements for BSP tree here� They depend on input scene
polygon complexity and are small relatively to the HC memory requirements for
medium complexity scenes� They were only about 
 kB in our test scenes�

b)

a)
Patch ID

Patch depth

Patch ID

c) 0/1

Figure 
� Memory requirements for the HC pixel

In the Z�bu�er algorithm� depth coordinate needs to be interpolated �rst along
the edges� then along HC raster line� Within the BSP based approach� the scan�line
interpolation is not necessary� Unfortunately� the speed�up reached cannot be fully
estimated� as it depends on HC resolution and environmental geometry� In our tests�
depth interpolation steps make about �� � of all interpolation steps� This number
does not represent exactly the Z�bu�er overhead� because some initialization routines
needed are not taken into account�

In altered process� the faces are projected onto the hemicube using BSP tree�
Back�to�front approach solves the visibility problem� When all patches have been
projected� delta form factors are summed forming the patch form factors� New form
factors are used for radiosity values update in shooting step�

� New Front�to�Back Approach

The back�to�front approach is intuitively more e�cient than the front�to�back� It is
not necessary to test each pixel when projecting a patch� But if we decide to involve
the front�to�back approach� we can take advantage of following properties�

We know� from the projection fashion� a patch will be projected only to free
pixels� After processing the patch� no more patches can be projected on occupied



pixels� For a patch� we need to determine its form factor� A form factor is computed
from projected pixels�

Using front�to�back approach we can compute the form factors simultaneously
while projecting patches onto the hemicube� When we �nd a free pixel� we sum the
delta form factor for a patch and change the pixel FREE�OCCUPIED value� In this
manner� maintaining the label part of the pixel is no more necessary� All we need to
know is� whether a pixel is free or occupied� Space requirements for a HC pixel are�
therefore� reduced to one bit ��g� 
c��

For example� if we count 
� bits for a patch ID and for a depth value� �� bits
for a delta form factor� ��������� resolution then the HC memory requirements are

��MB� ��MB� and ��MB for the Z�bu�ered� BSP� and new bit bu�ered approach
respectively�

� Implementation and Results

We have implemented the FF evaluation using hemicube and BSP tree� As an alterna�
tive we also implemented the classical HC algorithm� which use the depth coordinate
to solve the visibility problem� This method is signed as Z�buffer in graph �� In the
case of applying the BSP tree� following approaches were tested� back�to�front� front�
to�back and bit�bu�ered front�to�back� The implementations of front�to�back and
back�to�front methods are straightforward� For bit�bu�ered front�to�back approach
more sophisticated way is needed�

The FREE�OCCUPIED value is stored as a bit in an integer� When projecting a
patch the corresponding memory fragment for bit operations is determined ��g� �a��
The bit mask for a polygon is built up ��g� �b� and free pixels are found out by
applying the bit operations ��g� �c�� The delta form factors are summed to a patch

Polygon mask

Free pixels

d)

c)

b)

a) BitBuffer

Updated BitBuffer 

Figure �� Bit operations

form factor for free pixels� Pixels covered by the polygon are signed as OCCUPIED
and written back to the bit bu�er ��g� �d�� This process is sequently applied for all
integers overlapped by the projecting polygon�

Usually the whole integer overlapped by a polygon is processed� An optimalization
can be achieved if we use a special code when manipulating only small part of the
memory� This situation occurs when we project some polygon part that is close to



Figure 
� A polygon overlapping small part of the bit bu�er

the polygon vertex ��g� 
�� In this case the whole processed scan line often lies within
one integer� We can use bit shift operations for faster treatment�

Figure �� Time requirements of tested methods

Our test scene consisted of about ���� elements� Methods described above were
implemented and compared in combination with various HC resolutions� Graph �
summarizes time requirements of these methods� Tests have run on SGI Indy �R����

��MHz�
�MB RAM��

� Conclusion

As we expected� the slowest method is the �SW� Z�bu�er approach� It is caused by
more interpolation steps then in the BSP approach� More memory is also maintained
and accessed� The fastest method �in lower resolutions� is the front�to�back BSP
method� However� tests present that other modi�cations of the BSP based approach
are also reasonable� We prefer our bit�bu�ered approach� because its lower memory
requirements allow for high HC resolutions� In our tests the resolution reached up to
����x���� pixels �� sec� pro iteration�� We consider the new method presented as
valuable alternative for fast and accurate form factor computation�



References

	
� Cohen� M�� Greenberg� D���The Hemi�Cube� A Radiosity Solution for Complex
Environments��� Proc� SIGGRAPH���� In Computer Graphics� 
��
� July 
����


����

	�� Baum� D�� Rushmeier� H�� Winget� M���Improving Radiosity Solutions Through
the Use of Analytically Determined Form�Factors��� Proc� SIGGRAPH���� In
Computer Graphics� �
�
� July 
���� 
���

��

	
� Wallace� J�� Elmquist� K� and Haines� E���A Ray Tracing Solution for Di�use
Interre�ection��� Proc� SIGGRAPH���� In Computer Graphics� �
�
� July 
����


��
���

	�� Fuchs� H�� Kedem� Z� and Naylor� B���On Visible Surface Generation by A Pri�
ori Tree Structures��� Proc� SIGGRAPH���� In Computer Graphics� 
��
� July

����
���


�

	�� Chin� N�� Feiner� S���Near Real�Time Shadow Generation Using BSP Trees��� in
Computer Graphics� �
�
� July 
���� ���
���

	�� Campbell III� A� T�� Fussel� S���Adaptive Mesh Generation for Global Di�use
Illumination��� in Computer Graphics� ����� August 
���� 
���
���

	�� Lischinski� D�� Tampieri� F� and Greenberg� D�� �Discontinuity Meshing for Ac�
curate Radiosity��� IEEE Computer Graphics and Applications� 
���� Nov 
����
���
��


