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Abstract� The error in an unbiased Monte Carlo method
is characterized by the variance� By knowing the variance
of di�erent Monte Carlo estimators for Radiosity �and also
their cost� we should be able to obtain the most e�cient of
them� This paper gives the variances for two such estimators�
the shooting and gathering in�nite path length random walk
estimators� This completes a previous work of the author on
�nite path length estimators�

� Introduction

We study in this paper the variance of two Monte Carlo discrete random walk estima�
tors for radiosity� shooting and gathering random walk with in�nite path length� The
study of the variance is important because it gives the expected square error for an
unbiased estimator� Thus� by knowing the variance of di�erent Monte Carlo estimators
for Radiosity 	and also their cost
 we should be able to obtain the most e�cient of
them� Gathering random walk proceeds sending paths from the patches of interest to
gather energy when a source is hit� Shooting random walk shoots paths carrying energy
from the sources� to update the visited patches� We consider in both cases that the
random walk proceeds according to the discrete Form Factor matrix 	that is� patch�to�
patch Form Factors
� In�nite path length estimators are such that the path never ends�
Obviously� in a simulation� one has to cut o� the path� obtaining a biased estimator� In
this case the expected square error is the variance plus the squared bias� However� if we
can assure a small bias� the variance will give a good approximation of the square error�
The solution obtained with a random walk estimator will converge to the solution of
the Radiosity system 	see for instance �
� �� for random walk solutions of a system of
equations
� Also� when the size of the patches decreases� it will converge to the one
found with Particle Tracing ���� which uses point�to�point Form Factors� Path�tracing
���� and even distributed ray�tracing ��� �
� can be considered as the limiting case of
gathering random walk for the non�discrete case 	without the shadow ray
� Bidirec�
tional ray�tracing ���� �� is a mixture of non�discrete shooting and gathering� ���� �� can
be seen as a breadth��rst approach to a shooting random walk estimator� which in turn
would be the depth��rst approach�
As known to the author� only two papers have adressed to date the variance of random
walk estimators for radiosity� ���� gives a bound for a shooting estimator� and ��� gives
variances for a wide family of shooting and gathering estimators� The purpose of this



paper is to enlarge the work in ��� adressing the in�nite path length estimators�
The structure of this paper is the following� In section � we will give previous results
on �nite path length estimators� In sections 
 and � the variance of the shooting and
gathering in�nite path length estimators will be obtained� In section � results will be
given to support the theoretical �ndings� and our conclusions and future research will
be presented in section ��

� Previous Work

In ���� a bound was given for a shooting �nite path length estimator� This bound was
intended more to study the complexity than to give a realistic approximation of error�
In ��� di�erent shooting and gathering estimators with �nite expected path length were
studied� and their variances given� Three estimators for shooting� �T

��Ri
� �T

Ri
and �T

and three for gathering Es

��Rs
� Es

Rs
and Es were analyzed� In table � the characteristics

of the di�erent estimators are given� The best estimators for each case were found to
be the �T and Es� which agrees with intuition� as both update each patch in a path
	this advantage can be shown to overbalance the positive covariances
� Two in�nite path
length estimators were also characterized� but we were only able to give bounds for their
variances� These two estimators correspond in practice to biased estimators� because the
path is cut o� under some criterion 	having reached a predetermined length� or being
the accumulated re�ectivities inferior to some threshold
� In the next two sections we
will reexamine those estimators and �nd their variances�

Table �� Di�erent Random Walk estimators� The meaning of the di�erent quantities is
in table ��

Shooting Patch scored Variance

�T

��Ri
last bi

�
�TRi

Ai���Ri�
� bi

�
�T

Ri
all but last bi

�
�TRi

Ai
� �
Ri

	 
�i�� bi

�
�T all bi

�
Ri�T

Ai
�� 	 
Ri�i�� bi

�
Gathering Patch scored Variance

Es

��Rs
last Ri

pi

P
s

Es

���Rs�
bis � bi

�

Es

Rs
all but last Ri

pi

P
s
Es��bs
Rs

bis � bi
�

Es all Ri

pi

P
s�Es 	 
bs�bis � bi

�

� An in�nite path length shooting estimator

Let us �rst consider what the expected value of any unbiased Monte Carlo estimator
should be for the incoming power on a patch� Let us suppose that the initial power
of source s is �s� �i is the incoming power on patch i� Fkl denotes the Form Factor
from patch k to patch l� and Rk denotes the re�ectance of patch k� Then we have� by
developing the Power system in Neumann series and dropping the zero order term�

�i �
X
s

�sFsi �
X
s

X
h

�sFshRhFhi



Table �� Meaning of the di�erent quantities appearing in table �� The su�x i means
for patch i� su�x s indexes the sources�

Ei Emissivity

bi Re
ected radiosity � Bi �Ei

�T Total power in scene

Ai Area

Ri Re
ectivity

�i Received power �or radiosity� due
to self�emitted unit power �or emit�
tance�

bis Re
ected radiosity on i due to source s

pi Probability for a path to begin at i

�
X
s

X
h

X
j

�sFshRhFhjRjFji � � � �

This can be expressed as�

�i � �
���
i � �

���
i � �

���
i � � � �

where �
���
i �

P
s�sFsi� �

���
i �

P
s

P
h�sFshRhFhi�

�
���
i �

P
s

P
h

P
j �sFshRhFhjRjFji and so on� That is� �

���
i represents the power arrived

directly from the sources� �
���
i represents the power arrived after one bounce� and so on�

Let us now consider the following simulation� A in�nite length path � starts from source
s with probability ps � �s

�T
	that is� according to the power of the source
� and from

here on it evolves according to the transition probabilities given by the Form Factors�
For instance� from s it will go to patch j with probability Fsj� The random variablesb����i � b����i � b����i � � � � are de�ned in the following way�
All of those random variables are initially null� If the path � arrives at patch i at length
l� and if s� h�� h�� � � � � hl��� i is the trajectory the path has followed� then the value ofb��l�i is set to Rh�Rh� � � � Rhl���T � Let us de�ne also a new random variable b�i as�

b�i � b����i � b����i � b����i � � � �

The expected values are

E	 b����i 
 �
X
s

�T �
�s

�T

� Fsi � �
���
i

E	 b����i 
 �
X
s

X
h

Rh � �T �
�s

�T

� Fsh � Fhi � �
���
i

and so on� Then� we have

E	 b�i
 � E	 b����i � b����i � � � �
 � E	 b����i 
 � E	 b����i 
 � � � � � �
���
i � �

���
i � � � � � �i



Thus the random variable b��l�i is a centered estimator for the power arrived to patch
i after l bounces� and the sum of all this family of estimators gives a new centered
estimator b�i which corresponds to the total incoming power arrived to patch i after any
number of bounces� Our aim now is to obtain the variance for this estimator� We can
decompose V ar	 b�i
 in the following way

V ar	 b�i
 � V ar	 b����i � b����i � � � �


� E	
�b����i � b����i � � � �

��

�

�
E	 b�i
��

� E	 b�����i 
 � E	 b�����i 
 � � � �

� �
X

��n�m

E	 b��n�i
b��m�
i 
� �i

� 	�


We �nd �rst the cross terms� which are not null because a path can arrive at length n

on patch i and again at length m�

E	 b��n�i
b��m�
i 
 �

X
s

X
h�

� � �

X
hn��

X
hn��

� � �

X
hm��

Rh� � � �Rhn���TRh� � � �Rhn��RiRhn�� � � �Rhm��
�T �

�s

�T

Fsh� � � �Fhn��iFihn�� � � �Fhm��i

�
X
s

X
h�

� � �

X
hn��

R�
h�
� � �R�

hn��
�sFsh� � � �Fhn��i �

Ri�T

X
hn��

� � �

X
hm��

Rhn�� � � �Rhm��
� � �Fihn�� � � �Fhm��i �

� �
�n�
i Ri�T �

�m�n�
i

where �
�n�
i is the incoming energy after n bounces in the same environment having

changed all the re�ectivities by their square and �
�m�n�
i is the expected value of the

incoming power 	or radiosity
 on patch i after m � n bounces due to a unit power 	or
unit emittance
 on the same patch i� Then

�
X
��n

�X
n�m

E	 b��n�i
b��m�
i 


�
� �Ri�T

X
��n

�
�n�
i

X
n�m

�
�m�n�
i � �Ri�T�i�i

where �i is the incoming energy in the same environment having changed all the re�ec�
tivities by their square and �i is the expected value of the incoming power 	or radiosity

on patch i due to a unit power 	or unit emittance
 on the same patch i� �i is is equal to
Ii��
Ri

� where Ii is the self�importance of patch i 	for a de�nition of importance� see ���
�
Also we have

E	 b����i
�
 �

X
s

	�T 

�
�

�s

�T

� Fsi � �T�
���
i � �T�

���
i

because �
���
i � �

���
i �

E	 b����i
�
 �

X
s

X
h

	Rh � �T 

�
�

�s

�T

� Fsh � Fhi � �T�
���
i

and so on� Then we �nally obtain

V ar	 b�i
 � �T 	�
���
i � �

���
i � � � �
 � �Ri�T�i�i � �i

�

� �i�T 	� � �Ri�i
� �i
�



where �i is the incoming energy in the same environment having changed all the re�ec�
tivities by their square� For the radiosity estimator bBi � Ei �

Ri

Ai

b�i we have
V ar	 bBi
 �

R�
i

A�
i

�
�i�T 	� � �Ri�i
� ��i

�
�

�i�T

Ai

	� � �Ri�i
� b�i 	�


where �i is the re�ected radiosity 	or radiosity due to incoming energy
 in the same
environment having changed all re�ectivities by their squares� The variance of this
estimator can be shown to be lower than the one for the �T estimator ���� But this
does not necessarily mean that this estimator is better� First� the cost of the in�nite
estimator is determined by how we cut o� the in�nite path� This can be done on a
predetermined length� or alternatively when the accumulated re�ectivity 	that is� the
product of re�ectivities along a path
 is less than a preestablished threshold� Second�
this procedure imposes a bias on the solution which should be taken into account when
comparing errors� If we want no bias� we can use Russian Roulette� which consists
simply in switching to some �nite path length estimator 	such as the ones in table
�
 to distribute the left energy� This will however increase the cost considerably� We
can alternatively consider acceptable this small percentage of undistributed energy 	the
variance accounts for the noise in the image� the bias for the undistributed energy
�
Also� if this threshold is small enough we can be con�dent that the variance of the
resulting biased estimator is close to the variance of the in�nite length estimator�

� An in�nite path length gathering estimator

Let us �rst consider what the expected value of any unbiased Monte Carlo estimator
should be for the radiosity of a patch� Let us suppose that the emittance of source s is
Es� bi is the re�ected radiosity� or radiosity of patch i due to the received power 	that is�
bi � Bi � Ei� and so for a non�emitter patch� it equals the total radiosity
� Fkl denotes
the Form Factor from patch k to patch l� and Rk denotes the re�ectance of patch k�
Then we have� by developing the Radiosity system in Neumann series 	dropping the
zero order term
�

bi � Ri

X
s

EsFis �Ri

X
h

X
s

EsFihRhFhs

�Ri

X
h

X
j

X
s

EsFihRhFhjRjFjs � � � �

This can be expressed as�

bi � b
���
i � b

���
i � b

���
i � � � �

where b
���
i � Ri

P
sEsFis� b

���
i � Ri

P
s

P
hEsFihRhFhs�

b
���
i � Ri

P
s

P
h

P
j EsFihRhFhjRjFjs and so on� That is� b

���
i represents the radiosity

due to direct illumination� b
���
i represents the radiosity after one bounce� and so on� It

is also useful to de�ne the following quantities�

bis � b
���
is � b

���
is � � � �

b
���
is represents the radiosity due to direct illumination from source s� b

���
is represents the

radiosity after one bounce from source s� and so on� It is clear that�

bi �
X
s

bis



Let us now consider the following simulation� A in�nite length path � starts from patch
i with probability pi 	this probability can be considered as the initial or emitted impor�
tance of the patch
� and from here on it evolves according to the transition probabilities
given by the Form Factors� For instance� from i it will go to patch j with probability

Fij� Let us de�ne now the random variables bb���i � bb���i � bb���i � � � � in the following way�
All of those random variables are initially null� If the path � happens to arrive at source
s at length l� and if i� h�� h�� � � � � hl��� s is the trajectory the path has followed� then the

value of bb�l�i is set to RiRh�Rh� � � � Rhl��
Es

pi
� Let us de�ne also a new random variable bbi

as� bbi � bb���i � bb���i � bb���i � � � �

Now let us �nd the expected value of those random variables� Applying the de�nition
of expected value� and remembering that the probability of selecting patch i is pi� the
probability of landing on source s just after leaving patch i is Fis� we have

E	bb���i 
 �
X
s

Ri �
Es

pi
� pi � Fis � b

���
i

Now� to go from patch i to a source s in a two length path we can pass through any
patch h� so we have

E	bb���i 
 �
X
h

X
s

Ri � Rh �
Es

pi
� pi � Fih � Fhs � b

���
i

and so on� Then� we have

E	bbi
 � E	bb���i � bb���i � � � �
 � E	bb���i 
 � E	bb���i 
 � � � � � b
���
i � b

���
i � � � � � bi

So it is clear that the random variable bb�l�i is a centered estimator for the radiosity due to
the power arrived on patch i after l bounces� and the sum of all this family of estimators
gives a new centered estimator bbi which corresponds to the total radiosity of patch i due
to the power arrived after any number of bounces� Our aim now is� as before� to obtain
the variance for this estimator� which we will do decomposing V ar	bbi
 in the same way

as in formula �� The terms of the form E	bb�n�i
bb�m�
i 
 are not null� because if a path arrives

at length n on source s it can also arrive later at source s� at length m� and we �nd
them as in the previous section�
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X
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s
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s
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where �
�n�
is is the radiosity due to the incoming energy after n bounces in the same

environment having changed all the re�ectivities by their square� Then

X
��n

�X
n�m

E	bb�n�i
bb�m�
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�
�

�

pi

X
s

X
��n

�
�n�
is

X
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b�m�n�s �
�

pi

X
s

�isbs
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E	bb���i
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 �

X
s

�
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��

� pi � Fis �
X
s
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�
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E	bb���i
�
 �

X
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X
s

�
Ri �Rh

Es

pi
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� pi � Fih � Fhs �
X
s
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pi
�
���
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and so on� Then we obtain

V ar	bbi
 � �

pi

X
s

Es	�
���
is � �

���
is � � � �
 � �

�

pi

X
s

�isbs � bi
� �

�

pi

X
s

	Es � �bs
�is � bi
�

where �is is the radiosity due to the incoming energy in the same environment having
changed all the re�ectivities by their square� For the radiosity our estimator is simplybbi � Ei� and as Ei is a constant we have

V ar	bbi � Ei
 �
�

pi

X
s

	Es � �bs
�is � bi
� 	



This variance can be proven to be less than the one for the Es estimator ���� But again
here we can repeat the considerations of the previous section on which of both estimators
is better�

� Results

Here we present in �gure � some experiments performed on a very simple scene� a cubical
enclosure with each face divided into nine equal size patches� the re�ectivities of the faces
being ��
� ���� ���� ���� ���� ��� respectively� and a source with emissivity � in the middle
of the �rst face� in patch �� Thus patches � to � receive no direct lighting and have
re�ectivity ��
� patches �� to �� re�ectivity ���� and so on� For this scene we computed
a reference solution with a �nite path length estimator and ��� paths� This provided
us with the bi values� A reference solution was also computed for the same scene with
the re�ectivities squared� that is� each re�ectivity was substituted by its square� This
provided us with the �is values� Then ��� runs of ��	 paths each for both in�nite
estimator were computed 	taking for gathering pi �

Ai

AT
� the fraction of total area
� and

used to obtain the square errors� an thus an estimated value of the variances for a single
path� The in�nite paths were cut o� when the product of re�ectivities along the path
was less than ������ The formulae for the variances are the formulae � and 
� with the
approximation �i � �� Figure � shows that the obtained results are in concordance with
the theoretically expected ones� Although the scene used in the test has no occlusions�
it should be noted that the variance of a patch radiosity does not depend on whether it
is due to direct or indirect illumination�
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Figure �� Comparison of the expected variances �plotted as square dots� and the experi�

mentally obtained square errors for the shooting �a� and gathering �b� in�nite path length

estimator� for the �� equal area patches of a cube �on x axis�� with face re
ectivities ���� ����

���� ���� ���� ���� A source with emittance � is in the middle of the �rst face�

� Conclusions

We have given here the variances for the in�nite path length random walk estimators
for radiosity� These formulae complete the study in ��� for �nite path length estimators�
A study of the relative e�ciencies of both kind of estimators remains to be done� and
also the generalization of the results to the R�G�B case�
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