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b
JUNOZ&PARTNERS ENGINEERING, Ltd.

Received 10 September 2008; received in revised form 20 November 2008

Abstract

This paper deals with transient thermal — stress analysis of concrete structure around the nuclear reactor loaded

by dead load and thermal loads. The FEM simulations were performed for various input materials characteristic

of concrete based on experimentally obtained physical-mechanical properties and measuring of temperatures. The

proposed calculation model, procedures of numerical simulation have been describing conclusions of analysis.

The numerical simulation has been performed by means of the finite element method (FEM) using a commercially

available ANSYS code.
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1. Introduction

Thermal effect evaluation of concrete structures in nuclear power plants (NPP) is important

factor for the plant life management strategy considering ageing of the concrete during plant

operation. Rheological properties of the concrete result in creeping and strain release in time,

depending on degradation processes, environment humidity, temperature and corrosion rates on

steel surface [1]. Its solution is expected to provide a new knowledge about thermally influ-

enced reinforced-concrete structures, i.e. knowledge that is inevitable for the lifetime extension

process of nuclear facilities. Individual analyses serve as input for optimal selection of possibil-

ities for increasing the safety and serviceability of concrete elements [2]. Based on simulation

results, it will be possible to predict the functionality of concrete structures under potential ex-

treme impacts encountered in NPP and to define dominant degradation processes in the most

exposed location from the standpoint of ageing. For getting a more accurate image of the ac-

tual behaviour of the structure, it’s necessary to consider all mentioned factors for a change of

physical and mechanical properties as well as to model the course of load in time.

The paper is aimed at lifetime increasing of reactor pit concrete structure (RPCS) of

VVER440 in the power generation industry. Only linear calculation models are applied for

simulation of the behaviour of concrete structure around nuclear reactor. Geometrical model of

the structure is obtained from CAD system Pro/Engineer and by IGES file is transformed into

FEM software ANSYS and finite elements mesh has been generated.

Next goal of this work is generation of reliable FEM model, which is possible to solve on

available PC hardware. At last is necessary to verify potential impacts of extreme as well as

operating conditions on the structure under thermal effects.
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2. Theoretical background

The governing equation for transient thermal analysis is [3]

ρcp

(

∂T

∂t
+ v · ∇T

)

−∇ · (k∇T ) = qB on Ω, (1)

where ρ is density, cp is specific heat at constant pressure, T is temperature, v is velocity vector

of differential control volume, ∇ is nabla operator, k is thermal conductivity coefficient, q is

heat flux vector and qB is heat generation rate per unit volume. The boundary and initial

conditions have to by added to (1) for uniqueness of solution.

Using principle of virtual temperatures on (1) we obtain governing equation in matrix form

CtṪ + (Ktm + Ktb + Ktc)T = Qf + Qc + Qg, (2)

where Ct is thermal capacity matrix, Ktm is mass transport conductivity matrix, Ktb is diffusion

conductivity matrix, Ktc is convection surface conductivity matrix, T is temperature vector, Qf

is mass flux vector, Qc is convection surface heat flow vector, Qg is heat generation load vector.

Applying the variational principle to governing equations of elastic continua and using

thermoelastic constitutive equations [4] we obtain element matrix equation for strong coupled

thermo-elastic problem
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}

, (3)

where M is element mass matrix, C is element structural damping matrix, K is element stiff-

ness matrix, U is displacement vector, F is structural load vector, Kt is element diffusion

conductivity matrix, Q is thermal load vector (summation of all vectors on right side (2)), Kut

is element thermo-elastic matrix, Ctu is element thermo-elastic damping matrix.

We note that if interaction between coupled fields has a low degree of nonlinearities, then

it is possible to solve weak coupled thermo-elastic problem. This type of coupling is more

efficient and flexible and therefore was used in our analysis. In this case Kut = Ctu = 0 and

for undamped system C = 0. The weak coupling may be shown in the most general form

[

K11(X1,X2) 0

0 K22(X1,X2)

]{

X1

X2

}

=

{

F1(X1,X2)
F2(X1,X2)

}

(4)

Then calculation involves two analyses, each belonging to a different physical field. Coupling

is made by applying results from one analysis as loads to next analysis.

3. FEM model and solution

Finite element method (FEM) is well adapted to the computation of stresses and strains due to

temperatures. A process of computation can be divided into two steps. First, the temperatures

are determined as a function of time. Then, the mechanical computation use previous results to

get displacements (at nodes) and stresses (at integration points of finite elements). Generally,

for practical reasons, used mesh for the heat transfer computation is also the same as for the me-

chanical analysis. However, the main difficulty comes from the extreme high gradients around

the heat source for the temperature and consequently for the stresses. A standard procedure

when applying FEM consists of several mutually linked steps.
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The first and basic step was to establish the model geometry. In regard to that concrete

structure represents complicate structure creation of a realistic model with correct boundary

conditions takes much time. The mesh quality can have a considerable impact on the compu-

tational analysis with regards on reliable results of solution and computing time. This aspect is

especially important if transient analysis is considered. From this point of view, the quality of

mesh generation is very important because it provides some indication of how suitable a par-

ticular discretization is for the considered analysis type. Different types of elements have been

used for generation of FEM mesh.

In this simulation was performed realistic response of structure on static and temperature

loadings and their effect on carrying capacity of concrete structure. Regarding to an interaction

of reactor with surrounding structure, numerical modelling includes:

1. Static analysis of concrete structure loaded by self-weigh.

2. Transient thermal linear analysis.

3. Calculation of thermal stresses.

4. Evaluating the limiting state of structure.

3.1. Geometric model and FEM mesh

Generated model satisfy symmetric boundary conditions (fig. 1), as far as unessential parts of

concrete structure and reactor pressure vessel (RPV) are neglected. Geometric model of struc-

ture was created in CAD system Pro/Engineer and imported through IGES files into ANSYS

program. As mentioned before thermo-elastic coupled problem is solved. Large attention was

focused on selection of suitable finite elements types, mesh density, defining static and geomet-

ric boundary conditions.

Simulation has been carried out for input material characteristics of concrete, pressure ves-

sel, liner and other steel parts (tab. 1). Materials of concrete structure have been assumed

as homogenous isotropic continuum. Finite element mesh was generated mainly using 8-nodes

solid elements SOLID70 for thermal analysis and SOLID45 for stress analysis. Whole structure

Table 1. Material properties

E ∝ α ρ c λ

[GPa] [–] [K−1] [kg · m−3] [J · kg−1 · K−1] [W · m−1K−1]

Steel parts 210 0.3 1.2−5 7 850 434 58

Lithium crushed

material

0.3 0.3 1.4−5 6 000 880 20

Concrete parts 30 0.15 1.2−5 2 300 820 3.2

Concrete

serpentine

20 0.15 1.2−5 3 500 995 4.5

Reactor pressure

vessel

200 0.3 1.25−5 7 800 525 36.3

Liner 200 0.3 1.2−5 7 850 440 54.5

E – Young’s modulus, ∝ – Poisson number, α – thermal expansion coefficient, ρ – density,

c – specific thermal capacity, λ – specific thermal conductivity
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Fig. 1. Geometric model

Fig. 2. Finite element mesh

of hermetic zone (walls, floors, top walls) is covering by steel liner from inner side, which safe-

guards it’s tightness. Liner thickness is 8 mm and for discretization shell elements SHELL132

were used for thermal analysis and SHELL181 for stress analysis. We note that before compu-

tation of displacement and stress fields, it is necessary to convert thermal finite elements back in
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to corresponding structural finite elements. Dilatation of structure was developed due to heat-

ing of it, so it was necessary to assure relative motion of concrete parts in location with large

temperature gradients. We note that RPV is seated by collar on support, mounted on supporting

frame of pit reactor structure. Support consists from support ring, sliding surfaces, splice plates,

wedges and fixing parts. Therefore, contact was modelled between: lower part of reactor and

concrete supporting members (supporting members), upper part of reactor and collar of RPV,

supporting ring and concrete part of pit reactor structure. The contact elements CONTA173

and TARGE170 were used in simulation. The friction coefficient f = 0.8 between contact

surfaces has been taking to a consideration.

3.2. Boundary conditions

Previous analyses showed that it’s very important to define correct boundary conditions [6]. For

thermo-mechanical analysis is necessary to define thermal and structural boundary conditions.

Because structural boundary conditions are more simply, we first describe them. At first as-

sumption of symmetric boundary conditions for whole structure is accepted. This assumption

strongly reduces the size of the FE-model, CPU time and disc memory needed. Then all degrees

of freedom (DOF) are fixed on bottom of base plate in y direction. So that boundary conditions

satisfied static determinateness are fixed DOF of base plate in corner nodes. Concrete structure

is loaded by self-weight and pressure in RPV.

Boundary conditions for transient thermal analysis are more complicated. Start-up of reactor

on operating temperature is given by prescribed temperatures on inner surface of RPV according

to measured time courses (fig. 3, curve RPV) and on concrete cylinder part (fig. 3, inner wall).

To take into account heat transfer by convection it is important to put real values of specific

heat transfer (heat transfer coefficient) between flow medium and RPV wall and between RPV

wall and environment (free convection). Large amount of experimental data in heat flow was

assembled in recent years. However, these are published only for some flow type and flow con-

ditions. It is possible to utilize these data for determination of specific heat transfer coefficient

values [7]. In fact, heat transfer coefficient between RPV outer surface is temperature dependent

and temperature of environmental air is variable, too. In our case a constant heat transfer coeffi-

cient in places of contact with ground h = 40 [W ·m−2K−1] and h = 38 [W ·m−2K−1] for RPV

outer surface was considered. For heat transfer between upper surfaces of pull support and inner

wall, cylindrical surfaces of liner near to RPV heat transfer coefficient h = 25 [W · m−2K−1]

was considered. For reverse sides of concrete supporting member and pull support, top cover

and environment air h = 10.5 [W · m−2K−1] was considered.

Fig. 3. Time function, temperature [C] – time [s]×10
5

413
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3.3. Solution techniques

For assurance heat transfer between contact surfaces it is necessary to execute structural static

analysis with contact conditions and dead loading before thermal analysis. Then transient ther-

mal analysis is executed. The displacements and stresses are computed by using linear pseudo-

transient analysis with neglecting inertial effects. We note that temperature field computed in

thermal analysis is used for calculation of volume loads in dynamic analysis.

4. Simulation and results

The results of numerical simulations are basis for examination of reliability of whole structure

or it is possible to qualify only selected part of structure [5]. As pointed out above first analysis

of temperature field has been executed. In fig. 4 temperature a field of structure at the end of

thermal analysis is described. Maximum temperature reaches value 250 ◦C at RPV. Graph of

temperature vs. time is given in fig. 5 at nodes U1 to U3 and temperature field in concrete

supporting member is given in fig. 6. Maximum temperature values are: U1 = 185 ◦C, U2 =
100 ◦C, U3 = 80 ◦C. Node U1 is the closest point to pressure vessel. Node U3 is approximately

in the middle of concrete supporting member. Maximum temperature in concrete supporting

member is 80.116 ◦C. In fig. 7 is time course of temperatures at nodes U1 to U3. We can

observe from simulation results that high temperatures are occurred in relative small region and

they do not reach values in concrete masonry. So that case of temperature increase is excluded

at RPCS.

As we mentioned structure stress calculation was executed in two steps. The goal of analysis

was checking the allowable stress in concrete supporting member on the basis of evaluated

Fig. 4. Stress field at the end of heating
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Fig. 5. Node locations for temperatures

Fig. 6. Temperature field in concrete supporting member

stresses in integration points of finite elements. In fig. 8 stress intensity field is shown

σi = max(|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|) (5)

and its maximum value is 21.013 MPa. From numerical results are evaluated stresses at node

points as main stresses in tension and at press for nodes is U1 to U4 (fig. 9). The stresses

values at the end of heating are given in tab. 2. Maximum value of main stress in tension is

σ1 = 0.104 602 MPa at node U4 and maximum value of main stress in compression is σ3 =
−6.952 84 MPa at node U3. Allowable stress of used concrete C25/30 in compression is fcm =
−33 MPa and average strength in tension is fcmt = 2.6 MPa [8].
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Fig. 7. Temperature field in selected nodes

Fig. 8. Stress intensity
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Fig. 9. Node locations for stresses

Table 2. Values of main stress in concrete supporting member [MPa]

Nodes

Main stresses U1 U2 U3 U4
σ1 −0.655 269 0.100 779 −0.804 218 0.104 602
σ2 −1.736 67 −0.209 189 −2.052 04 −0.209 279
σ3 −6.025 06 −0.609 500 −6.952 84 −0.612 427

5. Conclusion

This paper deals with the thermo-elastic analysis of RPCS around the nuclear reactor for in-

dividual load types using FEM commercial program ANSYS 11.0. Three-dimensional FE

model was used in numerical simulation of RPCS and non-stationary conditions of heat transfer

were considered. These conditions are incoming immediately after running of reactor. Solving

weak coupled thermo-elastic problem were determined values of displacements, deformations,

stresses and internal forces in the whole concrete structure. Effects from static and thermal

loads on RPCS were analyzed particularly. Largest temperatures are reached near by of RPV.

So that accumulation of high temperatures is relatively at small region and do not interfere into

concrete massif. We note that on base experiences of concrete experts is not necessary to accept

none arrangements as far as temperature in concrete not exceed 100 ◦C.

In strength analysis were evaluated only stresses in selected part of structure, at concrete

supporting member. The results are summarized in tab. 2. As we consider that average strength

of used concrete C25/30 in compression is fcm = 33 MPa and average strength in tension

is fcmt = 2.6 MPa, then we can state that concrete structure meets according to method of

allowable stress. In conclusion it is possible to state that concrete structure meets static and

thermal effects.
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In future research we will consider examination of critical cross-sections by limit deforma-

tion method according to STN P ENV 1992-1-6. It should be contribution to complex analysis

of the buildings of NPP from the point of view of their resistance to possible accidents. Taking

into account the fact that these are systems with stochastic character and likewise their degra-

dation is of stochastic character, the aim of all modern approaches to the evaluation of complex

reliability of structures will be use probabilistic methods of solution.
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