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ABSTRACT. The convergency of iterative processes can ezhibit unezpected behaviours. In this paper
an analysis of the convergency of the iterative processes is made through the application of the
Newton method to the polynomial equations resolution. This leads to the definition of a dynamic
relazation scheme applied to computer graphics
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1 Introduction

The behavior of a system evaluated at a finite order (generally 1) can be described al-
though the corresponding equation have an unknown analytic solution; numerical solutions
with iterative character are obtained. Theoretically these algorithms converge and their
precision is only limited by number of iterations.

In practice these algorithms behavior varies a lot from a case of calculation to the other. If
the Newton method [2] is used as an archetype of these algorithms, one observes generally
an extremely rapid convergence from an initial value “reasonably” close to the solution.
Unfortunately the method can converge very slowly [1], or refuse to converge in certain
limit cases. A graphic representation for the method explains the reasons for this behavior
(Figure 1).
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Rapid convergnecy

Slow convergency

Figure 1: Behavior of the Newton algorithm

The closer the intersection is to a tangency case, the slower the convergence is and the
bigger are the numerical errors. Up to a point where the numerical accuracy will be able
to turn a case of tangency into a case of intersection or non intersection [4].

When the numerical precision transforms a case of tangency into a case of non intersec-
tion, the quasi convergent sequence 0,1,2,3 (Figure 2) goes too far and is followed by a a
convergency in the opposite direction 4,5,6 etc. One might notice that this chaotic process
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Figure 2: case of tangency

can result in a tangent to the curve C which would be so close to a parallel to D that an
”overflow” has not to be excluded.

2 Fundamental problem underlying limit cases

A shaper study of limit cases shows that the tangency point accuracy precision is not
commensurable to the numerical tangency. In such a study of the tangency point between
a curve C and a line D [4], C is to be replaced by its osculator circle, and numerical errors
turn to an error € on the radius R of the circle (Figure 3).

n

Figure 3: Utilization of the osculator circle in cases of tangency

When the error ¢ is negative there is neither tangency nor intersection, but when ¢ is
positive the tangency gives place to two distinct points of intersection on D on either side
of the tangency point with an error 7. One clearly notice that errors ¢ and 7 are connected
to the angle o by relationships :

2
_n - p 4
a_R s e—R2+O(a) (1)
hence:
2
e_n n_oR
R 2RZ 5-217 2)

Therefore if  — 0, 2 — o00. both magnitudes are not comparable.

3 iterative Processes and equations

A natural approach of the behavior of iterative processes consists in studying the processes
of equation resolution and especially the Newton method when the formal solution of an
equation is unknown or that the equations setting cannot be achieved. Although what
we can learn from this study account is of great importance, one can not limit the the
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behavior of iterative systems to the Newton method, moreover the Newton method is not
to be limited to the resolution of polynomial equations [2].

Indeed one might notice that an equation P(z) = 0 focuses only on behaviors of oscilla-
tion around an extremity, jump from a solution to another and of a more or less rapid
convergence, but no regular or/and explosive divergence.

Other behaviors can be found in the resolution of the system :

y = f(z)
{w = g(y) 3)

An iterative process which alternately evaluates a function then the other is generally
used :

y1 = f(zo), 21 = 9(11), ¥2 = f(21), T2 = 9(92), - -- 4)

According to the relative position of the curves y = f(z) and z = g(y) this process
converges or diverges steadily, some solutions can not be reached and, at first the process
can seem to be erratic.

Explosive divergency

Regular divergency
from p,

!

Infinite oscillations around p |

Figure 4: An iterative processes

One can, however, invert divergent processes when following the curves :

z=fYy),y=9"(2) (5)

4 Study of iterative processes as series

An iterative process can be seen as series of values or points and the process is convergent
when the associated series is convergent too.
Indeed iterative processes make up the series p, by means of the calculation of dp, :

dp, = f(Pn) y Pngl =DPn+ dpn (6)

Pni1 = Po +dpo + dpy +dpz + -+ dpy (7

So one might notice that any convergent continuation/series (7) is bounded by a geometric
series :

Gn = Go(l+g+d*+--+4q") (8)

of the reason —1 < ¢ < 1. Such as ¢, = dd;n‘ and | ¢, |<] ¢ |-
A very rapid convergence will correspond to ¢, tending towards zero when n increases. It
is typically the case of the Newton method in favorable cases.

On the other hand, in unfavorable cases, especially in the cases of tangency, the reason ¢y
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does not tend towards zero but towards a limit ¢ # 0 and the convergence is all the more
slow since | ¢ | is close to 1. When the convergence is very slow, if the reason ¢, rightly
tends towards a limit, one can safely predict the limit of the series :

(9)

This method of convergence study is general and can be applied to any iterative process.
Therefore one can use it for the resolution of an equation through the Newton method
as well as for the tesolution of the coupled system (3) or for geometric problems like
projection on a curve or parametric surface.

5 Equation resolution by the Newton method

The Newton method can be used to solve any equation P(z) = 0 if one knows (how to
calculate) P'(z) and if one can avoid to leave the P(z) domain of definition. The behavior
of the process is generally excellent, i.e. that it converges with an increasing acceleration
of the convergence (g, — 0) and the process can be safely stopped at the iteration n by
checking the correction dz, because the final error on the value of z is bounded by :

1
t — (zq +dzn) < dzp(1- T:_q) ~ gdz, (10)

5.1 Study of a polynomial equation

To study the behavior of the Newton method we are going to apply it to the resolution of
polynomial equation (12), starting from a value zo.

P(z) = 2° + 62° 4 62* — 182° — 312° — 242 - 36 =0
P(z)=(z+3)(z+3)(z +2)(z —2)(z*+1) =0

(11)
(12)
on the P(z) graph (figure 5) one can see that all the solutions are included in the area

a < z < b (area where P(z) ~ 0) depending on the drawing scale. The study of the
convergence follows the following schema :

o — d(L‘Q\

o > €Efo= (1 - l—lqo )d:vl
T — dz1<

Q&
Ty — dw2<

qQ — &2

and ends up with the results preselited on the table below.

Iteration | z; dz; Gi—1 €i-1
0 Tog = 10 dIL‘o = -2
1 z1 =38 dz; = -1.6 go = 0.8 gg =64
2 T, =64 dz, =—-1273 | ¢1 =0.795 | 61 = 4.94
3 23 = 5.127 | dz3 = —1.006 | ¢2 = 0.79 | &2 = 3.8
4 24 =4.121 | dzy = —0.784 | 3 = 0.78 | €3 = 2.78
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One can see that the process converges very slowly, with an important limit error &;, but

that the convergence accelerates since gi+1 < ¢;.
One will notice that this will be a typical behavior of polynomial equations because P(z)
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Figure 5: Approximat Graph of P(z)

behaves as its highest term when z —» oo [7]. on the other hand in the general case there
is no reason to observe this kind of behavior, the equation sin(z) = 0 for instance will
give solutions around any initial value zo (sufficiently close to kr).

5.2 Behavior in the solutions’ zone

The studied equation shows however, a certain number of typical behavior in the zone
where solutions (- 3,-2,2) are found [6]; these behaviors are directly linked to the departure
point of the process.

The study of the convergence by means of values dz; and reasons g of the geometric series
which estimates the limit z., shows that :

e g; — 0 when the convergence is rapid (zo = 2.15)

e g; — q constant when the convergence is slow in the vicinity of a double solution
(zo = —3.5). The limit value of the geometric series gives then the solution with a
great accuracy.

e The explosion of the process characterizes itself by an important correction dz;, where
Tg = —2.409. )

e The jump from a solution to another characterizes itself by strong and irregular
variations of the coefficients ¢;. (with zo = 1.325 one jumps over the solution z = —2
to find z = 2. With zo = 1.325 one forgets = 2 and jumps over z = —2 to find
r = —3 as for g = —3.5).

Figure 6: Behavior in the zone where solutions are found
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e Alternate convergence around a point of inflexion of the curve P(z) where (¢; < 0),
(IL‘O = -—1.135).

So one observes that regular convergence zones (with ¢; constant or tending steadily to-
wards 0 ) are zones where there is no other solution to look for than the limit, whereas
the zones where ¢; varies irregularly are zones to study in a closer way.

5.3 control of the process behavior through relaxation

With a pure Newton process, this close study can only be considered by multiplying the
points of departure so as to split the area into zones :

e Convergent in regular manner
e Without possible solution (zones with extremity)

By and large behaviors can be more difficult to control, and phenomena of aliasing can
appear with periodic functions. To look for the solution of cos(z) = 0, starting from
g = Atan(%) = 0.1578311 make jump 27 at each iteration, if one is very close to this
value one might believe to have found a convergent process with a slow convergency !
Therefore a robust method to control the convergency of iterative processes comsists in
limiting the process steps when they are too important. As a result, one has to replace
the original series by a series :

z=gzo+dey+dzl+- - +dzh+--- (13)

The terms dz} = r.dz; are calculated by relaxation [11] on the calculation process of the
corrections dz;. The convergence will be slower if r < 1 and more rapid if 7 > 1, provided
that r < Tim. The term relaxation or on-relaxation will be used then.

6 Iterative processes in parametric form

Roughly, an iterative process is characterized by the search of a value of parameter t for
which a given condition C(t) is achieved. This condition can appear as C(t) = 0 (0 scalar
or vectorial) without possibility to solve the equation C(t) = 0. Then one can define g(t)
and the series t; :

b= to+g(te) o+ alta) o
: 14
a1 = tnt g(tn) ( )

The function g(t) was built in an attempt to near to the solution of the equation C(t) =0,
s0 it has to check g(t) = 0 when C(t) = 0. The functions g(t) will be (by construction)
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Figure 7: Linear iterative processes

symmetrical around the solution g(t) = 0. If one merges g(t) and its tangent around
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g(t) = 0 one obtains the cases in figure 7. If the slope of the tangent is negative the process
is convergent, otherwise it is divergent, the series that calculates t can be written :

t = to+g(to)+9(to+9(t0)) + - (15)
with ¢(#;) = a(t; — t) one finds :

tiv1 = i+ g(t) =t + a(t; - H=(1+ a)t; — at (16)
o(tin) = a((1+a)ti —at) =) = a(1+ a)t: — &) = (1 + a)g 1)
t = totg(to)l+(1+a)+(1+a)+--)

t = tot g(to)l—:-(ﬁ—) = to + r9(to) (17)

limit of the geometric series with reason (1+ @) that converges when 1+a < 1,i.e. a <0.
One might notice that when a > 0 the series diverges but one can always find the inter-
section between the line and g(t) = 0. In the general case the curve g(t) is not a line and

to assimilate the convergence to that of a geometric series consists in replacing the curve
g(t) by the cord. One obtains then :

o ti—tia
Pog(tica) —9(t)

that can be applied as soon as t1 = t0 + g(t0) and g(1) are calculated.

The initial process has been replaced by a dynamic relaxation process with a coefficient
r; which converges more rapidly than the initial process and replaces a divergent process
by the convergent symmetrical process. The only condition needed to obtain a convergent

(18)
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Figure 8: Non linear iterative processes

process is to have a function g(t) continuous and symmetrical along the solution (where
g(2)=0).

However, an unreasoned application can provoke explosions of the process, especially when
r; is important and when it varies a lot, which is the case in zones ?parallel” to the solution
where g(t) = g(ti—1) and in the vicinity of limit cases (quasi-tangency for example).
Therefore the reasoned application of the dynamic relaxation principle consists in slowing
down the process when g(%;) is too important, and conversely in accelerating it, when r;
is stable, even if it leads to important corrections.

6.1 Example of dynamic relaxation : projection of a point on a curve

To project a point (z1,%) on a parametric curve (z(t),y(t)) turns to find the value of ¢

for which :
z(t) = =
{ y(t) ()1 (19)
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Let P a known point, one looks for p(t) on the curve so that the projection of P on the
tangent in t to the curve be merged with p(t). We have applied the study of the conver-
gence (dynamic relaxation) on the process of the projection of a point on a Bézier curve.

The results are presented in the table below :

a : Without relaxation

b : With relaxation

Figure 9: Projection of a point on a curve (Three iterations)

Iteration | Without relazation with relazation

t; dt; t; dt;
1 0 0.3993 0 0.3993
2 0.3993 | -0.2534 0.0999 | 0.2959
3 0.1459 | 0.2238 0.3861 | -0.2346
4 0.3697 | -0.2091 0.2596 | 0.0073
5 0.1606 | 0.1989 0.2634 | -7.6812e-04
6 0.3595 | -0.1922 0.2630 | 8.3075e-07
7 0.1673 | 0.1872 0.2630 | 8.5722e-11
1000 0.3589 | -0.1993

One might notice that without the dynamic relaxation, the algorithm keeps oscillating
whereas with relaxation it converges after 7 iterations. This behavior is shown in figure

10.
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Figure 10: dt plotted against iteration number
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7 Acceleration of convergence for series

In some series the variations dt; cannot always be calculated according to t;. In such
series one cannot use the dynamic relaxation method. However it is possible to study the
convergence of the series and to replace the series ¢, by an other one corresponding to the
successive limits of the geometric series which evaluate, by extrapolation, the sum of non
calculated terms. This process can be applied recursively and compared to other classic
processes such as the extrapolation of Richardson, the process A? of Aitken [9] or the ¢
algorithm of Wynn [8]. The diagram is represented by the figure (11), from the series
19 = t; one calculates dt? = t2,; — t? then a series of limits ¢} = ] + rdt} with

0
S £
Poodddy,

(20)

and so on and so forth :

R S . o, -t

=ty rldt] , dtl =t -t , r‘z:d—?—'—d_j’ (21)
b — iy

One might notice that values t{; which improve the accuracy require the calculation of

(2j + 1) terms. By applying this method to the calculation of a root of the equation (12)

tg:':’: ~dty - Sathel
S oedsl 0 Tdgel

%=~ ~ql - ~.42
2 -~ Pt W 1L--"70 T~o
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Figure 11: Acceleration of convergence for series

by starting from tp = —3.5 one finds for instance :
Newton Successive Limits | ¢ Algorithm
10 =-3.186974 |t = —2.91316 ty = —2.91316
ty = —3.057165 t2 = —3.00886 ty = —3.02154
19 = —3.01535167 | t5 = —2.99988 te = —2.99802

One can see that the improvements brought about in relation to the Newton method are
even more spectacular than the ¢ algorithm of Wynn, without touching to the efficiency
of the dynamic relaxation which gives improvements to each term ¢; and not only for even
terms :

t3 = —3.0220 , t4=-3.0018 , t5=-2.999965 , ts = —3.000003

8 Conclusion

The analysis that has been made of iterative processes highlighted the fact that the promi-
nently rapid convergence of the Newton method could produce in turn chaotic behaviors
or continued divergence. These behaviors could be characterized by the variations of a
dynamic relaxation coefficient which stemmed from the definition of a limit of the process
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by a geometric series. The use of this dynamic relaxation coefficient makes it possible to
replace the initial process by a more rapidly converging one in limit cases and provides a
more realistic limit of the error made. However, this method remains applicable to diver-
gent processes.

Finally, when there is no solution, the dynamic relaxation provides an oscillating process.
When it is not possible to use the dynamic relaxation schema another one is proposed to
accelerate the convergency of very slowly convergent series. The results obtained by this
method of series (series (series (...))) make a promising alternative to classic methods.
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