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Abstract � The rapid development of scanning and measuring hardware for medical imaging

and for scienti�c experiments� the introduction of animation techniques into common use have

created the need to understand n�dimensional raster geometry� where n � �� This paper presents

therefore a discrete regular structure called hyperlattice used for de�ning n�dimensional raster

geometry� Discrete curves are then de�ned on hyperlattices� A general de�nition of rasterization

onto hyperlattices is then given� and algorithms for rasterizing generic curves and straight lines

onto n�dimensional lattices are presented�

� Introduction
The rapid development of scanning and measuring hardware for medical imaging and
for scienti�c experiments� the introduction of animation techniques for the visualization
of data� and the need for examining and manipulating data of growing complexity and
dimensionality have created new problems regarding sampling� representing and render�
ing data de�ned in n�dimensional spaces for use in the discrete world representable in
computers�
Rasterization is the operation that allows passing from the human continuous represen�

tation of the world to the discrete digital world of computing devices� While the study of
rasterization in two�dimensional spaces is well advanced ���� 	� �
� and many algorithms
for performing discretization onto the plane are readily available� the study of this op�
eration in n�dimensional spaces� with n � �� are a rarity and generally limited to the
three�dimensional case ���� ��� �� 	� �
�
Due to the recent progress in scienti�c visualization and in medical imaging� there has

been a renewed interest in new methods for the visualization of n�dimensional spaces
��	� �� ��� ��� �� and for methods for integer interpolation in higher�dimensional spaces�
��� ���� To avoid the development of mutually incompatible theories� a general framework
for the development of the theory for n�dimensional rasterization is needed�
This paper tries to address exactly these needs� it provides a general mathematical

model for multidimensional raster devices� and extends currently available rasterization
schemes to the n�dimensional case� The paper also shows the strict interdependence of the
type of neigbourhood relations chosen in the discrete model space �which in�uences the
connectivity of a discrete curve� with the rasterization scheme that has to be adopted�
Finally� an algorithm for the rasterization of generic curves� and its application to n�
dimensional straight lines are presented� These algorithms allow to generate curves having
all examined types of connectivity� and are therefore a generalization of readily available
algorithms from the literature ��� ����



� Raster I�O devices
As the support environment for this paper we take the real n�dimensional space Rn�
with the common geometric de�nitions of point� straight line� plane� �at� hyperplane and
polytope �
� ����
The most common type of output device nowadays connected to a computer is a raster

device� By raster device we understand here a device which can represent a set of discrete
values i�� i�� � � � � im on a discrete subset L of the n�dimensional real space� In symbols� a
raster device A is a device that can represent a discrete�valued function

D � L �� I� � I� � � � � Im �

where I�� I�� � � � Im are discrete �usually �nite� subsets of the real numbers� Typical exam�
ples of raster output devices in two�dimensional space are traditional Computer Graphics
square�based output devices� such as raster screens and dot�matrix� inkjet or laser printers�
the domain of which �L� is usually a rectangular subset� of Z� and the codomain of which
is the set f�� �g for black and white raster screens and printers�� the set f�� � � � � �

g for
	 bit greyscale display devices� the set RGB � f�� � � � � �

g � f�� � � � � �

g � f�� � � � � �

g
for �� bit display devices� or a set of colours c�� � � � � cN � for colour lookup table �CLUT�
devices� Typical raster input devices are two�dimensional scanners� which usually can
output any of the formats discussed above� Examples of three�dimensional raster in�
put devices are medical imaging devices� such as Magnetic Resonance and Computerized
Tomography devices� which have Z� as a domain� and output one value per position�
Recently� four�dimensional medical input devices have appeared� e�g� Positron Emitting
Tomography scanners� which scan the variations of three�dimensional data in time� and
thus data in four dimensions� On the output device side� the �rst three�dimensional
output devices are making their appearance� for example the work at the University of
Braunschweig ����� They are capable of projecting a given colour de�ned as above onto a
raster point in �D space�
The use of a uni�ed model for raster devices allows the same notation both for raster

input devices� such as scanners� and for raster output devices� such as printers and raster
screens� In particular� the operation of scanning� i�e� of sampling a continuous signal
through a raster device into a discrete dataset for its elaboration through a computer� looks
similar� in principle� to the operation of rasterizing� i�e� of discretizing the representation
of data through continuous curves� polygons� and all the components of a geometric
model� into a discrete set of data representable on a raster output device� In both cases�
due to the discrete nature of the device� the sampling process can only be done at �xed
frequencies� thus causing a noticeable loss of detail as well as aliasing problems� The
similarities in the two sampling processes end here� though� Scanning devices are limited
by their resolution� and data can be sampled only at �xed frequencies� The resolution
limits of the device cannot be overcome without an increase of the sampling resolution�
i�e� without buying a higher resolution device� or through new devices that place the
sampling sets more e�ciently� as has been proposed recently ��	� 
� ���� Raster output
devices� instead� permit a di�erent approach� since the continuous model that has to
be sampled is readily available in the computer� The sampling frequency of the model
can thus be increased at will �super�sampling� and sampling errors can be averaged�
or partially corrected through anti�aliasing techniques before displaying on the physical

�The range of which� of course� depends on the resolution of the device�
�Here each colour ci is a triplet of integers in the set of all possible colours representable by the device�

which� in general� is a set of type f�� � � � � N�g � f�� � � � � N�g � f�� � � � � N�g�



device ����� However� such techniques are in general very expensive� and do not address
the core problems caused by the rasterization process� As many authors have pointed out
���� ��� 	�� there is a real lack of study on the mathematical foundations of rasterization�
and the notation used is either derived from the theory of sampling� and thus is too heavy�
or is too incomplete for productive use�

� Rasterization in n�dimensional space
In this section we will focus on the introduction of a model for rasterization based on
regular discrete structures called n�dimensional lattices�
The operation of sampling a continuous m�dimensional signal f � Rn �� Rm to obtain

an m�dimensional discrete signal of a discrete variable D � L �� I� � I� � � � � Im which
can be output on a raster display device is called discretization or rasterization of the
signal f � A discretization function � therefore associates with a function f which has to
be discretized its discretization D� i�e� � � F �� D � where F � ff � Rn �� Rmg
and D � fD � L �� I� � � � �� Img� From the above de�nitions it can be observed that
discretization is� in fact� a particular sampling process in the n�dimensional space that can
be characterized by the fact that also the output set I � I� � I� � � � � Im is also discrete�
In general� for Computer Graphics purposes� both L and I are subsets respectively of

Rn and Rm� and the discretization is done so that some visually important characteristics
of the function f are preserved� In particular� discretization is performed in such a way
that the embedding of ��f� in F is an �acceptable� approximation of f � The criteria for
the de�nition of acceptable vary widely� and depend mainly on the function � used�
Some rasterization schemes can be directly derived as the n�dimensional extension of

existing rasterization schemes for two�dimensional rasterizations� Let v��v�� � � � �vn�� be
n linearly independent vectors of Rn� and let � � ��v�� � � � �vn��� be an n�dimensional
lattice� i�e� the set of all linear combinations with integer coe�cients of the vectors vi� or�
in other terms� the points � of Rn such that � � c�v� � � � �� cn��vn�� �where ci � Z��
The vectors vi are usually called lattice generators� Consider the Voronoi sets associated
to the lattice points� i�e� the sets of points V� closer to the point � that to any other point
of the lattice �� Each Voronoi set V� is in a natural correspondence with the lattice point
�� Depending on the mutual orthogonality of the lattice generators� neighbouring Voronoi
sets share a single point� a straight line segment� up to an �n� ���dimensional polytope�
Two lattice points � and �� are said to be l�neighbours if the closures of the corresponding
Voronoi sets V� and V�� share an l�dimensional polytope� Two lattice points � and �� are
said to be l��neighbours if the closures of the corresponding Voronoi sets V� and V�� share
a k�dimensional polytope �where � � l � k � �n � ���� In the traditional notation used
for the three�dimensional case �voxel space�� for mutually orthogonal lattice generators�
���neighbours are �� �or face�� connected neighbours� ���neighbours are �	� �or line��
connected neighbours� and ���neighbours are ��� �or vertex�� connected neighbours�
Arcs can then be introduced on an n�dimensional lattice with the same procedure used

on in�nite graphs� given two lattice points A and B� an l��arc from A to B is a �nite
sequence of lattice elements P�� P�� � � � � Pn such that �i� Pi and Pi�� are l��neighbours and
such that P� � A and Pn � B ����� The points A and B are called endpoints of the arc�
Note how this de�nition corresponds to the de�nition of the path between two nodes of a
graph� An arc is said to be closed if the two endpoints coincide� An l��curve is an in�nite
arc� i�e� a sequence of lattice points fPig

��
i��� such that Pi and Pi�� are l��neighbours �i�

Consider now the Voronoi set associated with the origin VO� and a simply connected
set K� such that K� � VO� The set K� is called the basic domain of the rasterization

scheme� Let � � �� and let K���� be the translated set of K� through the vector �� in



other words� let K���� � fy � Rn � y � � � x�where x � K�g� The rasterization of a
point and of a set can be de�ned in the following way�

De�nition ��� Let v � Rn� The rasterization DigK�
�v� of v is de�ned by the following

relation

DigK�
�v� �

���
��

f�g i� �� � �� 	 �v � K�����


 otherwise�

���

De�nition ��� Let A � Rn� The rasterization of A is the set

DigK�
�A� �

�
x�A

DigK�
�x� � ���

The rasterization function introduced by these de�nitions is called nearest neighbour ras�
terization� Although it is de�ned exactly in the same way as two�dimensional rasterization
is� the operation of rasterizing in n�dimensional space is� of course� more complicated� and
requires particular care in the choice of the set K�� If K� � VO� then the rasterization
function is called cellular rasterization� The major drawback of cellular rasterization is
the fact that in the case of n orthogonal lattice generators� whenever a curve has to be
rasterized� its cellular rasterization in � is a ���curve� Although this is a desirable feature
for hypervoxel� traversal algorithms� in some cases ��� it is more desirable to compute
l��curves for rasterization in the n�dimensional lattice� where l � �� just as in the two�
dimensional case� where 	�connected curves are usually preferred to ��connected curves�
As in the two�dimensional case� there is a particular choice of the set K� that generates

�n � ���connected curve digitalizations in the case of orthogonal lattice generators� If
the vectors vi are orthogonal� by letting one of the axes coincide with the straight line
containing one generator� we can always lay an orthogonal cartesian coordinate system in
Rn such that all the coordinates of the vector vi are zero except the i�th coordinate� vi�i�
Let Ai be the hyperplane passing through the origin and perpendicular to the vector vi�
Consider the Voronoi set associated with the origin VO� and let A�i � Ai � V�� Consider
now as basic domain of the rasterization scheme the set

K� �
n���
i��

A�i �

The scheme de�ned in this way computes the intersections of the curve � to be rasterized
with the hyperplanes of the form xi � jvi�i� where j is an integer� and then approximates
the resulting points to their nearest lattice point�� The resulting lattice points build
the rasterization of the curve� This last type of rasterization is called grid intersection

rasterization�
Grid intersection rasterization can be extended to non�orthogonal lattices by substitut�

ing the hyperplanes Ai with the hyperplanes Ai passing through the origin and containing
all vectors vj for all j �� i� In the lattice coordinate system� such hyperplanes have the
form xi � �� with k integer� To rasterize a curve � in this case� its intersections with
the grid of hyperplanes of the form xi � j �in the lattice coordinate system� have to be
computed� and the resulting points are then approximated to the nearest lattice point on
the hyperplane�

�Where a hypervoxel is by de�nition the set V��
�Such a point is not always unique� However� this ambiguity can be trivially overcome by forcing

uniqueness�



In general� cellular rasterization schemes guarantee that the rasterization of any given
point P exists� since the Voronoi sets associated with a lattice tessellate Rn� and should
be therefore used to rasterize single points� whereas grid intersection rasterizations are
more convenient whenever a curve has to be rasterized� since they perform intersections
with a set of parallel hyperplanes� the equations of which are easy to handle�
Nearest neighbour rasterization schemes provide a fairly simple mechanism for the de��

nition of rasterization� However� they are not extensible to take into account the concept
of l��neighbourhoods� In order to generate the discretization of a set A� such schemes use
replicas of one single ��xed� set� and compute the intersections of the set to be rasterized
with these copies� The result of this procedure is then a connected set of lattice points
that represent the set A on the lattice� and that lies the closest possible to the set to be
rasterized� within the limits imposed by the discrete nature of lattices and by the relation
of neighbourhood involved� With the schemes introduced above� there is one and only
one optimal choice of the resulting rasterization set��

� Curve rasterization onto n�dimensional lattices
To extend the operation of rasterization to lattices onto which a generic l��neighbourhood
is de�ned� from now on in this paper we restrict ourselves to the de�nition of curve

rasterization onto n�dimensional lattices� since a de�nition of rasterization for generic sets
would imply a thorough analysis of the topology of n�dimensional lattices� and this would
be well beyond the scope of this paper� The notation presented above for the de�nition
of rasterization� although more general� thus� turns out to be too heavy� the operation
of curve rasterization can also be seen as the rasterization of subsets of Rn��� In fact�
a curve is a particular subset of R �Rn� namely a continuous function � � R �� Rn�
and therefore its rasterization must be a curve in a lattice � 
 Rn� i�e� a sequence
S � Z �� � such that S�i� and S�i��� are neighbours� The discrete curve resulting from
the rasterization process will therefore be a connected subset of points of � that lies the
closest possible to the curve to be rasterized�
The keywords for the de�nition are the words connected and closest� Connectivity is

the characteristic which is most important from an observer�s standpoint� a rasterization
of a curve must be connected� As far as closeness is concerned� an observer is usually
less categorical about it� and depending on the requirements of the system this closest
criterion can be relaxed ��� �
�� For example� in two�dimensional rasterizations� for speed
reasons a polygon inscribed in a curve might be rasterized instead of the curve itself �����
The rasterization scheme� therefore� must ensure curve connectedness �rst�
The choice of the closest l��path to the curve � to be rasterized is� in general� more

complicated than the choice of a closest ���path or �n � ����path to �� because ��� and
�n � ����rasterizations involve only local decisions in the rasterization process� whereas
generic l��rasterizations have also to take into account conditions for the neighbours of
the current point�
Similarly to grid intersection rasterizations� the starting point for the de�nition of an

l��path generating scheme� is calculating the intersection of the continuous curve � with a
grid of lines� so as to partition the rasterization procedure into an �enumerable� sequence
of steps� However here the choice of the next rasterization point has to take into account
the local neighbourhood con�gurations� which impose additional conditions on the choice

�In fact� all the schemes introduced to date avoid in one way or another the ambiguities derived from
the points on the border of V�� which inherently are points shared by more than one K� set� by arbitrarily
attributing these points to one and only one K�



Figure �� Intersection of a curve r

with the grid hyperplanes�
Figure �� Grouping ��steps into l��steps for pro�
ducing the rasterisation of a curve r�

of the points of the discrete curve�
Let ��v�� � � � �vn��� be the lattice onto which we want to perform rasterization� let

� � ��� �� �� Rn be the curve to be rasterized� and let A and B be its endpoints� Let the
coordinates of the generator vi be �vi��� � � � � vi�n��� in the orthogonal coordinate system�
Consider the coordinate system introduced by the lattice generators� In this coordinate
system� the coordinates of the generator vi will all be zero� except the i�th coordinate
which will be �� In the coordinate system introduced by the lattice generators in Rn�
consider the hyperplanes of the form x�i � k� In other words� consider the hyperplanes
Hkvi whose equation in the orthogonal coordinate system is

vi��x� � � � �� vi�n��xn�� � k�v�i�� � � � �� v�i�n��� �

where k � Z� The hyperplanes Hkvi form a grid over Rn� which will be intersected with
the curve to be rasterized to obtain the lattice rasterization points� Note that� in the case
of rectangular lattices� the grid de�ned here coincides with the grid which derives from
grid intersection rasterization�
Let �A and �B respectively be the grid point digitalizations of A and B�	 and consider

the intersections of � with the grid of the hyperplanes Hkvi � For each point P � intesection
between � and the hyperplane HkP vi � let P

� be its nearest lattice point on the hyperplane
HkP vi� The paramenter t induces an ordering on the points of the curve �� and thus also
on the intersections of � with the grid� Let S � fP�� � � � � Prg be the ordered sequence
of intersections of � with the hyperplanes Hkvi � This sequence represents the order in
which the hyperplanes Hkvi will be intersected by the curve � for growing values of t� as
illustrated in Figure ��
The sequence S induces also an ordering on the sequence S� of the P �

i � i�e� of the nearest
neighbours de�ned above� Note that the P �

i are lattice points� and will be used to build
the l��path� rasterization of �� From this sequence� it is easy to extract an l��connected
path� up to n� l steps along the directions of the generators can be grouped into a single
diagonal step� provided that a single ��combined�� step is not composed of more than
one step in each direction�
To illustrate this a little� imagine an observer travelling in the n�dimensional space

from A to B along the curve �� Such an observer would �bump� into the hyperplanes

�From a logical point of view� if we denote the rasterization of � with �� both �A and �B should
belong to �� However� in order to maintain consistency� in traditional rasterization algorithms this is not
always the case� and here we shall follow the same approach�



of the grid at the points Pi in a certain order� which de�nes a sequence S of points on
the grid hyperplanes� Each time the observer encounters a hyperplane in a point P � he
scrupulously takes note of the point encountered� looks for the closest lattice point to it�
say P �� and takes note of it too� Once the observer arrives at B� he has built two sequences
of points S and S�� respectively containing the points P and P �� from which it is possible
to build a shortest l��path from A to B� Let us call this path �� In order to do this� it
su�ces to note that each point P � in S� represents a step in the direction d perpendicular
to the grid hyperplane containing P �� The sequence S� therefore de�nes a sequence D of
single steps in the directions of the axes which builds a ��path from A to B� From the
sequence D we can obtain an l� path � by simply grouping together whenever possible
in each hop up to n� l di�erent steps in the directions of the generators�
Let D � fdi�� � � � � dimg� Here� naturally� the elements of D are directions parallel

to the lattice generators� Let ih� be the minimum index of the sequence D that has
appeared before in D� Let k� � Min�l� h��� In the �rst hop� the �rst k� � l steps of
D in di�erent directions of the single generators can be grouped in a single hop� Let
us denote this fact by rewriting D and enclosing grouped steps in brackets� We have
D � f�di� � � � � � dik� �� dik��� � � � � � dimg� Consider now the subsequence extracted from D

starting from ik���� i�e� the subsequence Dk� � fdik���� � � � � dimg and� again� let ih� be the
minimum index of the sequence that has appeared before in Dk� � Let k� � Min�l� h��� In
the second hop of the l� path� the steps from dik��� to dik� can be grouped together in a
single step� We can thus rewrite D as

D � f�di� � � � � � dik� �� �dik��� � � � � � dik� �� dik��� � � � � � dimg �

This can be repeated until all the directions of D are grouped in hops� The result of this
procedure is the grouping of the directions in D into l� hops which de�ne an l� path from
A to B� Such a path represents the rasterization of the curve ��
Figure � illustrates this in an example� The curve g � R� has to be rasterized onto

an orthogonal ���connected
 lattice � from the point A to the point B� Since we are
working in ��dimensional space� there will be four lattice generators� and therefore four
parallel sheafs of hyperplanes �perpendicular to the lattice generators� which will be used
to compute the rasterization of g� In the �gure� the projection of g onto a convenient plane
is shown� The diagonal segments intersecting the curve represent the intersections of the
curve with the sheafs of hyperplanes of equation xi � k �i � �� � � � � ��� where parallel
hyperplanes have been represented by parallel segments� The intersections found de�ne
a ��connected path from A to B� the steps of which build the sequence of directions

D � fd�� d�� d�� d�� d�� d�� d�� d�� d�� d�� d�� d�� d�� d�� d�� d�� d�� d�g �

The directions of D are grouped to form a �� path in the following way�

D � f�d�� d��� �d�� d�� d��� �d�� d��� �d�� d�� d��� �d�� d�� d��� �d�� d��� �d��� �d�� d��g �

Note that here one step in the direction d� cannot be grouped together with any other
step� due to the fact that d� occurs twice in a row� Note also that the chosen path is not
the only ���path possible� for example also the path

D � f�d�� d��� �d�� d�� d��� �d�� d��� �d�� d�� d��� �d�� d�� d��� �d�� d��� �d��� �d�� d��g �

is an l��connected path from A to B� and represents g accurately� This non�uniqueness
is due to the nature of l� paths� However� all possible paths derived from D by grouping

�Note that orthogonality is required here to allow l��connectedness�



together up to � di�erent directions will be close enough to the original curve to represent
it �well�� A more precise de�nition of rasterization which would compute a unique path
would have to compromise greatly in speed� and is thus not desirable� since all possible
legal groupings within D would have to be analyzed� The algorithm de�ned above follows
the curve from A to B and groups directions as soon as the occasion arises�
To recapitulate� several rasterization techniques have been introduced� The use of each

of them depends on the object to be rasterized� on the lattice onto which rasterization is to
be performed and on the neighbourhood relation de�ned onto it� If� as in most cases� there
is no requirement for l� connectedness� then it is much easier to use nearest neighbour
rasterizations� Cellular rasterization is preferred if single points or generic objects have to
be rasterized� while curves are preferably rasterized through grid intersection rasterization
schemes� However� there are cases� for example when conditions on the smoothness of
the rasterized object are imposed� or in interconnection network routing� where the l��
connectedness of the rasterization is required� In these cases the last method presented is
capable of �nding an l��connected rasterization of the curve� In the next section� we will
de�ne an algorithm that rasterizes straight line segments�

� Straight line rasterization
Although there is plenty of literature on straight line rasterization onto square planar
lattices �
�� only recently has line rasterization onto hexagonal lattices been introduced
��
� �
�� In three�dimensional space� straight line drawing algorithms have been developed
in the context of ray�tracing for following a ray through the scene to be rendered ���� Lately
there has been growing interest on line segment rasterization algorithms in n�dimensional
space� Badouel and W uthrich ��� presented a face connected algorithm which rasterized
straight line segments onto n�dimensional hypercubes� In an independent work� Slater
���� published two algorithms that generated both the �n � ����connected and the ���
connected rasterization of straight line segments onto a hyperrectangular lattice� The
purpose of this section is to illustrate the de�nition of rasterization presented in the last
chapter through the development of an algorithm for the rasterization of a straight line
onto an l��connected hypercubic lattice� We shall start by introducing one such algorithm
for the hypercubic unit lattice �u� i�e� such that its generators are all of unit length and
mutually orthogonal�
Let P � �p�� p�� � � � � pn��� and Q � �q�� q�� � � � � qn��� be two distinct hyperlattice points�

Let ni � qi� pi� The straight line from P to Q is the set of points X � �x�� x�� � � � � xn���
such that xi � �qi � pi�t � pi� where t � ��� ��� As seen in the previous section� the
parameter t introduces an ordering on the points of the straight line� For each dimension
i� consider the straight line points Pj�hi obtained for t � hj

ni
� where hj � �� � � � � ni� and order

these points in increasing order of their corresponding parameter value� The segment PQ
results subdivided into ni equal parts for each dimension i� and the points obtained on
the straight line segment are ordered by increasing values of the parameter t to form a
sequence A � fA�� � � � � Arg which in turn is used to build the l��connected path as in the
previous section�
The algorithm outlined above can be e�ciently implemented to perform integer calcu�

lations only� and to generate one hop for each of its steps� To do this� for each dimension
i� an integer counter di is allocated �i � �� � � � � n � ��� The values of ni� together with
the least common multiple L � LCM�fnig� are then computed� Let n��i � L

ni
� and let

n�i � �n��i � The n
�
is represent the increment that will be used for the counter di throughout

the whole algorithm� The counters di are initialized to n��i � At each step� the set D of the
l smallest counter cells di is considered� Let di� be the smallest counter cell� and let n�i� be



Initialization� END�
�i� ni � qi � pi END� ENDIF
L� LCMi�ni	 ELSE

�i n��i �
L
ni

n�i � 
 � n��i END�� Let m be the minimum dir � n�ir �

Translation� and let l� be the maximum ik
�i� di � n��i END� such that dil� � m�

Loop� �k � l��
WHILE ��i� di � 
L	 dik � dik � n�ik

Consider the l minimum di� x�ik
� x�ik
 � �
and order them in the sequence END�
di� � � � � � dil�� ENDELSE
IF�dik � n�ik � dil � �k � l	 Discard directions such that di � 
L

�k � l� Write X � �x��
� � � � � x�n� �
	
dik � dik � n�ik ENDWHILE

x�ik
� x�ik
 � �

Figure �� An n��connected straight line rasterization algorithm

the increment corresponding to it� First n�i� is added to di� � Then the set D is reordered
by increasing values of the counter cells� Again� the corresponding increment n�i� is added
to the smallest di� until either all l elements of D have been incremented� or the smallest
di is a counter cell that has already been incremented in the current step� Once one of
these two conditions is ful�lled� the directions corresponding to the elements of D that
have been incremented in the step are grouped together in one single hop� The steps are
repeated until all counters di have reached the value of �L�n��i � which is equivalent to the
condition �i� di � �L� To avoid missing the endpoint Q� whenever a counter di is greater
than or equal to �L� it cannot contribute any more to the hops� and it is therefore removed
from the list of the incrementable di counters� This condition is unnecessary if there is
the need to draw an �in�nite� line� Whenever two counter cells di have equal values in a
certain step� an arbitrary choice can be made� here the direction corresponding the lowest
dimension �i�e� corresponding to the smallest i� is considered �rst �as if it was smaller��
unless it has already been incremented in the current step in which case it is considered
to be bigger than all non�incremented counter cells equal to it�
Note that the initialization of the counters di is important� since otherwise in the �rst

step all di would be equal to zero� and this would imply an arbitrary choice of the directions
of the �rst step�
The algorithm translates into the pseudocode listed in Figure �� It is a little slower than

traditional algorithms developed for the �� and �n � ���connected cases� which are to be
preferred whenever possible� This is due to the inherent complexity of l��connectedness�
The algorithm presented above can be extended trivially to a generic hypercubic lattice

�c by using an a�ne transform for transforming the points of the generic hypercubic
lattice into points of a unitary hypercubic lattice �u and transforming back the resulting
rasterization through the inverse a�ne transform� More generally� the algorithm above
can be trivially extended to hyperrectangular lattices� In fact� given a hyperrectangular
lattice �r and a hypercubic lattice �c� there is an a�ne transformation A that converts the
generators of �r into the generators of �c� To compute a hyperrectangular l��connected
straight path between two points P and Q in �r� it su�ces again to compute an l��
connected straight path from A�P � to A�Q�� and to transform the resulting rasterization
points through the inverse of A�



Finally� a small remark has to be made on the generation of the rasterization of a straight
line segment from P to Q onto a non�orthogonal lattice �� In this case also� there exists a
simple a�ne transformation A mapping the generators of � into the generators of �u� As
for all a�ne transformations� this transformation guarantees that lattice points will be
mapped into lattice points� and that both grid hyperplanes and segment midpoints will
be preserved� To �nd the ��connected rasterization of a segment onto a generic lattice ��
the ��connected rasterization of the segment from A�P � to A�Q� can be computed and
transformed back through the inverse of A� The resulting rasterization points coincide
with the points that would have been reached by applying grid intersection rasterization
directly on the grid hyperplanes de�ned previously�

� Conclusions
This paper has presented a �rst de�nition of rasterization in n�dimensional spaces using
hyperlattices as a model for n�dimensional raster output devices� The model used does not
require the lattice generators to be orthogonal� allowing thus non�orthogonal rasterization
and sampling operations in higher order spaces� Rasterization schemes have been linked
to the degree of connectivity required by the rasterized object in the discrete space� Such
links will permit in future some control of the smoothness of the generated curve before
the rasterization process begins� Both a generic algorithm for the rasterization of a curve�
and an algorithm for the generation of a straight line segment have been presented� each
of these algorithms generates the degree of smoothness required in the output�
The immediate application of this work in Computer Graphics lies in the visualization

of n�dimensional datasets from scienti�c and experimental data� as well as in the develop�
ment of the theory necessary for the display and representation of n�dimensional virtual
worlds� In Image Processing the main contribution of this study lies in the allowed non�
orthogonality of the data acquisition process through the scanning device� For example�
the theory developed allows scanning devices� such as NMR and PET �Positron�Emission
Tomography� devices� to acquire data along non�orthogonal directions� and to display
such data in computer visualization systems� thus granting more �exibility to the data
analysis�
The de�nition of a model for n�dimensional raster output devices and for the operation

of rasterization allows the application of rasterization to new �elds� whenever continuous
objects have to be represented through discrete ones� To be fully usable� however� the
theory presented in this paper has to be re�ned� although curve rasterization is de�ned
here� to the author�s knowledge there are no studies available on surface and hypersurface
rasterization in n�dimensional space� There are not even algorithms for the rasterization
of hyperplanes in n�dimensional spaces� The link between lattice connectivity and the
smoothness of rasterized objects is still on an intuitive level� and deserves further study�
As the power of computing devices increases� so does the quest for visualizing pro�

gressively more complex spaces� Advances can be made only if the concepts of discrete
n�dimensional geometry are clear� It is thus reasonable to assume that in the near future
many of the unresolved issues mentioned above will be tackled�
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