Variance of two infinite path length random walk
radiosity estimators

Mateu Sbert

Departament d’Informatica i Matematica Aplicada
Universitat de Girona
Lluis Santalé s/n, E 17003 Girona.
phone +34 (72) 418419

fax +34 (72) 418399
e-mail mateu@ima.udg.es

Abstract. The error in an unbiased Monte Carlo method
is characterized by the variance. By knowing the variance
of different Monte Carlo estimators for Radiosity (and also
their cost) we should be able to obtain the most efficient of
them. This paper gives the variances for two such estimators,
the shooting and gathering infinite path length random walk
estimators. This completes a previous work of the author on
finite path length estimators.

1 Introduction

We study in this paper the variance of two Monte Carlo discrete random walk estima-
tors for radiosity, shooting and gathering random walk with infinite path length. The
study of the variance is important because it gives the expected square error for an
unbiased estimator. Thus, by knowing the variance of different Monte Carlo estimators
for Radiosity (and also their cost) we should be able to obtain the most efficient of
them. Gathering random walk proceeds sending paths from the patches of interest to
gather energy when a source is hit. Shooting random walk shoots paths carrying energy
from the sources, to update the visited patches. We consider in both cases that the
random walk proceeds according to the discrete Form Factor matrix (that is, patch-to-
patch Form Factors). Infinite path length estimators are such that the path never ends.
Obviously, in a simulation, one has to cut off the path, obtaining a biased estimator. In
this case the expected square error is the variance plus the squared bias. However, if we
can assure a small bias, the variance will give a good approximation of the square error.
The solution obtained with a random walk estimator will converge to the solution of
the Radiosity system (see for instance [3, 8] for random walk solutions of a system of
equations). Also, when the size of the patches decreases, it will converge to the one
found with Particle Tracing [6], which uses point-to-point Form Factors. Path-tracing
[4], and even distributed ray-tracing [1, 13] can be considered as the limiting case of
gathering random walk for the non-discrete case (without the shadow ray). Bidirec-
tional ray-tracing [12, 5] is a mixture of non-discrete shooting and gathering. [10, 2] can
be seen as a breadth-first approach to a shooting random walk estimator, which in turn
would be the depth-first approach.

As known to the author, only two papers have adressed to date the variance of random
walk estimators for radiosity. [11] gives a bound for a shooting estimator, and [9] gives
variances for a wide family of shooting and gathering estimators. The purpose of this



paper is to enlarge the work in [9] adressing the infinite path length estimators.

The structure of this paper is the following. In section 2 we will give previous results
on finite path length estimators. In sections 3 and 4 the variance of the shooting and
gathering infinite path length estimators will be obtained. In section 5 results will be
given to support the theoretical findings, and our conclusions and future research will
be presented in section 6.

2 Previous Work

In [11] a bound was given for a shooting finite path length estimator. This bound was
intended more to study the complexity than to give a realistic approximation of error.
In [9] different shooting and gathering estimators with finite expected path length were
studied, and their variances given. Three estimators for shooting, 1?%1'7 ‘% and ¢,
and three for gathering - ?j{s, g—z and F, were analyzed. In table 1 the characteristics
of the different estimators are given. The best estimators for each case were found to
be the &, and Ey, which agrees with intuition, as both update each patch in a path
(this advantage can be shown to overbalance the positive covariances). Two infinite path
length estimators were also characterized, but we were only able to give bounds for their
variances. These two estimators correspond in practice to biased estimators, because the
path is cut off under some criterion (having reached a predetermined length, or being
the accumulated reflectivities inferior to some threshold). In the next two sections we
will reexamine those estimators and find their variances.

Table 1: Different Random Walk estimators. The meaning of the different quantities is
in table 2.

Shooting | Patch scored Variance
b last bi (s — bi)
2 all but last | b; (252 (5 +26) — by)
o all bi (B2 (1 + 2Rig5) — by)
Gathering | Patch scored Variance
=% last s oy bis — bi”
E, all but last | fiy0 BudZbep, 2
E, all B 5 (Es + 2bs)bis — bi?

3 An infinite path length shooting estimator

Let us first consider what the expected value of any unbiased Monte Carlo estimator
should be for the incoming power on a patch. Let us suppose that the initial power
of source s is ®,, ¢; is the incoming power on patch 2, Fj; denotes the Form Factor
from patch k to patch [, and R, denotes the reflectance of patch k. Then we have, by
developing the Power system in Neumann series and dropping the zero order term:

d)i = Z(I)sti + ZZ O, Fop Ry F
s s h



Table 2: Meaning of the different quantities appearing in table 1. The suffix 7+ means
for patch i, suffix s indexes the sources.

E; Emissivity

b; Reflected radiosity = B; — F;

O Total power in scene

A; Area

R; Reflectivity

& Received power (or radiosity) due
to self-emitted unit power (or emit-
tance)

b;s | Reflected radiosity on 7 due to source s

i Probability for a path to begin at ¢

+2.2 ) O Fn Ry FiyRiFyi + -
S h i
This can be expressed as:
b= 0 + 6 + ol 4o

where ¢{") = ¥, @, Fy;, 67 = ¥, £ @ Fun R P,
@(3) =25 2n 2 P Fapn Ry Fiyj R Fy; and so on. That is, ¢>§” represents the power arrived

directly from the sources, qﬁ,@) represents the power arrived after one bounce, and so on.
Let us now consider the following simulation. A infinite length path ~ starts from source
s with probability p, = g; (that is, according to the power of the source), and from
here on it evolves according to the transition probabilities given by the Form Factors.

For instance, from s it will go to patch j with probability F;. The random variables
dA)EI), dA)(Z) dA)(?’) ... are defined in the following way:

All of those random variables are initially null. If the path ~ arrives at patch ¢ at length
[, and if s, Ay, ho, ..., hy_1,7 is the trajectory the path has followed, then the value of

q?)l(l) is set to Ry, Ry, ... Rp,_, ®r. Let us define also a new random variable dA)Z as:

b=+ + o 4

The expected values are

N (I)s
E(d\)) =3 &y x g X Fu= ot

~ P,
E(@(Z)) =Y > R, x P x . = Fup X Fpi = ¢
s h T
and so on. Then, we have

BB = B 430+ = BOY) + BGP) +--= o0 + 60 4=



Thus the random variable q?,(” is a centered estimator for the power arrived to patch
i after [ bounces, and the sum of all this family of estimators gives a new centered
estimator ¢; which corresponds to the total incoming power arrived to patch ¢ after any
number of bounces. Our aim now is to obtain the variance for this estimator. We can
decompose Var(¢;) in the following way
Var(g:) = Var(é” +6” +--)
- - 2 ~ N2
= B8+ +--)) — (E@)
= E(6"") + B3 +
+ 2 Y BOMM) -6 (1)

1<n<m

We find first the cross terms, which are not null because a path can arrive at length n
on patch 7 and again at length m:

E(&n)&m) = Z Z e Z Z e Z Ry, - Ry, ®rRp, -+ Ry, R;Ry, . - By, Pr -
S hl

hn—1 hnt1 hm-1

o,

—Fsh1 e thfli};‘ihan e Fhmfli

O
_ 2 2
— ZZ Z Rh1 .. 'Rhn_l(DSFShl By

s hy hn—1

R, ® Z Z Ry i Ry o Finpyr o Fryy i

hn41 hm—1

= O Ry

where %(n) is the incoming energy after » bounces in the same environment having
changed all the reflectivities by their square and §§m7”) is the expected value of the
incoming power (or radiosity) on patch i after m — n bounces due to a unit power (or
unit emittance) on the same patch i. Then

23" (Z E(&E%Em’)) =2R®r S " S €T = 2R B

1<n \n<m 1<n n<m

where 1); is the incoming energy in the same environment having changed all the reflec-
tivities by their square and &; is the expected value of the incoming power (or radiosity)
on patch ¢ due to a unit power (or unit emittance) on the same patch 7. & is is equal to
IiR__l, where [; is the self-importance of patch i (for a definition of importance, see [7]).
Also we have

R o,
E(ﬁbgm) =Y (®r)* X @ X Fy = q’Tff)z(l) = q’TT/)z(I)

because ¢§1) = 1,/)(1).

- D,
E(¢??) = SN (R x 1) X o, X Fyp, X Fyy = o7
s h

and so on. Then we finally obtain

Var(g) = r@ + ¢ + ) + 2R — ¢
Vi®r(1 4 2R;&) — ¢



where 1; is the incoming energy in the same environment having changed all the reflec-
tivities by their square. For the radiosity estimator B; = E; + %}@- we have

2 .
Var(B;) = % (¢:®r(1 +2Ri&) — 67) = 5fT (1+2Ri&) — b? 2)

where 3; is the reflected radiosity (or radiosity due to incoming energy) in the same
environment having changed all reflectivities by their squares. The variance of this
estimator can be shown to be lower than the one for the ®; estimator [9]. But this
does not necessarily mean that this estimator is better. First, the cost of the infinite
estimator is determined by how we cut off the infinite path. This can be done on a
predetermined length, or alternatively when the accumulated reflectivity (that is, the
product of reflectivities along a path) is less than a preestablished threshold. Second,
this procedure imposes a bzas on the solution which should be taken into account when
comparing errors. If we want no bias, we can use Russian Roulette, which consists
simply in switching to some finite path length estimator (such as the ones in table
1) to distribute the left energy. This will however increase the cost considerably. We
can alternatively consider acceptable this small percentage of undistributed energy (the
variance accounts for the noise in the image, the bias for the undistributed energy).
Also, if this threshold is small enough we can be confident that the variance of the
resulting biased estimator is close to the variance of the infinite length estimator.

4 An infinite path length gathering estimator

Let us first consider what the expected value of any unbiased Monte Carlo estimator
should be for the radiosity of a patch. Let us suppose that the emittance of source s is
E, b; is the reflected radiosity, or radiosity of patch i due to the received power (that is,
b; = B; — E;, and so for a non-emitter patch, it equals the total radiosity), Fy; denotes
the Form Factor from patch k to patch [, and Ry denotes the reflectance of patch k.
Then we have, by developing the Radiosity system in Neumann series (dropping the
zero order term):

by = R; Z E Fis + R; Z Z E Fip Ry Fis
s h s

+R;Y Y Y EFinRyFyR;Fjs + - -
—

7 S

This can be expressed as:
b b 4 62 o

where b\ = R, Y, B, Fyy, b2 = Ry Y, 5 EoFip Ry Fhs,

bz(-?’) = R > >n 2 EsFin Ry Fy RjFjs and so on. That is, bz(-l) represents the radiosity
due to direct illumination, bEZ) represents the radiosity after one bounce, and so on. It
is also useful to define the following quantities:

by = b0+ 6 -
2)

btV represents the radiosity due to direct illumination from source s, b;;’ represents the
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radiosity after one bounce from source s, and so on. It is clear that:

b; = Z bis



Let us now consider the following simulation. A infinite length path v starts from patch
i with probability p; (this probability can be considered as the initial or emitted impor-
tance of the patch), and from here on it evolves according to the transition probabilities
given by the Form Factors. For instance, from 7 it will go to patch j with probability
F;;. Let us define now the random variables bE ), bEQ),EE?’), ... in the following way:
All of those random variables are initially null. If the path v happens to arrive at source
s at length [, and if i, hy, hs, ..., h;_1, s is the trajectory the path has followed, then the
value of BE” is set to R; Ry, Ry, . .. Rhl_I%. Let us define also a new random variable 51

as. R R R R
b= B0 + 52 450 4

Now let us find the expected value of those random variables. Applying the definition
of expected value, and remembering that the probability of selecting patch ¢ is p;, the
probability of landing on source s just after leaving patch ¢ is Fj,;, we have

~ Es
EGY) =Y R x =2 x pi x Fy ="
s Di

Now, to go from patch 7 to a source s in a two length path we can pass through any
patch h, so we have

- E,
E@0) ZZRthx—Xplezhths—b()
Pi

and so on. Then, we have
EG)=EQ" +b2 +--) =BG + EGP) +--- =Y + 0P + ... = b,

So it is clear that the random variable EEZ) is a centered estimator for the radiosity due to
the power arrived on patch i after [ bounces, and the sum of all this family of estimators
gives a new centered estimator b; which corresponds to the total radiosity of patch ¢ due
to the power arrived after any number of bounces. Our aim now is, as before, to obtain
the variance for this estimator, which we will do decomposing Var(b;) in the same way
as in formula 1. The terms of the form E(b5{™) are not null, because if a path arrives
at length n on source s it can also arrive later at source s’ at length m, and we find

them as in the previous section:

EGME™) = YV Y % Rz-Rhl---Rhn_I%
s s’ hi hn—l hn+1 hm—l pl
Ey
RiRp, -+ Ry, Rs Ry, -+ Ry — -
PiFsny s Fshpr -Fhm,lsf
E,

= ZZ ZR2R pszshl"'thfls'

E

S5 Y Ry B

5" hpt1 hm—1 i

]' n m—n
= Zﬂzs sts’ = ; Zﬂz(s)bg )

pls




where ﬁi(sn) is the radiosity due to the incoming energy after n bounces in the same
environment having changed all the reflectivities by their square. Then

5 (3 B005)) = LSS v = Ly,

1<n \n<m s 1<n n<m

and also

2
E(?)\EI)Z) — Z <R1%> X pi X Es - Z 67,5
Di

)

2
E(EEZ)Z):ZZ<RlXRh%> XpiXEhXFhs—Z 615
h s i

and so on. Then we obtain

1 1
Var(b ZE (U4 3@ )4 2]7 S Bisbs — b® = - S (B, + 2b,) Bis — b

T s

where [3;; is the radiosity due to the incoming energy in the same environment having
changed all the reflectivities by their square. For the radiosity our estimator is simply
b; + E;, and as FE; is a constant we have

Var(b; + E;) = L > (B + 2b,)B;s — bi° (3)

T s

This variance can be proven to be less than the one for the F estimator [9]. But again
here we can repeat the considerations of the previous section on which of both estimators
is better.

5 Results

Here we present in figure 1 some experiments performed on a very simple scene, a cubical
enclosure with each face divided into nine equal size patches, the reflectivities of the faces
being 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 respectively, and a source with emissivity 1 in the middle
of the first face, in patch 4. Thus patches 1 to 9 receive no direct lighting and have
reflectivity 0.3, patches 10 to 18 reflectivity 0.4, and so on. For this scene we computed
a reference solution with a finite path length estimator and 10® paths. This provided
us with the b; values. A reference solution was also computed for the same scene with
the reflectivities squared, that is, each reflectivity was substituted by its square. This
provided us with the 3;, values. Then 100 runs of 10* paths each for both infinite
estimator were computed (taking for gathering p; = %, the fraction of total area), and
used to obtain the square errors, an thus an estimated value of the variances for a single
path. The infinite paths were cut off when the product of reflectivities along the path
was less than 0.001. The formulae for the variances are the formulae 2 and 3, with the
approximation &; = 0. Figure 1 shows that the obtained results are in concordance with
the theoretically expected ones. Although the scene used in the test has no occlusions,
it should be noted that the variance of a patch radiosity does not depend on whether it
is due to direct or indirect illumination.
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Figure 1: Comparison of the expected variances (plotted as square dots) and the experi-
mentally obtained square errors for the shooting (a) and gathering (b) infinite path length
estimator, for the 54 equal area patches of a cube (on z axis), with face reflectivities 0.3, 0.4,
0.5, 0.6, 0.7, 0.8. A source with emittance 1 is in the middle of the first face.

6 Conclusions

We have given here the variances for the infinite path length random walk estimators
for radiosity. These formulae complete the study in [9] for finite path length estimators.
A study of the relative efficiencies of both kind of estimators remains to be done, and
also the generalization of the results to the R-G-B case.
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