Straight Lines: a step by step method

CHALOPIN Frangois-Pierre
BOURDIN Jean-Jacques
Département Informatique
Université Paris 8
2, rue de la Liberté
93526 Saint-Denis Cedex 2
[jj-chalopin] @ai.univ-paris8.fr

Abstract

Drawing straight lines is a major field in computer graphics. Most methods are improvements
of the Discrete Differential Analysis method first presented by Bresenham [1]. Combinatory
analysis method, as presented by Castle [2] or Dulucq [3] or Berstel [4] are not commonly
used: they imply multiple string copies and are therefore slow. A new approach, combining
combinatory analysis and DDA is presented. The DDA does not apply to each point but to a
step computed by combinatory method. This algorithm is tested and proves to be more than
four times faster than Bresenham’s algorithm.

Key Words : Algorithms, Computer Graphics, incremental curve generation, line generators.

1. Introduction

To draw a line is one of the most used function of any graphics displays. It is done by
drawing a path between two extremities with maximum linearity. The points of the path have
to be the discrete points closest to the ones of the real line. The Bresenham’s algorithm [1] is
often used. Two reasons concurs to this: this algorithm is fast and is easy to program. Some
other approaches of producing the linear path exist [4, 3, 5, 2] but they imply string copies
and, therefore, are not efficiently implemented. When improved algorithms are presented,
they are based on the DDA method [6, 7, 8]. Our work has been to combine these two major
approaches to produce a new algorithm. The benchmarks prove its improvements significant.

2. Properties of the Straight line
Let p (xp, yp) and q (Xq, yq) be the extremities of the line. We want to produce the linear
path [p, q]. This path will be mentioned as the line from p to q. The continuous line will
refer to the line segment of the real plane. The line is an exact translation of the line from
(0, 0) to (u, v) where:
u=Xxq— Xp
V = y i v-
The values of u and v give the slope of the line. Hence we will refer to the line of slope v/u
rather than to the extreme points of the segment. We will limit our studies on the case where
u>v=0. It has been noted [9] that other cases are simple symmetries of this one.
Here there is only one yx for each x of the segment.
Let the trace word of the line v/u be the series of letters cx where
Cx =¥x+1 — ¥x
The trace words have been studied [5, 3, 10, 4, 11, 12]. Some important properties have been
demonstrated there and will be used hereafter. First of all, for each line, there are three
different way of computing the approximation of the continuous segment:
* Considering the best approximation as in [1]
« Considering the integer part of the real ordinate (the greater minor integer).
* Considering the upper integer (the littler major integer). °

41

00 01 0 001 OO0 1
Figure 1 : Three lines for slope 3/11

Let w, w’ and w” be the three respective trace words. These words are combined. For
example, the three words of the line 3/11 are

w = 01000100010
w’ = 00010001001
w’ = 10010001000
Let n=01, and 1i=10 the reverse of n, one can see that:
wn = nw
Aw = w’'i

A left factor n of the trace word w exists in every case. Let 1 be the number of letters of
the left factor n, Berstel [4] proves that 1 respects
v.l+ [u2]=,0
Here 1=2. This property permits the use of any of the three trace words. A simple
translation will produce the best approximation from each of the two other words.
Therefore, in our works we focused on the word w’. It is the word our algorithm
produces in the first place. The word w can be deduced from it.

3. Lines drawing algorithms

We present now two main algorithms to perform the drawing of a line. The first one [1]
is the base of a whole field in computer graphics, the incremental, DDA, algorithms. The
other one has not been presented in this form before, but is a rewriting of [3] or [2].

3.1. Bresenham’s algorithm

. V.X
The error done when one choose yx as approximation of the value 5 can not be greater

than % . Moreover, the measure of the gap between the real value and the approximation is
given by:

gap (X, yx)J=u.yx — v.X
Let delta be the sum

delta (x, yx) = gap (X, yx) + gap (X, yx+1)
The knowledge of the sign of delta is enough to know which one of yx+1 or yx is the best
approximation of the real value. In C language algorithm 1 presents Bresenham’s .

42

3.2. Recursive algorithm

Trace words are recurrences of 0 and 1 that form steps. For example if u>2.v the number
of 0 (u—v) is more important than the number of 1 (v). Therefore the trace word is a long
string of O separated by some 1. Let a step be a set of subsequent 0. As the word describes a
straight line, the steps are almost of the same length. As each 1 is a separator of two different

L — Y That is, if this

steps, there are v different steps. The average length of a step is then :

value is not an integer, some steps are [%] wide, and others are [%] — 1 wide. The second
kind of these steps are more oblique and the long kind are more horizontal. The distribution

v long

of the two kinds of steps is the most equitable. Then there are (u—v) — v i v

(horizontal) steps. The same method may be used to divide up the two kinds of steps. The
method is therefore recursive. Inthe algorithm 2 the trace word of slope v/u is named s (u, v).

void Bresenham (int xp, yp, X4, y9q)

{
int x, y, delta, incobl, inchor;
delta = 2* (yg - yp) - (Xg - Xp);
incobl = 2* (yg - yp) - 2* (xg - Xp);
inchor = 2* (yq - yp);
Y = Yb:
for (x=xp; x<=xq; X++)

plot (x, Y);
if (delta > 0)

yt++;
delta
}

else

delta + incobl;

delta = delta + inchor;

Al gorithm 1 : Bresenham’s

Ifv==0 then s(u, v) =0u
Ifu==v then s(u,v) =18
Ifv== then s(u, v) =0u1 1
If [%] <=1 then s(u, v) = Fm (s(p, Q)), where
p=u— v (i.e. umod v)
q=vmod (u—v)
m = v div (u—v) (Rq m>=1)
If [-3—] >1 then s(u, v) = G (s(p, q)), where
=v
q=Vv — (umod v)
m = (u — v) div v (Rq m>=1)

0—>01m
Where Fm: {1 —>0 1m+l

[0 —>0m+]]
m-11—>0mj
Algorithm 2 : recursive method

and G

43

3.3. More remarks
If Bresenham’s algorithm is the most used of these algorithms, it is first because it
computes the best approximation of the line and second because it is the quickest. Even if
there are a lot of improvements [6, 7, 8] the gain in speed is not realised in practice because of
the inevitable pixel write operations. Otherwise algorithms as algorithm 2 are slowed down
by the many string copies. We develop now a new method that combines the improvements
of both methods by using their main characteristics.

4. Step DDA method

We are now to combine these two different approaches and implement a new method.
The principle of our work is to consider the steps to be distributed as the letters of a straight
line. The recursive function is therefore called only once. The algorithm is achieve with the
use of the DDA algorithm. The DDA algorithm is rebuild to accept the steps as arguments.

The first part of our algorithm is done by the function line that is mainly a switch. For
example, the line 3/11 is obtained by the used of the function line (11, 3). This function
computes the calling to the function drawing. here the call is drawing (3, 1, 0001, 001). The
word 00010001001 is drawn by the putrow functions.

For example the trace word of line 31/97 is:

HHHHHHHOHHHHHHHOHHHHHHOHHHHHHHO
This is obtained by the call of the function drawing (31, 4, 0001, 001)

delta [—4123 [19 |15 (11 |7 [3 [|—1]26 [22 |18 |14 |i0 |6 |2
Stetp |h Jo fo Jo fo Jo Jo |h o Jo |o Jo [o Jo J|o
delta [—2125 21 |17 [13 |9 |5 |1 |—3[24 |20 |16 [12 [8 [4 |O
Step |h Jo Jo Jo Jo Jo Jo Jo [h Jo Jo Jo Jo Jo Jo Jo

As soon as the putrow primitive is hardware implemented, for example on SGI Elan, the
algorithm proves a good improvement in speed. When Bresenham’s algorithm computes and
draw the line pixel per pixel with a putpixel primitive, when Rokne’s algorithm [7] computes
the pixels two by two, our algorithm uses the putrow primitive and draw the line step by step.

4 Horizontal Steps

27 Oblique Steps

Figure 2: first part of the 31/97 line

44

line (u, v) {
fu>2*v&&v>0){

drawing (u, v, H, O) { m=u—v)/v;
incobl=v — u; wW=u%v;
inchor=v ; H=om+17-
delta =v—u; _ .
while (u — —) { dO_le’ H.O) -
if (delta 2 0) {) rawing (v,v — w, H, O) ;
5:{1-;"::(?3;&1; elsif (u>0&&v>0){

m=v/(u—v);
w=v%u—v),

else {
putrow (H) ; H=01m,
delta += inchor ; O =01m+1;
} drawing (v,v — w, H, O) ;
} , }
}
algorithm 4: drawing function Algorithm 3: line function

The complexity of the algorithm is not o(u) but o(v). The minor width of a step is 2 (when
u = 2.v) and then the speed up is only of a factor 2. In other cases, the speed up increases.

5. Benchmarks

We performed two series of benchmarks. The first one is done with drawing of the lines,
without a putrow primitive. The drawing is achieved for 10 000 lines of random lines in the
range given. Even in that case, the new algorithm is proved to be an improvement of previous
algorithms.

Bresenham’s |Castle & recursive New Algorithm
Pitterway’s algorithm

i(10-50) 1314 1651 1991 905 |
[(50-100) 2417 2945 3125 1539
[(100-150) 3457 4469 4633 2212
[(150-200) 4957 5665 6157 2821
[(200-250) 6051 7210 7422 3481
[(250-300) 7159 8776 8965 4299
[(300-350) 8485 9938 10002 5207
[(350-400) 10125 11479 11785 5608
[(400-450) 11077 12855 13294 6415
[(450-500) 12461 14355 14543 7002

The second benchmark was done by testing only the two fastest algorithms above:
Bresenham’s and ours. For this benchmark the putrow primitive is considered and the results
are even better. For each value u in the range, every value v is used. For the longest lines, the
drawing was not possible as soon as the length of the line is greater than the screen definition.
This does not change the ratio of time.

Sizes Bresenham’s New Algorithm

1-200 221 55
200-400 1552 366
400-600 4218 972
600-800 8218 1875
800-1000 13555 3074
1000-1200 20223 4574
1200-1400 28228 6367
1400-1600 37569 8456
1600-1800 47244 10844
1800-2000 60255 13531
2000-2200 73590 16511
2200-2400 88269 19786
2400-2600 104270 23355
2600-2800 121638 27231
2800-3000 140319 31398

These results have been obtained on a Silicon Graphics International Indigo Elan. Other
tests are in progress on other computer graphics hardware. But the ratio of speed up seems to
be a little greater than 4 and remains constant.

6. Conclusion

A new algorithm for the drawing of straight lines have been presented. It is proved to be
4 times faster than previous algorithms. It seems to be very important to implement such an
algorithm on hardware for any computer graphics device. Our further works consist in the
implementation of this method to perform directly antialiased lines. We shall also try to mix
the algorithm of Rokne [6] to this work. It could be another improvement.

References

[1] J.E. Bresenham, Algorithm for computer control of a digital plotter, IBM System Journal,
Vol 4, n°1 p. 25-30, 1965.

[2] C.M.A. Castel, M.L.V. Pitteway, An Application of Euclid’s Algorithm to Drawing
Straight Lines, in Fundamental Algorithms in Computer Graphics, Springer-Verlag 1985, pp.
135-139.

[3]1 S. Dulucq, Cours de DEA Informatique, Université de Bordeaux, 1987.

[4] J. Berstel, Tracé de droites, fractions continues et morphismes itérés, M. Lothaire, “Mots”,
Mélanges offerts a M.-P. Schiitzenberger, Hermes 1990.

[5] M.L.V. Pitteway, The relationship between Euclid’s algorithm and run-length encoding,
in Fundamental Algorithms in Computer Graphics, Springer-Verlag 1985, pp. 105-112.

[6] P.L. Gardner, Modfications of Bresenham’s algorithm for displays, IBM Tech. Disclosure
Bull. 18, 1595-1596, 1975.

[71 J. G. Rokne, B. Wyvill, Xiaolin Wu, Fast Line Scan-Conversion, ACM Transactions on
Graphics, Vol 9, N°4, October 1990.

[8] E. Angel, D. Morrison, Short Note: Speeding Up Bresenham’s Algorithm, IEEE CG&A,
Vol. 11, November 1991.

[9] J.D. Foley, A. Van Dam, S. Feiner, J. Hughes, Computer Graphics, Principles and
Practices, second edition, Addison Wesley.

[10] S. Dulucq, D. Goyou-Beauchamps, Sur les facteurs des suites de Sturm, Theoretical
Computer Science 71 (1990) 381-400.

[11] J.-P. Reveilles, Droites discetes et fractions continues, ULP Département d’ Informatique,
R90/01, Janvier 1990.

[12] A. Troesch, Interprétation géométrique de I’algorithme d’Euclide et reconnaissance de
segments, Theretical Computer Science 115 (1993) 291-319.

" 46

