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Abstract : The rapid development of scanning and measuring hardware for medical imaging
and for scientific experiments, the introduction of animation techniques into common use have
created the need to understand n-dimensional raster geometry, where n > 3. This paper presents
therefore a discrete regular structure called hyperlattice used for defining n-dimensional raster
geometry. Discrete curves are then defined on hyperlattices. A general definition of rasterization
onto hyperlattices is then given, and algorithms for rasterizing generic curves and straight lines
onto n-dimensional lattices are presented.

1 Introduction

The rapid development of scanning and measuring hardware for medical imaging and
for scientific experiments, the introduction of animation techniques for the visualization
of data, and the need for examining and manipulating data of growing complexity and
dimensionality have created new problems regarding sampling, representing and render-
ing data defined in n-dimensional spaces for use in the discrete world representable in
computers.

Rasterization is the operation that allows passing from the human continuous represen-
tation of the world to the discrete digital world of computing devices. While the study of
rasterization in two-dimensional spaces is well advanced [12, 8, 25] and many algorithms
for performing discretization onto the plane are readily available, the study of this op-
eration in n-dimensional spaces, with n > 3, are a rarity and generally limited to the
three-dimensional case [23, 11, 1, 8, 17]

Due to the recent progress in scientific visualization and in medical imaging, there has
been a renewed interest in new methods for the visualization of n-dimensional spaces
[28, 4, 16, 22, 6] and for methods for integer interpolation in higher-dimensional spaces,
[3, 20]. To avoid the development of mutually incompatible theories, a general framework
for the development of the theory for n-dimensional rasterization is needed.

This paper tries to address exactly these needs: it provides a general mathematical
model for multidimensional raster devices, and extends currently available rasterization
schemes to the n-dimensional case. The paper also shows the strict interdependence of the
type of neigbourhood relations chosen in the discrete model space (which influences the
connectivity of a discrete curve) with the rasterization scheme that has to be adopted.
Finally, an algorithm for the rasterization of generic curves, and its application to n-
dimensional straight lines are presented. These algorithms allow to generate curves having
all examined types of connectivity, and are therefore a generalization of readily available
algorithms from the literature [3, 20].



2 Raster I/0 devices

As the support environment for this paper we take the real n-dimensional space R”,
with the common geometric definitions of point, straight line, plane, flat, hyperplane and
polytope [7, 21].

The most common type of output device nowadays connected to a computer is a raster
device. By raster device we understand here a device which can represent a set of discrete
values 71,12,...,1, on a discrete subset L of the n-dimensional real space. In symbols, a
raster device A is a device that can represent a discrete-valued function

D:L—>[1X[2X...[m,

where Iy, Iy, ... I, are discrete (usually finite) subsets of the real numbers. Typical exam-
ples of raster output devices in two-dimensional space are traditional Computer Graphics
square-based output devices, such as raster screens and dot-matrix, inkjet or laser printers,
the domain of which (L) is usually a rectangular subset! of Z? and the codomain of which
is the set {0,1} for black and white raster screens and printers,, the set {0,...,255} for
8 bit greyscale display devices, the set RGB = {0,...,255} x{0,...,255} x{0,...,255}
for 24 bit display devices, or a set of colours ¢y, ...,y ? for colour lookup table (CLUT)
devices. Typical raster input devices are two-dimensional scanners, which usually can
output any of the formats discussed above. Examples of three-dimensional raster in-
put devices are medical imaging devices, such as Magnetic Resonance and Computerized
Tomography devices, which have Z® as a domain, and output one value per position.
Recently, four-dimensional medical input devices have appeared, e.g. Positron Emitting
Tomography scanners, which scan the variations of three-dimensional data in time, and
thus data in four dimensions. On the output device side, the first three-dimensional
output devices are making their appearance, for example the work at the University of
Braunschweig [14]. They are capable of projecting a given colour defined as above onto a
raster point in 3D space.

The use of a unified model for raster devices allows the same notation both for raster
input devices, such as scanners, and for raster output devices, such as printers and raster
screens. In particular, the operation of scanning, i.e. of sampling a continuous signal
through a raster device into a discrete dataset for its elaboration through a computer, looks
similar, in principle, to the operation of rasterizing, i.e. of discretizing the representation
of data through continuous curves, polygons, and all the components of a geometric
model, into a discrete set of data representable on a raster output device. In both cases,
due to the discrete nature of the device, the sampling process can only be done at fixed
frequencies, thus causing a noticeable loss of detail as well as aliasing problems. The
similarities in the two sampling processes end here, though. Scanning devices are limited
by their resolution, and data can be sampled only at fixed frequencies. The resolution
limits of the device cannot be overcome without an increase of the sampling resolution,
i.e. without buying a higher resolution device, or through new devices that place the
sampling sets more efficiently, as has been proposed recently [18, 7, 26]. Raster output
devices, instead, permit a different approach, since the continuous model that has to
be sampled is readily available in the computer. The sampling frequency of the model
can thus be increased at will (super-sampling) and sampling errors can be averaged,
or partially corrected through anti-aliasing techniques before displaying on the physical

!The range of which, of course, depends on the resolution of the device.
?Here each colour ¢; is a triplet of integers in the set of all possible colours representable by the device,
which, in general, is a set of type {0,..., N;} x {0,..., N2} x {0,..., N3}.



device [10]. However, such techniques are in general very expensive, and do not address
the core problems caused by the rasterization process. As many authors have pointed out
[12, 13, 8], there is a real lack of study on the mathematical foundations of rasterization,
and the notation used is either derived from the theory of sampling, and thus is too heavy,
or is too incomplete for productive use.

3 Rasterization in n-dimensional space

In this section we will focus on the introduction of a model for rasterization based on
regular discrete structures called n-dimensional lattices.

The operation of sampling a continuous m-dimensional signal f: R" — R™ to obtain
an m-dimensional discrete signal of a discrete variable D : . — [} x I, x ... [, which
can be output on a raster display device is called discretization or rasterization of the
signal f. A discretization function p therefore associates with a function f which has to
be discretized its discretization D, i.e. p : F — D , where F = {f : R — R™}
and D={D:L — [ x...x I,}. From the above definitions it can be observed that
discretization is, in fact, a particular sampling process in the n-dimensional space that can
be characterized by the fact that also the output set I = I; x I3 x ... 1, is also discrete.

In general, for Computer Graphics purposes, both L and [ are subsets respectively of
R"™ and R, and the discretization is done so that some visually important characteristics
of the function f are preserved. In particular, discretization is performed in such a way
that the embedding of p(f) in F is an “acceptable” approximation of f. The criteria for
the definition of acceptable vary widely, and depend mainly on the function p used.

Some rasterization schemes can be directly derived as the n-dimensional extension of
existing rasterization schemes for two-dimensional rasterizations. Let vg,vy,...,v,_1 be
n linearly independent vectors of R”, and let A = A(vq,...,v,_1) be an n-dimensional
lattice, i.e. the set of all linear combinations with integer coefficients of the vectors v;, or,
in other terms, the points A of R™ such that A = ¢ovo + ...+ ¢,—1V,—1 (where ¢; € Z).
The vectors v; are usually called lattice generators. Consider the Voronoi sets associated
to the lattice points, i.e. the sets of points V) closer to the point A that to any other point
of the lattice A. Fach Voronoi set V) is in a natural correspondence with the lattice point
A. Depending on the mutual orthogonality of the lattice generators, neighbouring Voronoi
sets share a single point, a straight line segment, up to an (n — 1)-dimensional polytope.
Two lattice points A and A are said to be [-neighbours if the closures of the corresponding
Voronoi sets Vy and V\: share an [-dimensional polytope. Two lattice points A and A" are
said to be 5 -neighbours if the closures of the corresponding Voronoi sets V) and V) share
a k-dimensional polytope (where 0 <! < k < (n —1)). In the traditional notation used
for the three-dimensional case (voxel space), for mutually orthogonal lattice generators,
2>-neighbours are 6- (or face-) connected neighbours, 1s-neighbours are 18- (or line-)
connected neighbours, and 0>-neighbours are 26- (or vertex-) connected neighbours.

Arcs can then be introduced on an n-dimensional lattice with the same procedure used
on infinite graphs: given two lattice points A and B, an [>-arc from A to B is a finite
sequence of lattice elements Fy, Py, ..., P, such that V2, P; and P;y; are [>-neighbours and
such that o = A and P, = B [19]. The points A and B are called endpoints of the arc.
Note how this definition corresponds to the definition of the path between two nodes of a
graph. An arc is said to be closed if the two endpoints coincide. An [>-curve is an infinite
arc, i.e. a sequence of lattice points { P, }/=°  such that P; and P4y are [»-neighbours Vi.

Consider now the Voronoi set associated with the origin Vp, and a simply connected
set K, such that K, C Vp. The set K, is called the basic domain of the rasterization
scheme. Let A € A, and let K () be the translated set of K, through the vector A, in



other words, let K,(A\) ={y € R" : y = A+ x,wherex € K,}. The rasterization of a
point and of a set can be defined in the following way:

Definition 3.1 Let v € R". The rasterization Digg (v) of v is defined by the following
relation

DY F(AEA) A (vEK,N)
Digy (v) = (1)

1] otherwise.

Definition 3.2 Let A C R". The rasterization of A is the sel

Digy,(A) = | Digg, (x) . (2)

X€EA

The rasterization function introduced by these definitions is called nearest neighbour ras-
terization. Although it is defined exactly in the same way as two-dimensional rasterization
is, the operation of rasterizing in n-dimensional space is, of course, more complicated, and
requires particular care in the choice of the set K,. If K, = Vo, then the rasterization
function is called cellular rasterization. The major drawback of cellular rasterization is
the fact that in the case of n orthogonal lattice generators, whenever a curve has to be
rasterized, its cellular rasterization in A is a O>-curve. Although this is a desirable feature
for hypervoxel® traversal algorithms, in some cases [2] it is more desirable to compute
[>-curves for rasterization in the n-dimensional lattice, where [ > 0, just as in the two-
dimensional case, where 8-connected curves are usually preferred to 4-connected curves.

As in the two-dimensional case, there is a particular choice of the set K, that generates
(n — 1)-connected curve digitalizations in the case of orthogonal lattice generators. If
the vectors v; are orthogonal, by letting one of the axes coincide with the straight line
containing one generator, we can always lay an orthogonal cartesian coordinate system in
R” such that all the coordinates of the vector v; are zero except the i-th coordinate, v; ;.
Let A; be the hyperplane passing through the origin and perpendicular to the vector v;.
Consider the Voronoi set associated with the origin Vo, and let A, = A, N V4. Consider
now as basic domain of the rasterization scheme the set

n—1
o /
K,=]J Al
=0

The scheme defined in this way computes the intersections of the curve v to be rasterized
with the hyperplanes of the form x; = jv;;, where j is an integer, and then approximates
the resulting points to their nearest lattice point*. The resulting lattice points build
the rasterization of the curve. This last type of rasterization is called grid intersection
rasterization.

Grid intersection rasterization can be extended to non-orthogonal lattices by substitut-
ing the hyperplanes A; with the hyperplanes A; passing through the origin and containing
all vectors v; for all j # 1. In the lattice coordinate system, such hyperplanes have the
form z; = 0, with k integer. To rasterize a curve ~ in this case, its intersections with
the grid of hyperplanes of the form x; = j (in the lattice coordinate system) have to be
computed, and the resulting points are then approximated to the nearest lattice point on
the hyperplane.

3Where a hypervoxel is by definition the set V).
4Such a point is not always unique. However, this ambiguity can be trivially overcome by forcing
uniqueness.



In general, cellular rasterization schemes guarantee that the rasterization of any given
point P exists, since the Voronoi sets associated with a lattice tessellate R, and should
be therefore used to rasterize single points, whereas grid intersection rasterizations are
more convenient whenever a curve has to be rasterized, since they perform intersections
with a set of parallel hyperplanes, the equations of which are easy to handle.

Nearest neighbour rasterization schemes provide a fairly simple mechanism for the defi-
nition of rasterization. However, they are not extensible to take into account the concept
of [>-neighbourhoods. In order to generate the discretization of a set A, such schemes use
replicas of one single (fixed) set, and compute the intersections of the set to be rasterized
with these copies. The result of this procedure is then a connected set of lattice points
that represent the set A on the lattice, and that lies the closest possible to the set to be
rasterized, within the limits imposed by the discrete nature of lattices and by the relation
of neighbourhood involved. With the schemes introduced above, there is one and only
one optimal choice of the resulting rasterization set®.

4 Curve rasterization onto n-dimensional lattices

To extend the operation of rasterization to lattices onto which a generic [>-neighbourhood
is defined, from now on in this paper we restrict ourselves to the definition of curve
rasterization onto n-dimensional lattices, since a definition of rasterization for generic sets
would imply a thorough analysis of the topology of n-dimensional lattices, and this would
be well beyond the scope of this paper. The notation presented above for the definition
of rasterization, although more general, thus, turns out to be too heavy: the operation
of curve rasterization can also be seen as the rasterization of subsets of R"*!. In fact,
a curve is a particular subset of R x R”, namely a continuous function v : R — R”,
and therefore its rasterization must be a curve in a lattice A C R”, i.e. a sequence
S :Z — A such that S(i) and S(i+1) are neighbours. The discrete curve resulting from
the rasterization process will therefore be a connected subset of points of A that lies the
closest possible to the curve to be rasterized.

The keywords for the definition are the words connected and closest. Connectivity is
the characteristic which is most important from an observer’s standpoint: a rasterization
of a curve must be connected. As far as closeness is concerned, an observer is usually
less categorical about it, and depending on the requirements of the system this closest
criterion can be relaxed [9, 15]. For example, in two-dimensional rasterizations, for speed
reasons a polygon inscribed in a curve might be rasterized instead of the curve itself [24].
The rasterization scheme, therefore, must ensure curve connectedness first.

The choice of the closest [>-path to the curve v to be rasterized is, in general, more
complicated than the choice of a closest 0s-path or (n — 1)s-path to v, because 0>- and
(n — 1)>-rasterizations involve only local decisions in the rasterization process, whereas
generic [>-rasterizations have also to take into account conditions for the neighbours of
the current point.

Similarly to grid intersection rasterizations, the starting point for the definition of an
[>-path generating scheme, is calculating the intersection of the continuous curve v with a
grid of lines, so as to partition the rasterization procedure into an (enumerable) sequence
of steps. However here the choice of the next rasterization point has to take into account
the local neighbourhood configurations, which impose additional conditions on the choice

°In fact, all the schemes introduced to date avoid in one way or another the ambiguities derived from
the points on the border of V), which inherently are points shared by more than one K set, by arbitrarily
attributing these points to one and only one K



Figure 1: Intersection of a curve r Figure 2: Grouping l-steps into [>-steps for pro-
with the grid hyperplanes. ducing the rasterisation of a curve r.

of the points of the discrete curve.

Let A(vo,...,vu—1) be the lattice onto which we want to perform rasterization, let
v :10,1] — R™ be the curve to be rasterized, and let A and B be its endpoints. Let the
coordinates of the generator v; be (v;g,...,v;,-1) in the orthogonal coordinate system.
Consider the coordinate system introduced by the lattice generators. In this coordinate
system, the coordinates of the generator v; will all be zero, except the i-th coordinate
which will be 1. In the coordinate system introduced by the lattice generators in R",
consider the hyperplanes of the form 2/ = k. In other words, consider the hyperplanes
Hyy, whose equation in the orthogonal coordinate system is

2 2
VioTot .. F V1T = k(”i,o +...+ Ui,n—l) >

where k € Z. The hyperplanes Hjy, form a grid over R®, which will be intersected with
the curve to be rasterized to obtain the lattice rasterization points. Note that, in the case
of rectangular lattices, the grid defined here coincides with the grid which derives from
grid intersection rasterization.

Let A4 and Ap respectively be the grid point digitalizations of A and B.° and consider
the intersections of v with the grid of the hyperplanes Hyy,. For each point P, intesection
between v and the hyperplane Hy,v,, let P’ be its nearest lattice point on the hyperplane
Hy,v,. The paramenter ¢ induces an ordering on the points of the curve v, and thus also
on the intersections of v with the grid. Let S = {F,..., P,} be the ordered sequence
of intersections of v with the hyperplanes Hyy,. This sequence represents the order in
which the hyperplanes Hy,, will be intersected by the curve v for growing values of £, as
illustrated in Figure 1.

The sequence S induces also an ordering on the sequence S’ of the P/, i.e. of the nearest
neighbours defined above. Note that the P/ are lattice points, and will be used to build
the [>-path, rasterization of 4. From this sequence, it is easy to extract an [>-connected
path: up to n — [ steps along the directions of the generators can be grouped into a single
diagonal step, provided that a single (“combined”) step is not composed of more than
one step in each direction.

To illustrate this a little, imagine an observer travelling in the n-dimensional space
from A to B along the curve 4. Such an observer would “bump” into the hyperplanes

5From a logical point of view, if we denote the rasterization of v with I', both A4 and Ap should
belong to I'. However, in order to maintain consistency, in traditional rasterization algorithms this is not
always the case, and here we shall follow the same approach.



of the grid at the points P; in a certain order, which defines a sequence S of points on
the grid hyperplanes. Fach time the observer encounters a hyperplane in a point P, he
scrupulously takes note of the point encountered, looks for the closest lattice point to it,
say P’, and takes note of it too. Once the observer arrives at B, he has built two sequences
of points S and 5’, respectively containing the points P and P’, from which it is possible
to build a shortest [>-path from A to B. Let us call this path I'. In order to do this, it
suffices to note that each point P’ in S’ represents a step in the direction d perpendicular
to the grid hyperplane containing P’. The sequence S’ therefore defines a sequence D of
single steps in the directions of the axes which builds a 1-path from A to B. From the
sequence [) we can obtain an /> path A by simply grouping together whenever possible
in each hop up to n — [ different steps in the directions of the generators.

Let D = {d,,,...,d;,}. Here, naturally, the elements of D are directions parallel
to the lattice generators. Let 15, be the minimum index of the sequence D that has
appeared before in D. Let kg = Min(l, ho). In the first hop, the first kg < [ steps of
D in different directions of the single generators can be grouped in a single hop. Let
us denote this fact by rewriting D and enclosing grouped steps in brackets. We have
D ={(d odiy )y di yy- -5 diy, b Consider now the subsequence extracted from D
starting from 14,41, i.e. the subsequence Dy, = {dik0+1v ..., d; } and, again, let ¢j,, be the
minimum index of the sequence that has appeared before in Dy,. Let ky = Min(l, hy). In
the second hop of the /> path, the steps from d to d;, can be grouped together in a
single step. We can thus rewrite D as

D= {(digy -y diy )y (i srse sy )y iy, rse s i}

This can be repeated until all the directions of D are grouped in hops. The result of this

i - -

ko +1

procedure is the grouping of the directions in D into /> hops which define an /5> path from
A to B. Such a path represents the rasterization of the curve ~.

Figure 2 illustrates this in an example. The curve ¢ € R* has to be rasterized onto
an orthogonal 1s-connected” lattice A from the point A to the point B. Since we are
working in 4-dimensional space, there will be four lattice generators, and therefore four
parallel sheafs of hyperplanes (perpendicular to the lattice generators) which will be used
to compute the rasterization of g. In the figure, the projection of g onto a convenient plane
is shown. The diagonal segments intersecting the curve represent the intersections of the
curve with the sheafs of hyperplanes of equation x; = k (¢ = 0,...,3), where parallel
hyperplanes have been represented by parallel segments. The intersections found define
a l-connected path from A to B, the steps of which build the sequence of directions

D = {d07d17d07d27d17d07d17d07d17d37d07d27d17d07d17d07d07d1} .
The directions of D are grouped to form a 1> path in the following way:
D= {(d()? dl)? (d07 d27 dl)v (d07 dl)v (d07 d17 d3)7 (d07 d27 dl)v (d07 d1)7 (d0)7 (d07 dl)} .

Note that here one step in the direction dy cannot be grouped together with any other
step, due to the fact that dy occurs twice in a row. Note also that the chosen path is not
the only 3>-path possible: for example also the path

D= {(d07d1)7(d07d27d1)7(d07d1)7(d07d17d3)7 (d07d27d1)7(d07d1)7(d0)7(d07d1)} .

is an [>-connected path from A to B, and represents g accurately. This non-uniqueness
is due to the nature of /> paths. However, all possible paths derived from D by grouping

"Note that orthogonality is required here to allow I>-connectedness.



together up to 3 different directions will be close enough to the original curve to represent
it “well”. A more precise definition of rasterization which would compute a unique path
would have to compromise greatly in speed, and is thus not desirable, since all possible
legal groupings within D would have to be analyzed. The algorithm defined above follows
the curve from A to B and groups directions as soon as the occasion arises.

To recapitulate, several rasterization techniques have been introduced. The use of each
of them depends on the object to be rasterized, on the lattice onto which rasterization is to
be performed and on the neighbourhood relation defined onto it. If, as in most cases, there
is no requirement for /> connectedness, then it is much easier to use nearest neighbour
rasterizations. Cellular rasterization is preferred if single points or generic objects have to
be rasterized, while curves are preferably rasterized through grid intersection rasterization
schemes. However, there are cases, for example when conditions on the smoothness of
the rasterized object are imposed, or in interconnection network routing, where the [>-
connectedness of the rasterization is required. In these cases the last method presented is
capable of finding an [>-connected rasterization of the curve. In the next section, we will
define an algorithm that rasterizes straight line segments.

5 Straight line rasterization

Although there is plenty of literature on straight line rasterization onto square planar
lattices [5], only recently has line rasterization onto hexagonal lattices been introduced
[25, 27]. In three-dimensional space, straight line drawing algorithms have been developed
in the context of ray-tracing for following a ray through the scene to be rendered [1]. Lately
there has been growing interest on line segment rasterization algorithms in n-dimensional
space. Badouel and Wiithrich [2] presented a face connected algorithm which rasterized
straight line segments onto n-dimensional hypercubes. In an independent work, Slater
[20] published two algorithms that generated both the (n — 1)>-connected and the 05-
connected rasterization of straight line segments onto a hyperrectangular lattice. The
purpose of this section is to illustrate the definition of rasterization presented in the last
chapter through the development of an algorithm for the rasterization of a straight line
onto an [>-connected hypercubic lattice. We shall start by introducing one such algorithm
for the hypercubic unit lattice A, i.e. such that its generators are all of unit length and
mutually orthogonal.

Let P = (po, p1y---yPu—1) and @ = (go, G1, - - - , gn—1) be two distinct hyperlattice points.
Let n; = ¢; — p;. The straight line from P to @ is the set of points X = (2, x1,...,2p-1)
such that @; = (¢; — pi)t + pi, where t € [0,1]. As seen in the previous section, the
parameter ¢ introduces an ordering on the points of the straight line. For each dimension
1, consider the straight line points P, ;, obtained for { = %, where h; = 1,...,n;, and order
these points in increasing order of their corresponding pérameter value. The segment P(Q)
results subdivided into n; equal parts for each dimension 7, and the points obtained on
the straight line segment are ordered by increasing values of the parameter ¢ to form a
sequence A = {Ay,..., A, } which in turn is used to build the />-connected path as in the
previous section.

The algorithm outlined above can be efficiently implemented to perform integer calcu-
lations only, and to generate one hop for each of its steps. To do this, for each dimension
i, an integer counter d; is allocated (¢ = 0,...,n — 1). The values of n;, together with
the least common multiple L = LCM({n;}) are then computed. Let n! = £, and let
nt = 2n?. The n’s represent the increment that will be used for the counter d; throughout
the whole algorithm. The counters d; are initialized to n?. At each step, the set D of the
[ smallest counter cells d; is considered. Let d;, be the smallest counter cell, and let ngo be



Initialization: ENDY
Vi, n; ¢ g; — p: ENDY ENDIF
L « LCM;(n;) ELSE
Vi n! « n% n, « 2-n! ENDV. Let m be the minimum d;, + n; ,
Translation: and let !’ be the maximum 7
Vi, d; + n! ENDY such that d;, < m:
Loop: Vi <,
WHILE (Vl, d; < QL) dik — dik + n;k
Consider the [ minimum d;, alig] — alig] +1
and order them in the sequence ENDY
diy <...<d;_ ENDELSE
IF(d;), + ni, > d;y), Yk <) Discard directions such that d; > 2L
Vi <, Write X = ([0],...,2[n —1])
di, + diy +nl, ENDWHILE

Figure 3: An ny-connected straight line rasterization algorithm

the increment corresponding to it. First n} is added to d;,. Then the set D is reordered
by increasing values of the counter cells. Again, the corresponding increment n; is added
to the smallest d;, until either all [ elements of D have been incremented, or the smallest
d; is a counter cell that has already been incremented in the current step. Once one of
these two conditions is fulfilled, the directions corresponding to the elements of D that
have been incremented in the step are grouped together in one single hop. The steps are
repeated until all counters d; have reached the value of 2L 4+ n”, which is equivalent to the
condition Vi,d; > 2L. To avoid missing the endpoint (), whenever a counter d; is greater
than or equal to 2L, it cannot contribute any more to the hops, and it is therefore removed
from the list of the incrementable d; counters. This condition is unnecessary if there is
the need to draw an “infinite” line. Whenever two counter cells d; have equal values in a
certain step, an arbitrary choice can be made: here the direction corresponding the lowest
dimension (i.e. corresponding to the smallest 7) is considered first (as if it was smaller),
unless it has already been incremented in the current step in which case it is considered
to be bigger than all non-incremented counter cells equal to it.

Note that the initialization of the counters d; is important, since otherwise in the first
step all d; would be equal to zero, and this would imply an arbitrary choice of the directions
of the first step.

The algorithm translates into the pseudocode listed in Figure 3. It is a little slower than
traditional algorithms developed for the 0- and (n — 1)-connected cases, which are to be
preferred whenever possible. This is due to the inherent complexity of />-connectedness.

The algorithm presented above can be extended trivially to a generic hypercubic lattice
A, by using an affine transform for transforming the points of the generic hypercubic
lattice into points of a unitary hypercubic lattice A, and transforming back the resulting
rasterization through the inverse affine transform. More generally, the algorithm above
can be trivially extended to hyperrectangular lattices. In fact, given a hyperrectangular
lattice A, and a hypercubic lattice A., there is an affine transformation A that converts the
generators of A, into the generators of A.. To compute a hyperrectangular />-connected
straight path between two points P and () in A,, it suffices again to compute an /-
connected straight path from A(P) to A(Q), and to transform the resulting rasterization
points through the inverse of A.



Finally, a small remark has to be made on the generation of the rasterization of a straight
line segment from P to () onto a non-orthogonal lattice A. In this case also, there exists a
simple affine transformation A mapping the generators of A into the generators of A,. As
for all affine transformations, this transformation guarantees that lattice points will be
mapped into lattice points, and that both grid hyperplanes and segment midpoints will
be preserved. To find the 1-connected rasterization of a segment onto a generic lattice A,
the 1-connected rasterization of the segment from A(P) to A(Q) can be computed and
transformed back through the inverse of A. The resulting rasterization points coincide
with the points that would have been reached by applying grid intersection rasterization
directly on the grid hyperplanes defined previously.

6 Conclusions

This paper has presented a first definition of rasterization in n-dimensional spaces using
hyperlattices as a model for n-dimensional raster output devices. The model used does not
require the lattice generators to be orthogonal, allowing thus non-orthogonal rasterization
and sampling operations in higher order spaces. Rasterization schemes have been linked
to the degree of connectivity required by the rasterized object in the discrete space. Such
links will permit in future some control of the smoothness of the generated curve before
the rasterization process begins. Both a generic algorithm for the rasterization of a curve,
and an algorithm for the generation of a straight line segment have been presented: each
of these algorithms generates the degree of smoothness required in the output.

The immediate application of this work in Computer Graphics lies in the visualization
of n-dimensional datasets from scientific and experimental data, as well as in the develop-
ment of the theory necessary for the display and representation of n-dimensional virtual
worlds. In Image Processing the main contribution of this study lies in the allowed non-
orthogonality of the data acquisition process through the scanning device. For example,
the theory developed allows scanning devices, such as NMR and PET (Positron-Emission
Tomography) devices, to acquire data along non-orthogonal directions, and to display
such data in computer visualization systems, thus granting more flexibility to the data
analysis.

The definition of a model for n-dimensional raster output devices and for the operation
of rasterization allows the application of rasterization to new fields, whenever continuous
objects have to be represented through discrete ones. To be fully usable, however, the
theory presented in this paper has to be refined: although curve rasterization is defined
here, to the author’s knowledge there are no studies available on surface and hypersurface
rasterization in n-dimensional space. There are not even algorithms for the rasterization
of hyperplanes in n-dimensional spaces. The link between lattice connectivity and the
smoothness of rasterized objects is still on an intuitive level, and deserves further study.

As the power of computing devices increases, so does the quest for visualizing pro-
gressively more complex spaces. Advances can be made only if the concepts of discrete
n-dimensional geometry are clear. It is thus reasonable to assume that in the near future
many of the unresolved issues mentioned above will be tackled.
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