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Abstract

This paper deals with analyses of linear elastic thin beams which are consisted of the homogeneous orthotropic

layers. The cross-sections of these beams are assumed uniform and symmetric. Governing equations of one-

dimensional model are derived on the base of the Timoshenko’s beam theory. An evaluation of shear correction

factor consists in conservation of the shear strain energy. This factor is calculated in this paper but only in the

cases of the static problem. The general static solution for the flexural and axial displacement and for the slope of

the cross-section is found. Further, the possibility of calculation of the free vibrations of beams are also presented.

The obtained results for the static solution are compared with the results of numerical solution based on the finite

element method. The numerical model is prepared in software package MARC. As a tested example is used the

uniformly loaded simply supported beam with various cross-sections.
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1. Introduction

At the beginning it should be pointed out that three theories are well-known in the development

of the governing equations for thin beams. The first of them takes assumption that the transverse

shear strains are negligible and planes of cross-section before bending remain plane and normal

to the axis of the beam after bending. This classical beam theory is called Bernoulli-Euler. But

the study of wave propagation in the Bernoulli-Euler beam showed that infinite phase veloci-

ties were propagated. Therefore Rayleigh applied the correction for rotary inertia. Then, the

obtained results by the Rayleigh theory predicted finite propagation of velocities where their

upper bounds were still greater than exact results. In 1921 Timoshenko suggested mathematical

model which influence of rotary inertia and shear deformation are incorporated. The results of

this theory were in good accord with the reality. More detailed description and comparison of

these theories in cases of flexural waves in elastic and isotropic beams could be found in [3]

and [5].

The problems of beam deformation are wide-spread and could be performed by analytical

and semi-analytical approaches or by numerical methods. Analytical solutions could be either

in closed form or in infinite series and could be solved by exact governing equations or could

be based on variation approaches. On the other hand, the finite element method is one of the

most used numerical method. The summary of computational methods including eigenvalues

problem or the Fourier method which may be used to beam calculation [4] gives.
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The importance of development of methods of analyzing composite beams is connected on

the one hand with the use of beams as basic elements of structures and on the other hand with

the identification of mechanical properties by bending test on samples. Composite beams are

very often manufactured in the form of two or more unidirectional laminae or plies stacked

together at various orientations. Since beam structures are similar to that of plate composite

structures, the theories for the modeling of them are the same. Two theories are commonly

considered in connection with laminated materials, namely the classical laminate theory and

the first-order shear deformation theory. These theories are so-called equivalent single-layer

theories and are derived from the three-dimensional elasticity theory by taking assumptions

about the kinematics of deformation and/or the stress distribution through the thickness of a

laminate or a sandwich. With the help of these assumptions the mathematical model is reduced

from a 3D-problem to a 2D-problem. Both theories (the classical laminate including the shear

deformation) listed above are presented in [1] and [2]. In these references, we can find the

one-dimensional solution of bending of laminate and sandwich beams with predominantly rect-

angular cross-sections. Also some basic free vibrations and buckling problems are shown in [1]

and [2]. The higher order equivalent single layer theories by using higher order polynomials is

also studied in [1].

In this paper the first order shear deformation theory is applied to calculation of the flexural

and the axial displacement including the slope of the cross-section that are linked together.

Furthermore, the beams are assumed thin that is why the effect of Poisson’s ratio is negligible

and twisting and transversally bending are not considered.

2. Governing equations of laminated thin beam

Let us consider a straight beam consisting from n layers which are perfectly bonded and are

numbered from the lower to the upper face. The overall thickness of the laminated beam is h.

Layers are of homogenous, orthotropic and linear elastic materials. Furthermore, the rectangu-

lar Cartesian coordinate system x1, x2 and x3 is used. The orientation of coordinate axes are

defined in accordance to fig. 1 where the x1 is parallel to the longitudinal beam axis and the x3

is directed in the direction of increasing number of the layers. Each layer k is referred to by the

x3 coordinates of its lower face hk−1 and upper face hk as shown in fig. 1. Besides, orthotropic

properties of layers are referred to their material axes. Angles of rotation are denoted by θk.
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Fig. 1. A thin laminated beam with a symmetric cross-section
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2.1. Strain-displacement relations

In the following subsection there have to be used another assumptions before we develop gov-

erning equations. The cross-section area of beams can have various shapes but must be uniform

along the x1-axis and symmetric to the x3-axis. The thickness h and the width b(x3) are small

relative to the beam length l. The general combination of lateral and axial loading may be ap-

plied but only bending and stretching in the x1 − x3 plane of symmetry can exist. We must,

however, notice the greatest attention to this latter condition. In fact, the laminate constitutive

equation shows, see [1], that Poisson’s effects may cause deformations not only in the x1 − x3

plane. This effect can be neglected in cases where the length-to-width ratio is sufficiently high.

Under these assumptions, the displacement field based on the first-order shear deformation the-

ory is written in the form

u1(x1, x2, x3, t) = u(x1, t) + x3ψ(x1, t) ,
u2(x1, x2, x3, t) ≡ 0 ,
u3(x1, x2, x3, t) = w(x1, t) ,

(1)

where u and w denote reference displacements in the x1 and x3 directions, respectively. The

symbol ψ represents rotation of the transverse normal referred to the plane x3 = 0 and t is time.

It is evident from (1) that the transverse normal strain ε3(x1, t) is omitted. This may be accepted

since the beam is thin. The strain-displacement equations for the first order displacement ap-

proximation give a first order strain field

ε1(x1, x3, t) =
∂u1

∂x1

=
∂u

∂x1

+ x3

∂ψ

∂x1

= ε(x1, t) + x3κ(x1, t) , ε2 = 0 , ε3 = 0 ,

ε5(x1, t) =
∂u3

∂x1

+
∂u1

∂x3

=
∂w

∂x1

+ ψ = γ(x1, t) , ε4 = 0 , ε6 = 0 .

(2)

In expressions above, the notation for the strain tensor components was reduced in the following

way: ε11 = ε1, ε22 = ε2, ε33 = ε3, 2ε23 = ε4, 2ε31 = ε5 and 2ε12 = ε6. We note furthermore

that ε denotes normal strain in the reference coordinate system and κ represents curvature.

2.2. Stress-strain relations and stress resultants

While the displacements and strains in (1) and (2) are continuous and vary linearly through the

total beam thickness, the stresses fulfill these conditions only in each single layer and have stress

jumps at the layer interfaces. When we suppose that the stress state in the x1−x2 plane is much

larger in value than the normal out-of-plane stress we can set approximately σ3 ≈ 0. Using this,

the on-principal-axis stiffness matrix (i.e in the directions L, T and T ′) of the kth orthotropic

laminae is reduced. Constitutive equations can be rewritten by separating of transverse shear

stresses and strains. The most important stress-strain relations in the kth layer with respect to

(2) are expressed

σk
1 = Qk

11ε1 and σk
5 = Qk

55ε5 (3)

by means of the reduced off-principal-axis stiffness coefficients

Qk
11 = 4GLT cos2 θk sin2 θk +

EL cos4 θk +
(
2νLT cos2 θk + sin2 θk

)
ET sin2 θk

1 − νLT νTL

,

Qk
55 = GLT ′ cos2 θk + GTT ′ sin2 θk .

(4)
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The elastic behavior of the laminae is described with five independent Young’s moduli and one

Poisson’s ratio νLT since the relation νTL/νLT = ET /EL is valid. If the material is transversely-

isotropic in the plane T − T ′, the following engineering constants ET = ET ′ , GLT = GLT ′ ,

νLT = νLT ′ are the same and we can determine the shear modulus in the plane of isotropy as

GTT ′ = ET ′/ [2 (1 + νTT ′)]. Thus we get only five independent parameters in (4). The stress

tensor components, σ11 = σ1, σ31 = σ5 etc., are denoted similarly as the strain components. It

should be noted that stresses σ2, σ4 and σ6 are not generally zero in the constitutive equations.

Their influence on the deformation of the beam could be observed inside or outside the x1 − x3

plane.

The resultant force of a laminate by summarizing the adequate forces of all laminae is

N(x1, t) = ε

n∑

k=1

Qk
11

∫ hk

hk−1

b(x3) dx3 + κ

n∑

k=1

Qk
11

∫ hk

hk−1

b(x3)x3 dx3 = A11ε + B11κ (5)

in the direction x1. The normal force was derived with respect to equations (2) and (3). By

analogy it follows that the resultant moment is given in the form

M(x1, t) = ε

n∑

k=1

Qk
11

∫ hk

hk−1

b(x3)x3 dx3 + κ

n∑

k=1

Qk
11

∫ hk

hk−1

b(x3)x
2
3 dx3 = B11ε + D11κ (6)

and transverse shear force is given as

T (x1, t) = γ

n∑

k=1

Qk
55

∫ hk

hk−1

b(x3) dx3 = A55γ = αA55γ . (7)

The relations of stress resultants are expressed in terms of four stiffness parameters which are

well-known in the laminate theory. The first of them A11 is so-called the extensional stiffness,

B11 is the coupling stiffness, D11 is the bending or flexural stiffness and A55 means transverse

shear stiffness. An improvement of the last mentioned parameter is possible by its replacing by

αA55 as applied in (7) where α = 1. The coefficient α is so-called the shear correction factor

and will be determined later.

2.3. Equations of motion

Now we consider a differential element of the laminated beam as isolated, see fig. 2(a). The

distributed forces per length q0(x1, t) and qn(x1, t) act on the lower and upper face, respectively.

In addition, the absence of body force is assumed. Stresses acting on the left and right section of

O O O

dx1

x1 x1 x1

x3 x3 x3

q0

qn

q0

qn

q0

qn

h0

hn σ1 σ1+dσ1σ5

σ5+dσ5 N N +dN

T T +dTdC1 dC3

M M +dM

T T +dT

dMC

(a) (b) (c)

Fig. 2. Load of a differential element
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the beam element may be replaced with the resultant normal (5) and shear (7) forces and vari-

ations of these quantities, as shown in fig. 2(b). Writing equations of motion in the horizontal

and vertical directions for the differential element, we have

dN(x1, t) − dC1(x1, t) = 0 , (8)

dT (x1, t) − dC3(x1, t) = q(x1, t) dx1 , (9)

after the simplification whereas the substitution q = qn − q0 was applied in (9). Inertia stresses

in these equations are

dC1 = ü1

n∑

k=1

ρk

∫ hk

hk−1

b(x3) dx3 dx1 = ü

n∑

k=1

ρk

∫ hk

hk−1

b(x3) dx3 dx1 +

+ ψ̈

n∑

k=1

ρk

∫ hk

hk−1

b(x3)x3 dx3 dx1 =
(

ρ11ü + R11ψ̈
)

dx1 (10)

in the direction x1, and

dC3 = ü3

n∑

k=1

ρk

∫ hk

hk−1

b(x3) dx3 dx1 = ẅ
n∑

k=1

ρk

∫ hk

hk−1

b(x3) dx3 dx1 = ρ11ẅ dx1 (11)

in the direction x3. Dots represent the differentiation with respect to time and ρk is the mass

density of the kth material layer. New parameters are also defined in (10) and (11) such as the

weight per area of the laminate ρ11 and the product of inertia R11 about the inertia axis x2.

Summation of all moments to the origin of the global coordinate system leads to

dM(x1, t) − dMC(x1, t) = T (x1, t) dx1 (12)

the third dynamic equilibrium equation. This is so since consideration of slopes and deflections

of the beam are small and the higher-order contributions of the loading to the moment are

neglected. In equation (12), replacing of normal stress influence to the origin of the global

coordinate system by moment M is used as is shown in fig. 2(c). The influence of inertia is

analogously replaced by the moment

dMC = ü

n∑

k=1

ρk

∫ hk

hk−1

b(x3)x3 dx3 dx1 + ψ̈

n∑

k=1

ρk

∫ hk

hk−1

b(x3)x
2
3 dx3 dx1 =

=
(

R11ü + I11ψ̈
)

dx1 , (13)

where I11 is the moment of inertia about the axis x2 of cross-section having side of unit length.

Now we will divide all equations of motion by dx1. Consequently, the derivations of (5),

(6) and (7) with respect to x1 have to be made and are substituted into the modified equilibrium

equations. Thus we obtain the governing equations of motion in the terms of displacements,

Mq̈(x1, t) + Kq(x1, t) + F(x1, t) = 0 . (14)

Operator matrices are given in the form

M =

⎡

⎣

ρ11 0 0
0 I11 R11

0 R11 ρ11

⎤

⎦ , K =

⎡

⎣

−αA55∂2 −αA55∂1 0
αA55∂1 αA55 − D11∂2 −B11∂2

0 −B11∂2 −A11∂2

⎤

⎦ (15)

with ∂1 = ∂/∂x1 and ∂2 = ∂2/∂x2
1. The symbol F represents the external force vector

F = [q, 0, 0]T , (16)

and q is the vector of unknown displacements with components q1 = w, q2 = ψ and q3 = u.
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3. Shear correction factor

The first-order shear deformation theory described in the section above assumed the constant

shear strain through the laminate thickness h, see (2). Therefore, the shear stress (3) is not

generally continuous from ply to ply and is not satisfying exactly conditions at the bottom and

top boundary layers. It is evident such a distribution is not realistic. A better estimate of the

shear stress can be obtained by application of the equilibrium equation in the case of differential

element as shown in fig. 3. It can be simplified as follows:

τk
5 (x1, x3, t)b(x3)dx1 = dCξ(x1, x3, t) − dNξ(x1, x3, t) , (17)

where τk
5 is improved shear stress in the kth layer, dCξ and dNξ are force of inertia and normal

force in the x1-direction. Consequently, the shear correction factor α shown in (7) can be

determined such that two strain energies due to the transverse shear per unit area are equal, i.e.

1

2

n∑

k=1

∫ hk

hk−1

σk
5ε5b(x3) dx3 =

1

2

n∑

k=1

∫ hk

hk−1

τk
5 γk

5 b(x3) dx3 . (18)

The γk
5 is the strain tensor component and may be calculated in analogy to ε5 in (3) but from

the stress τk
5 . Obvious result from (17) and (18) is that the shear correction factor depends on

both the loading (including the force of inertia) and stacking and not on only single of them.

Admittedly, higher approximation will lead to better result but also will require more expensive

computational effort and the accuracy improvement will be so little in the case of the thin beam

that required effort to solve more complicated equations will not be justified. Therefore, we have

not already accepted inertia stresses for the α factor calculation. The equilibrium equations (12)

and (8) can be put in consequence of this condition into the form

[
D11 B11

B11 A11

] [
ψ′′

u′′

]

=

[
T
0

]

or, in brief, Au′′(x1) = T (x1) . (19)

The symbol (. . .)′′ denotes d2/dx2
1. Solving the linear algebraic equation system (19) gives

ψ′′(x1) = A11T (x1)D
−1

T and u′′(x1) = −B11T (x1)D
−1

T with DT = A11D11 − B2
11 . (20)

Now the shear stress τk
5 depends only on the current width b(x3) and the normal force

dNξ(x1, x3) which is determined in a similar way as dN in (5). We obtain this in brief,

τk
5 (x1, x3) = − 1

b(x3)

{
u′′(x1)

[
Qk

11I
k
0 (x3) + fk

0

]
+ ψ′′(x1)

[
Qk

11I
k
1 (x3) + fk

1

]}
, (21)

O

x1

x2

x3 h0

hk−2
hk−1

dx1

b(x3)

ξ

τk
5
(x1, x3, t)

Nξ

Nξ+dNξ

dCξ

layer k − 1

Fig. 3. The separate part of a differential element loaded in the x1-direction
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where

Ik
0 (x3) =

∫ x3

hk−1

b(ξ) dξ , fk
0 =

k−1∑

i=1

Qi
11

∫ hi

hi−1

b(ξ) dξ ,

Ik
1 (x3) =

∫ x3

hk−1

b(ξ)ξ dξ , fk
1 =

k−1∑

i=1

Qi
11

∫ hi

hi−1

b(ξ)ξ dξ .

Substituting (20) into this relation, the shear stress in the kth layer becomes a function of the

transverse shear force T (x1). The left-hand side of (18) can be also expressed with the help

of the transverse shear force when we take into account (3) and (7). Inserting (21) into the

right-hand side of (18) and comparing both sides of them with respect to T , the shear correction

factor is given by

1

α
=

A55

D2
T

n∑

k=1

∫ hk

hk−1

[
fk

5 (x3)
]2

Qk
55b(x3)

dx3 , (22)

where

fk
5 (x3) = B11

[
Qk

11I
k
0 (x3) + fk

0

]
− A11

[
Qk

11I
k
1 (x3) + fk

1

]
.

It is seen from (22) that the factor α is invariable along the beam axis and only depending on

the materials of layers and the cross-section geometry.

4. Static solution

In the static problem, the general equilibrium equations (14) reduce to the form

Kq(x1) + F(x1) = 0 (23)

Thus we get the system of three ordinary differential equations of 2nd order with constant co-

efficients. The solution can be easily obtained by utilizing the shear strain expression in (2).

Integrating the first equation in (23), we obtain

αA55 [w′(x1) + ψ(x1))] =

∫

q(x1) dx1 + C1 . (24)

Substituting this result into the second equation in (23), the general static problem could be

rewritten as follows:

Au′′(x1) = F (x1) and w′(x1) =
1

αA55

∫

q(x1) dx1 +
C1

αA55

− ψ(x1) , (25)

where

F (x1) =
[
D−1q(x1) + C1, 0

]T
.

The matrix A and vector u(x1) are defined in (19). The expression D−iq(x1) which is used

for i = 1 in vector F (x1) means the i-fold integral (repeated integral) of function q(x1) if

D−1q(0) = D−1q (D−1q(0)) = . . . = 0 is assumed. The general formulation of this is given by

D−iq(x1) =

∫

· · ·
∫ x1

0
︸ ︷︷ ︸

i

q(x1) dx1 · · ·dx1
︸ ︷︷ ︸

i

=

∫ x1

0

q(ξ) (x1 − ξ)i−1

(i − 1)!
dξ for i = 1, 2, . . . (26)
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Now we easily determine the unknown deformations in consequence of integrating twice

with respect to x1. We get from (25)

u(x1) =
(
D−3q(x1) + 0.5 C1x

2
1

)
c + x1c2 + c3 , (27)

where c2 = [C2ψ, C2u]
T

and c3 = [C3ψ, C3u]
T

are vectors of arbitrary constants and vector c is

equal to D−1

T [A11, −B11]
T

. Inserting ψ(x1) from (27) into w′(x1) in (25) and integrating once

more with respect to x1, we obtain

w(x1) =

{

−A11

DT

[

D−4q(x1) + C1

x3
1

6

]

− C2ψ

x2
1

2
− C3ψx1 + C4

}

+

{
D−2q(x1) + C1x1

αA55

}

=

= wB(x1) + wS(x1) . (28)

It is evident from (28) that the transverse deflection could be separated into the bending wB and

the shear wS parts. The bending part is the same as derived in the classical theory and is usually

dominant in value in the case of a thin beam. Note that C1 and C4 are also arbitrary constants.

However, the static problem is not yet resolved because we do not know six constants

C1, . . . , C3u, C4. It means to solve the boundary conditions problem. We have to find, therefore,

the solution of (23) or (25) which is satisfying in most cases

fΓ (q′(xa), q
′(xb), q(xa), q(xb)) = 0 . (29)

The quantity fΓ is vector function of dimension 6, and symbols xa and xb denote two points in

the interval of definition.

5. Free vibrations of beam

Formulae of free vibrations can be found easily when the vector F is omitted in (14), i.e.

Mq̈(x1, t) + Kq(x1, t) = 0 . (30)

Let us assume the general solution of that in the following form

q(x1, t) = q(x1)Tt(t) . (31)

If some nonzero real vector function q∗(x1) ∈ R3 is taken, the inner product space of q∗ and

(30) over the beam domain can be obtained (computed). When the solution (31) is accepted, it

is readily shown that

− 〈q∗(x1), Kq(x1)〉
〈q∗(x1), Mq(x1)〉

=
T̈t(t)

Tt(t)
= λ . (32)

Hence it follows that λ must be a constant independent on variables x1 and t. Thus ordinary

differential equation of 2nd order with the coefficient λ is given for Tt(t). Because the solution

of this equation is estimated in form Cte
βt, it leads to the characteristic equation for β:

β2 − λ = 0 , and this implies β = ±
√

λ for all λ ∈ C − {0} . (33)

Hence we get

Tt(t) = Ct1e
βt + Ct2e

−βt, (34)
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where Ct1 and Ct2 are arbitrary constants. Substituting (31) into (30) with respect to (34), the

formula of a free vibration is written as

λMq(x1) + Kq(x1) = 0 , (35)

that is independent on time. This could be below rearranged in the form

λMq(x1) − K2q
′′(x1) + K1q

′(x1) + K0q(x1) = 0 , (36)

taking into account that the notation M ≡ M is used. Remaining matrices in (36) are

K2 =

⎡

⎣

αA55 0 0
0 D11 B11

0 B11 A11

⎤

⎦, K1 =

⎡

⎣

0 −αA55 0
αA55 0 0

0 0 0

⎤

⎦, K0 =

⎡

⎣

0 0 0
0 αA55 0
0 0 0

⎤

⎦. (37)

Now we define new vector of variables as q′ = q̃. Then this system of equations together with

(36) can be reduced to the system of ordinary differential equations of first order

[
q′

q̃′

]

=

[
0 I

B21 B22

][
q

q̃

]

or, in brief, y′(x1, y, λ) = B(λ)y(x1, λ) , (38)

where I is called as an identity matrix and the submatrices B21 and B22 have form

B21(λ) = K−1
2 (λM + K0) and B22 = K−1

2 K1 . (39)

The solution of (38) is given by y = xeκx1 . Substituting this into (38), after simplification we

get the standard eigenrelation for the square matrix B, i.e.

Bx = κx , which leads to (B − κI) x = 0 . (40)

Parameter κ is an eigenvalue and x is an eigenvector. Since a nontrivial solution of x is ex-

pected, the next relation must be satisfied

det (B − κI) = 0 , whence κ
6 − a2(λ)κ4 + a1(λ)κ2 − a0(λ) = 0 . (41)

When the substitution y = κ
2 is applied, we obtain the characteristic equation

y3 − a2(λ)y2 + a1(λ)y − a0(λ) = 0 (42)

from (41). The coefficients of (42) can be expressed as follows:

a0 = (c22c33 + c23c32)c11λ
3 + (j21c33 + j31c23)c11 λ2 ,

a1 = (c11c22 + c22c33 + c33c11 + c23c32)λ
2 + j21c11λ ,

a2 = (c11 + c22 + c33)λ .
(43)

We can find here some physical interpretation. Parameters c11 to c32 mean square of velocities

while j21 and j31 represent geometric and material properties of beam. They are defined with

the help of (39) and (20) as

j21 = αA11A55/DT , j31 = αB11A55/ (hDT ) ,
c22 = (A11I11 − B11R11) /DT , c32 = (B11I11 − D11R11) / (hDT ) ,
c23 = h(A11R11 − B11ρ11)/DT , c33 = (D11ρ11 − B11R11) /DT ,
c11 = ρ11/ (αA55) .

(44)
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The cubic equation (42) has three different roots, when the discriminant of (42) is nonzero.

Therefore, the solution of the characteristic equation (41) may be expected with respect of the

substitution y = κ2 in the form: κi =
√

yi and κi+3 = −κi for i = 1, 2, 3. Let us rewrite the

eigenvector x by using of two subvectors [xq, x̃q]
T

. Then inserting into (40) and with regard

to the form of matrix B, see (38) and (39), only these eigenrelation are solved

[B21 + κi (B22 − κiI)] xi
q

= 0 and [B21 − κi (B22 + κiI)]xi+3
q

= 0 . (45)

Hence the eigenvector

xi
q

=
[
ci
1, 1, ci

3

]T
and xi+3

q
=

[
−ci

1, 1, ci
3

]T
, (46)

where

ci
1 =

κi

λc11 − κ2
i

and ci
3 = − [κ4

i − λ (c11 + c22) κ
2
i + (λ2c22 + λj21) c11] h

(λc11 − κ2
i ) λc23

,

are uniquely determined except for arbitrary multiples. Taking above mentioned into consider-

ation, the vector of deformation which is defined in (31) is

q(x1, λ) =
3∑

i=1

(
Cix

i
q
eκix1 + Ci+3x

i+3
q

e−κix1

)
(47)

where Ci, Ci+3 for i = 1, 2, 3 are arbitrary constants. They are calculated from boundary

conditions which may be written in analogy with (29). Still unknown parameter λ or more

precisely λν for ν = 1, . . . ,∞ has to be determined for nontrivial solution of q(x1, λ). When we

formally rewrite q(x1, λ) with qν(x1, λν) and likewise Tt(t) with Ttν(t, λν) in (31) for concrete

λν , free vibrations of beams have form

q(x1, t) =
∞∑

ν=1

qν(x1, λν)Ttν(t, λν) . (48)

Note that the constants Cν
t1 and Cν

t2 must be determined from the initial conditions of problem.

6. Numerical examples

We perform the comparison of static deformations for some easy examples which were calcu-

lated analytically from derived relations and numerically with the help of the software MARC.

It was applied to a simple supported laminate beam uniformly loaded by q = 1 [kNm]. As

shown in fig. 4, three types of cross-section were considered that were made of six layers of

h

b

h

b

h

b

h/6

b/3

h/3 h/6

b/4

30◦

(a) (b) (c)

Fig. 4. Cross-sections (a) shape-A, (b) shape-B and (c) shape-C of beam
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Table 1. Computed values of the shear correction factor

Orientation of layers [06] [02/904]

Cross-sections of beams shape-A shape-B shape-C shape-A shape-B shape-C

Shear correction factor α [−] 0.833 3 0.670 7 0.721 4 0.825 5 0.664 9 0.667 3

the same thickness. Two sequences of stacking [06] and [02/904] were mainly explored. For

each transversely-isotropic layer the following characteristics of the unidirectional carbon fiber

composite AS4/3501-6 were used: EL = 142 [GPa], ET = 10.3 [GPa], GLT = 7.2 [GPa],
νLT = 0.27 [–] and νTT ′ = 0.4 [−]. The basic dimensions h = 18 [mm] and b = 9 [mm] of

cross-section, see fig. 4, were chosen. The length of all beams was the same l = 450 [mm].
At first, we evaluate computed values of the shear correction factor. If we first look at

α = 0.833 3 in tab. 1, we observe that is identical in value of correction factor well-known

in the case of the isotropic beam with a rectangular cross-section. The same result is true for

all beams with the rectangular cross-section and the identical orientation of all layers when we

use (22). It is also evident from tab. 1 that α is or not sensitive to shape of cross-sections and

orientation of layers, see shape-B and shape-C.

When we want to find analytical relations for wA(x1), ψA(x1) and uA(x1) of the simple

supported beam fixed at the lower ends x1 = 0 and x1 = l, the boundary conditions are

wA(0) = 0 , uA(0) = 0 , M(0) = 0 , wA(l) = 0 , N(l) = 0 , M(l) = 0 , (49)

where N and M are resultant force and moment, respectively. Numerical values of deformation

wN and uN were calculated thank to development of finite element models. The mesh of all

models have 100 elements of the same length in axial direction. Furthermore, each layer consists

of two elements through the thickness. These elements are three-dimensional and isoparamet-

ric and use triquadratic interpolation functions to represent the coordinates and displacements.

There are type 21 in the software MARC. Boundary conditions of numerical models are applied

in line with (49) at the lower ends of beams, i.e. wN(0) = 0, uN(0) = 0 and wN(l) = 0.

The static deformations of beams obtained from analytical and numerical calculation are

mostly compared in tab. 2. We can see a good correspondence between maximum beam deflec-

tion wN and wA. Since the influence of boundary conditions of finite element models on the

Table 2. Comparison in percents of numerically and analytically computated values of displacements

Orientation of layers [06] [02/904]

Cross-sections of beams shape-A shape-B shape-C shape-A shape-B shape-C

(wN − wA)/wA x3 = 0 1.49 2.34 2.46 0.56 0.78 0.87

for x1 = l/2 x3 = 0∗ 0.59 0.90 0.77 0.39 0.48 0.47

‖wN − wA‖ / ‖wA‖ x3 = 0 1.87 2.97 3.19 0.61 0.89 1.02

for wN , wA ∈ L2(0, l) x3 = 0∗ 0.64 0.98 0.85 0.39 0.49 0.48

x3 = 0 4.57 6.13 5.93 1.90 2.91 3.09

‖uN − uA‖ / ‖uA‖ x3 = h 1.75 1.48 0.77 0.98 1.49 1.19

for uN , uA ∈ L2(0, l) x3 = 0∗ 2.69 3.61 3.11 1.18 1.80 1.75

x3 = h∗ 0.58 0.63 0.63 0.39 0.42 0.58
∗ Computated with a correction
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accuracy of calculated deformations is observed, the correction (difference wN −wA in the first

element is eliminated in the rest of values wN ) is employed. Then more better agreement was

found as shown tab. 2. The comparison of results from analytical and numerical solutions were

moreover accomplished with respect to the L2-norm. It is seen to be better way to confront wN

and wA or uN and uA because these values are monitored not only at a single point. The errors

in percents were comparable in size with errors of maximum beam deflection.

In addition to the deformations of beam with rectangular cross-section and with orientation

of layers [456] and [0/30/452/60/90] were analyzed. Large differences were reached in beam

deflections. The error was about 150 % in the case [456] and about 50 % in the second one.

7. Conclusion

In this paper, the derivation of equations for static and free vibration problem in-plane of lam-

inated beams with symmetric cross-sections is given. In our one-dimensional model coupling

among beam‘s transversal deflection, rotation of cross-section and axial displacement is con-

sidered. Deformations are determined only in-plane of loading, i.e. in plane of symmetry.

Moreover the relation for calculation of the shear correction factor is found.

It is following from numerical examples that derived formulas work only for the specific

beam configurations. An excellent agreement between analytical and numerical results is dis-

covered in cases of orthotropic and cross-ply laminates. But obtained results of beam deflec-

tion give fatal errors for symmetric laminate [456] and laminate with sequences of stacking

[0/30/452/60/90]. It is the reason why we cannot recommend to use beam deflection calcu-

lation in [1], chapter 7, because it is applied for symmetric laminated beams in spite of cross-

section characteristics are determined by similar way as in this work.

However, we can expect that likewise our solution may be used for angle-ply laminates when

the thickness of layers is small against their width. The Poisson’s effect is then negligible. The

advantage of this solution is also that sandwich beams with full core and not only rectangular

cross-section can be calculated. It suffices to define appropriate material properties in inner

layers.

Finally, we point out that developing and analyzing this model of beam will be connected

with identification of material properties on samples in future. Of particular interest is the possi-

bility of experimental identification of these properties by measurement of natural frequencies.
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