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�

Abstract
�

 — We present � several terms 
�

and definitions related � to 
�

the 
�

local 
�

analysis of dynamical
systems.  Multiple 

�
terms 

�
for 

�
one and the 

�
same thing 

�
that 

�
were found 

�
in 

�
literature 

�
are put � to-

�

gether to 
�

provide � a “dictionary” of terms 
�

and to 
�

avoid potential � confusion due to 
�

misleading
definitions.  Additionally, some important concepts which are necessary to 

�
analyze a dynamical

system are briefly 
	

discussed and a new procedure � to 
�

locally analyze a dynamical system’s be-
	

havior 



near � trajectory 
�

points � is 
�

proposed. �  The 
�

paper � should give computer graphics specialists
working on the 

�
visualization  of analytically defined dynamical systems a set of mathematically�

tools for a thorough investigation of the local behavior of such system.
�

Keywords:  dynamical systems, local analysis, visualization, flow field analysis.

1. Introduction

Dynamical systems are found in various  fields of research (e.g., flow field analysis), economy
(e.g., stock market � models), � physics, � medicine, � and others [ArPl90].  They 

�
are given by 

	
an

analytical specification or as sampled data.  There 
�

are many � possible � ways to 
�

analyze such a
system, e.g., analyzing its long term 

�
behavior. 

	
 An important branch 

	
of the 

�
analysis of dynami-

cal systems is local analysis� .  For certain applications, e.g., the 
�

prediction � of a system’s behav-
	

ior, it is crucial to know, how initially close states will evolve with respect to 
�

each other.  Flow
field 

�
analysts, for 

�
example, are often interested 

�
in 

�
vortices,  that 

�
may � be 

	
detected by 

	
local

�

analysis of the 
�

underlying � dynamical system.  We 
�

therefore 
�

concentrate on the 
�

local 
�

analysis of
dynamical systems throughout this paper.

Scientists that 
�

are interested in dynamical systems (and the 
�

local analysis of these 
�

systems)
are confronted with a lot 

�
of terms, 

�
formulas, 

�
and definitions.  Non-mathematicians 

�
get easily

confused by 
	

studying some of the 
�

relevant � literature 
�

in 
�

the 
�

beginning. 
	

 Differing 
�

terms 
�

for 
�

the
�

same object do not � help 



to 
�

clear up � the 
�

situation as well as subtle differences in 
�

the 
�

interpreta-
�

tion 
�

of mathematical symbols do not simplify the 
�

understanding. �  This was one of the 
�

reasons
to compile relevant terms that occur often in literature and to assemble the 

�
different definitions.

�

For 
�

example, the 
�

curvature of a 3D curve can either be 
	

calculated from 
�

the 
�

Frenét 
�

for
�

mulas�

(see section 3) or by analysing the Jacobian matrix of the dynamical system (see section 5).

On the other hand it is interesting to see how some (local) attributes of a dynamical system
can be 

	
retrieved by 

	
rather different approaches.  This seems to 

�
be 

	
especially useful � when some

of the 
�

straight-forward techniques 
�

are not possible � due to 
�

incomplete or insufficient
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specifications.  One example is the 
�

analysis of dynamical systems that 
�

are given as sampled
data which do not allow the use of straight-forward analytical approaches in most cases.

Before 
	

we start with terms 
�

and definitions relevant 
 for 
�

local 
�

analysis of dynamical systems
we list 

�
some high-level 


classifications of dynamical systems (see section 2).  Thereafter 

�
we

span an arc from differential geometry aspects when analysing trajectories 
�

of dynamical sys-
tems 
�

to 
�

the 
�

analysis of linear dynamical systems and its interpretation.  In this 
�

part � of the 
�

paper�

(see sections 
�

3, 4, 
�

and 5) we present � well known 
�

concepts but 
�

concentrate to 
�

give a unifying�

view of various terms and � definitions, which are sometimes used � ambiguously and interchange-
�

able in literature.  Then we discuss dynamical system analysis near special subsets of the 
�

topo-
�

logy of behavior to end up with a new approach to locally analyze points on trajectories.

2. Classifications of Dynamical Systems

Dynamical 
�

systems are mainly � represented 
 by 
�

a state that 
�

evolves in 
�

time. 
�

 Input 
�

as well as the
�

current state of a dynamical system determine the 
�

evolution of the 
�

system.  Typically 
�

an output
is generated from the 

�
state of the 

�
system [Rina95].  See figure 1 for an illustration of this

�

principle.�

�������� !� "# %$& %')( *&�+ ,���� .-

Figure 1:  Specification of a dynamical system.

This is the 
�

general definition of a dynamical system, where many different systems fit into the
�

scheme as illustrated in figure 1.  For investigating dynamical systems it is necessary to 
�

specify
some characteristics that 

�
provide � a subdivision with special classes of dynamical systems.

Specific methods � are available for 
�

some of these 
�

classes, thus 
�

such a classification can help 


to
�

simplify the analysis.

An important characteristic of a dynamical system is whether it is continuous or discrete
/

.
Continuous systems (often called flow

0
s) are given by 

�
differential equations (e.g., 1x2 A

3
x2= ⋅ )

whereas discrete dynamical systems (often called maps4 ) are specified by 
�

difference equations
(e.g., x2 A

3
x2 x2 x2 A

3
I
5

x2n6 n6 n6 n6 n6+7 +7= ⋅ ⇔ − = − ⋅1 1 ( ) ) [Tson92].

Autonomous
3

 systems are characterized by 
�

the 
�

fact 
�

that 
�

input 
�

and output are omitted from
�

the definition [Rina95].  Both examples mentioned above present autonomous systems.
�

An important criterion for the 
�

analysis of a dynamical system is whether it is time-
dependent
/

 or not [Lane93] [Lane94].  For time-dependent 
�

dynamical systems the 
�

function that
�

specifies 8x2  (continuous case) or x2 n6 +1 (discrete case) depends on the 
�

time 
�

itself whereas for
time-independent 
�

systems this 
�

function does not change over time. 
�

 Both examples above
specify a time-independent system, if A  is assumed to be constant over time.
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When 
�

a dynamical system is to 
	

be 



analysed the 
	

fact whether it is linear or not is very � impor-
tant. 
	

 Linear 
�

dynamical systems are simple to 
	

analyse as opposed to 
	

non-linear  systems, which
typically 
	

do have 
�

intricate 
�

dynamical behavior 



[Tson92].  Often linearization is 
�

used � to 
	

get
insights into these complex non-linear dynamical systems.
�

Using 
�

linearization, another classification of dynamical systems is crucial for separating
simple cases from more complex ones.  Hyperbolic dynamical systems can be 



analysed by 



lin-

earization efficiently, whereas non-hyperbolic�  systems may � cause major � troubles 
	

in 
�

combina-
tion 
	

with linearization 
�

[AbSh92] [GlLe91].  Hyperbolic 
�

systems are structurally stable, i.e.,
�

they 
	

are the 
	

general case.  Non-hyperbolic 
�

systems are difficult to 
	

investigate, occur rarely and
can be 



considered the 

	
transitional 
	

phase � between 



two 
	

hyperbolic systems of different nature
	

[Rina95].

3. Differential Geometry and Terms

The 
�

solution of a continuous dynamical system is 
�

a trajectory T tx� ( ) as defined by 



equation (1)
[KeMa92] [PoWi94].  Any 

�
point � on the 

	
trajectory 
	

is 
�

given by 



its 
�

parameter�  t  and an initial
�

state x�  of the 
	

system.  Parameter
�

 t  can be 



interpreted 
�

as the 
	

time 
	

passed � since the 
	

system
evolved from 

�
x� .  Note, 

�
that 
	

(1) is 
�

a recursive � definition that 
	

cannot be 



expressed explicitly in
�

most cases.

Τ Τx� x�
t
�

t x v u du
!

( ) ( ( ))= +
"

0
# (1)

Differential 
$

geometry includes 
�

the 
	

analysis of curves and surfaces in 
�

higher 
�

dimensions.  The
�

construction of a local 
�

coordinate system (Frenét-Frame) helps 
�

to 
	

get insight 
�

into 
�

local 
�

charac-
teristics 
	

of a space curve, e.g., curvature and torsion 
	

[Beac91] [HaMa94].  Local analysis of
trajectories 
	

requires a good working knowledge of various � terms 
	

of differential geometry.
They are shortly discussed in the following.
�

Given a parameterized � curve C t( ) in 
�

three-space 
	

a reparameterization � is 
�

possible � such that
	

the 
	

curve’s new  parameter � s%  is 
�

equal to 
	

the 
	

arc length 
�

of curve C  in 
�

the 
	

parameter � inter-
�

val�  0,s& ' .  In respect to these distinct parameters derivations of curve C  are written differently:
(

C dC
!

dt
!

= , )*)C d
!

C dt
!

= 2
+

2
+
, and ,*,*,C d

!
C dt

!
= 3

-
3
-

(2)
′ =C dC

!
ds
!

, ′′ =C d
!

C ds
!2

.
2
.
, and ′′′ =C d

!
C ds

!3
/

3
/

(3)

By the use of these derivations a local coordinate system (Frenét-Frame) can be built at a curve
point � by 



the 
	

curve’s tangent vector t CC = ′, its 
�

principal 0 normal�  n� C CC = ′′ ′′ , and its
�

binormal b t n�C C C= × .  These three 
	

vectors � span an orthonormal basis 



at a curve point. �  Note,
�

that 
	

n� C  and bC  are ambiguous when the curve is locally equal to a straight line.
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By building 
�

the 
	

Frenét-Frame at a curve point 
 the 
	

curvature κ  and the 
	

torsion
	

 τ  of curve C  at
this point can be derived in a straight-forward way from the orthonormal basis [Beac91]:
	

d
�
ds
�

t

n�
b

t

n�
b

C

C

C

C

C

C


�
��

�
�
�� =

−
−

�
�
��

�
�
� � ⋅
�
�
��

�
�
��0 0

0

0 0

κ
κ τ�

τ�
   ⇒   κ = dt

�
ds
� C , τ� = db

�
ds
� C (4)

Curvature κ  and torsion 
	 τ  of curve C  can be 

�
described in other terms 

	
as well.  For example,

the 
	

curvature of a curve can be 
�

written as 1 r , when r  is 
 

the 
	

radius ! of the 
	

osculating circle
[BrSe80]. As 

"
a third 
	

possibility 
 κ#  can be 
�

derived by 
�

the 
	

following 
$

procedure: 
  Assuming 
" α to

	
be 
�

the 
	

angle enclosed by 
�

the 
	

curve’s tangent 
	

and the 
	

line running through 
	

C s%( )  and some
slightly ahead point 
 on the 

	
curve C s% s%( )+ ∆ , the 

	
curvature κ  can be 

�
calculated as

κ α=
→

lim
∆

∆
s& s%

0
' .

Torsion can be 
�

similarly derived by 
�

a differential quotient.  Assuming β  to 
	

be 
�

the 
	

angle
enclosed by a line through C s%( )  and C s% s%( )+( ∆

)
 and the rectifying plane 
 (spanned by 

�
tC  and bC),

the torsion 
	 τ  can be calculated as τ* β=

→
lim
∆

∆
)

s& s%
0
'  [BrSe80].

4. Dynamical Systems as a Babylon of Terms

This section discusses some of the 
	

often used + terms 
	

in combination with dynamical system
analysis.  Most of terms 

	
will be 

�
well-known to 

	
the 
	

reader, but 
�

often several differing terms 
	

are
used + in 

 
literature 
,

to 
	

denote the 
	

same concept or object.  To 
-

avoid possible 
 confusion about
these many sometimes interchangeable terms a clarifying survey is appropriate.
	

We 
.

start with operator ∇ , which is often used + to 
	

define other important terms 
	

for the
	

analysis of dynamical systems.  It builds up a vector of the partial derivatives of its operand and
is 
 

defined as shown in 
 

equation
	

 (5) [BrSe80].  If 
/

∇ ’s operand f
0

x1( ) is 
 

a scalar function, 
$

then
	

∇f
0

x1( ) is called the gradient2  of f
0

 [BrSe80].  If ∇ ’s operand v x1( ) is 
 

a vector 3 function, 
$

then 
	 ∇v

is the 
 

Jacobian
4

 matrix J
4

v x1= ∂ ∂  of v x1( ) [LeWi93].

∇ =
567 89;:

∂
∂

∂
∂x1 x11 2 <

Τ

, grad ( ) ( )f
0

x1 f
0

x1= ∇ , J
4

v x1 v x1= ∇ =( ) ∂ ∂ (5)

An 
"

often used + (scalar) term 
	

is 
 

the 
	

divergence
�

 of a flow 
$

div ( )v x1 .  It 
/

can be 
�

written as ∇ ⋅v x1( )
or as the trace Tr  of v ’s Jacobian ∇v  [BrSe80]:

div ( ) ( ) ( )
,

v x1 v x1 Tr v v x1
i i

i

= ∇⋅ = ∇ = ∑ ∂ ∂
= >

(6)

The divergence basically 
�

describes the 
	

local amount of outgoing or incoming flow at a specific
location of the 

	
dynamical system.  It is 0, if the 

	
amount of incoming flow is equal to 

	
the
	

amount of the outgoing flow.
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�

Another important term 
�

for the 
�

local analysis of dynamical systems is the 
�

rotation vector 	 of a
flow: 



rot� ( )v x�  [ScVo91] [PaWa94].  This attribute of a flow 



is 


often named � vorticity in


stead of

rotation � and abbreviated by 
�

ω  [Hans93].  As 
�

a third 
�

term 
�

sometimes curl is 


used � in


stead of
rotation [Hans93].  The vorticity/rotation/curl of a flow is defined as follows:�

ω = = = ∇ ×rot� ( ) curl ( ) ( )v x� v x� v x� (7)

Vector 
�

rot� ( )v x�  describes the rotation axis and its length the rotation velocity, which is given at
state x� .  Note, that some references define the vorticity slightly different as ω = ⋅( ) rot� ( )1 2 v x� .

A scalar term 
�

related to 
�

the 
�

vorticity 	 as defined above is the 
�

stream � vorticity Ω  [Hans93]
[ScVo91].  It 

�
is 


the 

�
cosinus of the 

�
angle enclosed by 

�
the 

�
vorticity 	 vector 	 and the 

�
flow 



vector	

v x�( ).  This 
�

term 
�

characterizes the 
�

type 
�

of rotation � in 


the 
�

system.  If 
�

Ω  is 


1, the 
�

flow 



rotates�
around the 

�
flow vector, 	 whereas a value 	 of 0 implies, that 

�
either there 

�
is no vorticity 	 or the

�
flow rotates in a plane which also contains the direction of the flow.

Ω = ⋅
⋅

= ⋅ ∇ ×
⋅ ∇ ×

v

v

v v

v v

ω
ω

( )
(8)

Just 
�

slightly different from 



the 
�

above definition is 


the 
�

specification of helicity
�

 [LeWi93].  Fur-
�

thermore the 
�

helicity density
�

 Hd
�  as given in the literature is just the same as helicity [PoWa93].

A 
�

value 	 of 0 means � exactly the 
�

same as no � stream vorticity, 	 but 
�

helicity 
�

increases 


proportional�
to the length of 

� ω  and v .  It is defined by:

H
�

v v v vd
� = ⋅ ⋅ = ⋅ = ⋅ ∇ ×Ω ω ω ( ) (9)

Another term 
�

in correlation with the 
�

rotation of a flow is its circulation ΓC [Lajo94].  The cir-
culation of a flow can be used to determine if it is possible to use a potential function instead 


of

the 
�

vector 	 function 



v  for 



analysis purposes: �  If 
�

the 
�

circulation ΓC of a flow 



is 


0 for 



any closed
curve C , then 

�
a potential � function f

�
 exists such that 

�
grad ( ) ( )f

�
x� v x�= .  In such a case it is

often easier 


to 
�

use � f
�

 instead 


of v .  Additionally 
�

( : )∀ =C CΓ 0  implies 


that 
�

there 
�

is 


no � rotation�
at all in the vector field.  By using Stoke’s equations, ΓC can be expressed as follows:

ΓC

C A
 v x� ds

!
v x� dA

!
= =

" "
( ) rot� ( ) (10)

A ................the surface (of an arbitrary volume) containing 
# C .

5. Interpreting the Matrix of an Autonomous and Linear System

As we already stated in section 2, linear dynamical systems are especially simple to 
�

analyze.
Since we need � this 

�
procedure � for 



the 

�
rest � of our paper, � we briefly 

�
discuss some different ap-

proaches of analyzing the matrix of a linear and autonomous dynamical system’s � A
$

 [Tson92].

H
%

ELWIG 
& L

�
ÖFFELMANN Z

'
SOLT S

�
ZALAVÁRI

( E
)

DUARD 
* G

+
RÖLLER

,



L
�

OCAL A
�

NALYSIS OF 
� D

�
YNAMICAL S

�
YSTEMS - CONCEPTS AND I

�
NTERPRETATION

� 6
�
/10

�

5.1. Eigenvalues and Eigenvectors
�

Continuous dynamical systems ( 	x
 A
�

x
= ⋅ ) as well as discrete systems (x
 A
�

x
n� n�+ = ⋅1 ) that 


are
autonomous and linear can be entirely analyzed by investigating the matrix A  and its character-
istics.  One possibility � is to 


compute A ’s eigenvalues λ i and its eigenvectors ei  from equations

(11) and (12), respectively [Rina95] [Tson92].

det( )A Ii− ⋅ =λ 0 (11)
A

�
e ei i i⋅ = ⋅λ (12)

The interpretation of the 


eigenvalues λ i — they 


can be 
�

either real or complex — is different
for continuous and discrete 

�
dynamical systems, because 

�
a continuous system is 

�
specified by 

�
the



change of the 


current state, whereas a discrete dynamical system is 
�

specified by 
�

giving the 


next�
state of the system.

Continuous Case Discrete Case
Convergence Reλ i < 0 λ i < 1 (13)

Divergence Reλ i > 0 λ i > 1 (14)

Rotation Im ,λ j
�

k
� ≠ 0 Im ,λ j

�
k

� ≠ 0 (15)

Convergence, divergence, and rotation are to 


be 
�

interpreted relatively to 


the 


origin of the 


co-
ordinate system.  Note, 

�
that 


a fix-point of a continuous dynamical system is called hyperbolic,

if its eigenvalues do not lay on the imaginary axis (
�

Re
�

λ i ≠ 0).  Fix-points 
�

of discrete dynamical

systems are hyperbolic, if λ i ≠ 1 for all eigenvalues.

5.2. Decomposing Matrix A
�

Another possibility � of analyzing matrix A  of a linear and autonomous system is by 
�

decompos-
ing it into a symmetric matrix 

�
A

� +  and an asymmetric matrix A
� −  as follows [LeWi93]:

A A A+� = + Τ
�� �

2, A A A− = − Τ
� !

2 (16)

The elements of 
"

A
� +�  and A

� −  can be interpreted rather straight-forward [ScVo91]:

A
�

d
#

d
#

d
#

x$

y%

z&

+� =
• •

• •
• •

'

(

)
)

*

+

,
, , and d

#
d

#
d

#
v x-x$ y% z&+. +. =

/ 0
div ( ) (17)

The elements of A+  marked with ‘• ’ built up the shear strain portion of this linear system.

A
�

r r

r r

r r

z& y%

z& x$

y% x$

− =
−

−
−

1

2

3
33

4

5

6
66

1

2

0

0

0

, and 

r

r

r

v x-
x$

y%

z&

7

8

9
9

:

;

<
< = rot= ( ) (18)
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�

5.3.Analyzing the Matrix in a Local Coordinate System (Frenét-Frame)
�

A 
	

third 



possibility � of linear 
�

system analysis is 


especially useful � while investigating 


a flow’s
�

Jacobian 
�

J
�

.  It 
�

can be 
�

transformed 



into 


the 



local 
�

Frenét-frame 
�

at some point � of a trajectory



(J
�

J
� local

�
→ ).  Then 

�
the 



elements of J

� local
�

 as given in 


the 



following 
�

equation allow a detailed
characterization of the underlying flow [LaWi93]:

J
�

a� s� s�

c d
�

d
�

t

c d
�

t d
�

local
�

=

�

�

�
�

�

�

�
�

   
    

    ,
,

(19)

Elements of matrix J
�

 that 



are marked with ‘ !a� ’, ‘ "s� ’, or ‘ #c ’ specify changes of the 



flow that



are parallel � to 



v x$( ).  The element marked with ‘ %a� ’ gives the 



acceleration of the 



flow, whereas
the 



elements marked & with ‘ 's� ’ give the 



shear strain at this 



state of the 



system.  Elements 

(
that




are marked with ‘)c ’ give the curvature of the flow.

Remaining elements of matrix J
�

, that 



are marked with either ‘ *d
�

’ alone or ‘ +d
�

’ and ‘ ,t ’,
specify the 



changes of the 



flow that 



are perpendicular � to 



v x$( ).  Splitting the 



bottom-right

�

2 2× -matrix into 


a symmetric and an asymmetric one gives the 



divergence (by the 



elements
marked with ‘& -d

�
’) and the torsion (by the elements marked with ‘.t ’) of the flow.

6. Dynamical System Analysis near Fix-Points or Cycles

Linear systems by themselves have a rather simple dynamical behavior. 
�

 The reason, why linear
system analysis is so important, is that 



non-linear systems are often analyzed by 

�
local lineariza-

tion 



[Tson92].  This 
�

is 


especially easy near / fix-points, 
�

since the 



long-term 
�

behavior 
�

trivially



coincides with the local behavior at these points.

6.1.Dynamical System Analysis near a Fix-Point
0

Analysing the 



system’s behavior 
�

near its fix-points can help to 



understand � the 



evolution of any
state of the 



system.  Assuming 

	
the 



system is 


non-linear / and hyperbolic, 

1
linearization 

�
can be

�

used � to 



determine the 



behavior 
�

near / fix-points 
�

completely.  Continuous and discrete systems
can be treated rather similar [Rina95]:

The Continuous Case
�

The Discrete Case
�

Vector Field Definition 
2 3

( )x$ dx
�

dt
�

v x$= = x$ v x$n4 n4+ =1 ( ) (20)

Fix-Point Definition
� 5

( )x$ v x$= = 0 x$ v x$= ( ) (21)
Rewriting x6  (x$ n4 ) x$ x$= + ∆ x$ x$n4 n4= + ∆ (22)
Using Taylor Expansion

7 8
( )x$ v x$≈ ′ ⋅ ∆

9
x$ x$ v x$n4 n4+ ≈ +: ′ ⋅1 ( ) ∆

9
(23)

Linearized System ; ( )∆ ∆= ′ ⋅v x$ ∆ ∆n4 n4v x$+ = ′ ⋅1 ( ) (24)

To 
�

keep 
<

the 



analysis simple, we assume the 



system to 



be 
�

autonomous and time-independent



(see (20) for 
�

the 



definitions).  Assuming 
	

the 



existence of at least 
�

one fix-point 
�

(see (21) for 
�

the



definitions) any state of the 



dynamical system near fix-point x$  can be 
�

rewritten with respect to



x$  (see (22)).  With 
=

this 



reformulation the 



dynamical system con be 
�

approximated by 
�

a Taylor
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expansion as shown in (23).  ′v x�( ) denotes the 
	

Jacobian 



matrix of v x�( ) evaluated at x� .  Using
�

(22) again, the 
	

left 
�

side of the 
	

Taylor 


expansion in 
�

(23) can be 
�

rewritten. �  This 


operation yields�

the 
	

linearized 
�

systems for 
�

small perturbations � around fix-point
�

 x�  (see (24)).  These 


linear 
�

sys-
tems can now be analyzed as discussed in section 5.
	

6.2. Dynamical System Analysis near a Cycle
�

Cycles are another important class of characteristic subsets within continuous dynamical sys-
tems.  A cycle 
	

is 
�

given, when the 
	

system returns � to 
	

a previous � state.  The 


system behavior 
�

near�

such a cycle can be 
�

analyzed by 
�

using � a Poincaré 
�

Map
�

.  Such a map � is 
�

a discrete dynamical
system, that 

	
is produced � from a continuous dynamical system and that 

	
is of a lower dimension

than 
	

the 
	

original system.  A Poincaré Map is specified by 
�

the 
	

cross-section of a surface per-�

pendicular to the cycle (usually a plane) and a � trajectory 
	

near the 
	

cycle.  The Poincaré Map is a
discrete dynamical system with at least 

�
one fix-point 
�

x� , i.e., 
�

x�  is 
�

the 
	

cross-section of the 
	

cycle
and the 
	

surface.  Thus 


the 
	

Poincaré 
�

Map 
�

can be 
�

analysed as shown in 
�

the 
	

section before 
�

and
the results are then used for interpreting the system’s behavior nearby the cycle [Rina95].
	

7. Dynamical System Analysis near a Trajectory

In 
�

the 
	

following 
�

we propose � another approach to 
	

analyze a dynamical system’s behavior. 
�

 It 
�

is
�

somewhat similar to 
	

the 
	

method � presented � in 
�

section 5.3 [LeWi93], as the 
	

dynamical system is
�

also transformed 
	

into the 
	

Frenét-Frame Φ  of a point � on the 
	

trajectory. 
	

 Contrary to 
	

their
	

approach we use � the 
	

analysis by 
�

eigenvalues and eigenvectors to 
	

interpret this 
	

trans
	

formed
Jacobian matrix.  Expressing a dynamical system 

 �

( )x� v x�=  in terms of Φ  one gets
�

( )( ) � ( )u g l v l g u v u= =2 2!"! (25)

u .................a state of the system in terms of # Φ .

g l2 .............transformation from the global coordinate system into 
$ Φ .

l g 2 .............transformation from 
$ Φ  into the global coordinate system.

Near 
%

the 
	

point � of interest 
�

p&  (represented in 
�

the 
	

global coordinate system) a state of the 
	

system
can be 
�

written as u = +0 ∆  in terms 
	

of the 
	

local coordinate system.  Note, 
%

that 
	

p&  represented
in terms of Φ  is 0.  Using a Taylor expansion of ' ( )v u  up to first-order terms, we get

( )
( ) * ( ) + ( )

,
,

( )u v u v v
v

u
v

u-
= = +. ≈ +. ⋅ = ⋅ +. ′ ⋅

=

0 0 0
0
/ 1∆

0
∆
0

∆
0∂

∂
λ φ (26)

φ1 ................unit-vector in terms of 1 Φ  collinear to the axis corresponding to the trajectory’s
tangent.
$

λ .................length of v p&( ).

Transforming the 
	

very 2 left side of (26) by 
�

using � u = +0 ∆  we get a linearized system for small
perturbations of � p&  (in terms of Φ), because d

3
dt
3

v0 0 1= = ⋅
4
( ) λ φ .

5 6
( )∆

0
∆
0

= ′ ⋅v 0 (27)
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The elements of ∆  can be 
�

separated into a scalar (
	

)



1∆  and a vector � (
	

)



2 � ∆  that 


is of one dimen-
sion less 
�

than 
 ∆

�
.  (
	

)



1∆
�

 is 
�

assumed to 


be 
�

0, since perturbations � of p�  that 


are not � perpendicular�

to 


the 


trajectory’s 


tangent 


make � no � sense at all — a state of the 


system that 


is 
�

represented � as a
perturbation � of p�  with a component (

	
)



1 0∆
�

≠  can be 
�

more � accurately expressed as
a (perpendicular) perturbation � of another point � on exactly the 


same trajectory. 


 Thus 

�
∆  does

not depend on the 


first row of matrix � ( )′v 0 .  The remaining elements of �v ’s Jacobian
�

J
�

v0
� 0= ′
�

( )  can be
�

 decomposed into the


 first line 
(
	

, )



1 2
�

0
�

� J
�

 and the


 lower-right sub-matrix (
	

, )



2
�

2
�

0
�

� � J
�

.

Decomposing 
!

∆  similar to 
 ∆  yields " a part � parallel � to 


the 


trajectory’s 


tangent 


(scalar (
	

)

 #

1∆)
and a part perpendicular to φ1 (sub-vector (

	
)

 $

2 % ∆
�

):

(
	

)



(
	

, )



(
	

)



(
	

)



(
	

, )



(
	

)



(
	

)



&

&

1 1 2

0
�

2

2 2 2

0
�

2 2

∆ ∆
∆ ∆ ∆

= ⋅
= ⋅ = ⋅

' '

' ' ' ' '

J
�

J
�

A
(28)

A  can be 
�

analyzed as already shown for continuous systems at the 


neighbourhood of fix-
points. �  But 

(
we must � be 

�
careful with the 


interpretation 
�

of this 


analysis, because 
�

all the 


results�

hold for the investigated point 
)

p�  only.  For example, if the analysis of matrix A
*

 reveals that 


the


system’s evolution is convergent (fix-point is an attractor) the only thing that can be said is 


that


nearby trajectories 


are locally attracted by 
�

the 


trajectory 


at the 


specific location chosen.  To
detect convergent, divergent, or saddle regions of a trajectory 


it must be 

�
shown that 


the 


struc-
tural characteristics of matrix 


A
*

 are persistent for a certain region of the trajectory.  This 
+

might�

be not simple analytically, but can be done approximately by numerical simulation..
�

8. Conclusion

This paper � compiles important terms 


and definitions that 


are useful , for analyzing analytically
defined dynamical systems.  Widely 

-
varying � terms 


and denotations are sometimes used , in lit-

erature to describe important 


concepts of dynamical systems.  Thus 
+

a clarifying survey of these


sometimes interchangeable terms and definitions is given.

After presenting � a classification of dynamical systems, tools 


of differential geometry are
discussed with respect to 


the 


analysis of trajectories 


of dynamical systems.  The description of
terms defining flow characteristics of dynamical systems (e.g., divergence, 


rotation) � is 
�

followed
.

by discussing linearization techniques for dynamical systems.
�

Together with an investigation of flow behavior 
�

close to 


a fix-point and cycles a concept
for the 


local analysis of a dynamical system close to 


an arbitrary trajectory 


is presented. �  This
approach basically 

�
investigates perturbations � orthogonal to 


the 


chosen trajectory 


by 
�

determin-
ing 
�

eigenvalues and eigenvectors of a matrix � which is 
�

closely related � to 


the 


Jacobian 
/

matrix � of
the dynamical system but with lower dimension.
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