On Convergence and Complexity of
Radiosity Algorithms

Laszlé Szirmay-Kalos and Gabor Marton
Department of Process Control, Technical University of Budapest,
Budapest, Miiegyetem rkp. 11, H-1111, HUNGARY

szirmay@fsz.bme.hu

ABSTRACT: This paper evaluates and compares the convergence and complexity
characteristics of radiosity algorithms with a special emphasis on randomized methods.

Key Words: Radiosity method, complexity evaluation, randomized algorithms

Introduction

The radiosity method is based on the numerical solution of the shading equation by the
finite element method. It subdivides the surfaces into small elemental surface patches.
Supposing that these patches are small and they have only diffuse reflection, their intensity
distribution over the surface can be approximated by a constant value. Let the energy
leaving a unit area of surface 7 in a unit time in all directions be B;, and assume that the
light density is homogeneous over the surface. This light density plays a crucial role in
this model and is also called the radiosity of surface :.

Consider the energy transfer of a single surface on a given wavelength. The total
energy leaving the surface (B; - dA;) can be divided into its own emission (E; - dA;) and
the diffuse reflection of the radiance coming from other surfaces.

The diffuse reflection is the multiplication of the diffuse coefficient g; and that part of
the energy of other surfaces which actually reaches surface ¢. Let Fj; be a factor, called
the form factor, which determines that fraction of the total energy leaving surface ;7 which
actually reaches surface .

Considering all the surfaces, their contributions should be integrated, which leads to
the following formula of the radiosity of surface 1:

B,--dA,-=E,--dA;+g;-/B,--F,-,~-dA,- 1)

Taking advantage of the homogeneous property of the surface patches, the integral can
be replaced by a finite sum:

B,"AA,'=E;-AA;+Q;-ZBj'Fj,'-AAj (2)
J

Using the reciprocity relationship stating that Fj; - AA; = Fj; - AA;, we get:
B;=E;+0i-Y_B; F; 3)
3

313

This equation can be written for all surfaces, yielding a linear equation where the unknown
components are the surface radiosities (B;):

1—01F1n —oF2 ... -0 Fin B, E,
"‘.Q2F11 1—p02F5 .. —02FN B, _ E, (4)
—onFn1 —onFn2 ... 1 —ponFnn By En

or in matrix form, having introduced matrix R;; = p; - Fj;:
(1-R)-B=E 1 stands for the unit matrix (5)

The meaning of Fj; is the fraction of the energy reaching the very same surface. Since
in practical applications the elemental surface patches are planar polygons, F;; is 0.

Both the number of unknown variables and the number of equations are equal to the
number of surfaces (N). The calculated B; radiosities represent the light density of the
surface on a given wavelength. To generate color pictures at least three independent
wavelengths should be selected (say red, green and blue), and the color information will
come from the results of the three different calculations.

Thus, to sum up, the basic steps of the radiosity method are these:

1. F;; form factor calculation.

2. Describe the light emission (E;) on the representative wavelengths, or in the sim-
plified case on the wavelength of red, green and blue colors.

3. Solve the linear equation for representative wavelengths, yielding B;*, B} ... B}

4. Generate the picture taking into account the camera parameters by any known
hidden surface algorithm. If it turns out that surface ¢ is visible in a pixel, the color
of the pixel will be proportional to the calculated radiosity.

In practical circumstances the number of elemental surface patches can be very large,
making the form factor computation and the solution of the linear equation rather time
consuming. Thus special tricks are badly needed to speed up the method and to make it
appropriate even for very complex object scenes. The tricks are usually based on iteration
or on randomization. This paper evaluates and compares the various radiosity calculation
algorithms with respect to their convergence and complexity, and highlights the merits of
the randomized approaches as well.

Form factor computation

The direct application of the described algorithm requires the calculation of the N? num-
ber of form factors first, then the solution of an N x N linear equation. The time and
space requirements of the form factor calculation, if all of them are needed, cannot be less
then O(N?) time and space because the output size of the solution is exactly N?2.

A class of form factor calculation algorithms, called geometric methods, aims at com-
puting all the form factors. Thus, in the optimal case we can expect a geometric algorithm
to have O(N?) complexity. Randomized methods, however, take advantage of the fact
that many of the form factors are very small, which are not worth computing and stor-
ing. This means that only the relevant form factors are estimated, which results in an
algorithm having more appealing complexity.

314

Geometric methods

Geometrical form factor calculation methods apply the following approximation:

1 dA; - cos ;- dA; - cos ¢; cos ¢; - cos ¢;
Fi=ga] | M —— ~ [H S A 6)
AA; AA; AA;

where cos ¢;, cos #; and r are the angles of the surface normals and the direction vector
pointing from dA; and dA; and the length of this vector respectively.

Nusselt [SH81] has realized that this formula can be interpreted as projecting the
visible parts of AA; onto the unit hemisphere centered above dA;, then projecting the
result orthographically onto the base circle of this hemisphere in the plane of dA;, and
finally calculating the ratio of the doubly projected area and the area of the unit circle
(7). Due to the central role of the unit hemisphere, this method is called the hemisphere
algorithm.

This means that a single row of the form factor matrix can be determined by solving
a visibility problem, where the “window” is a half sphere and the “eye” is in the center
of surface ¢, followed by an area computation. It is well known that only image space
visibility algorithms, such as z-buffer algorithm and ray tracing for instance, are capable
of doing this in linear, that is in O(N - P?), time, where P? is the number of “pixels”
used to discretize the continuous image space. Area computation over a discretized space
can be done in O(P?) time. The complicated form of the “window” can be simplified if
the hemisphere is replaced by other immediate surfaces, such as a hemicube [CG85] or
a cubic tetrahedron [BKP91]. In these cases the modification of the geometry must be
compensated by appropriate weighting functions in area computation. This modification
does not effect the inherent visibility computation phase, thus their computation time can
differ only in a scalar factor. This scalar factor, however, can be really significant. For
hemi-cube and hemishpere algorithms, the window surface consists of normal rectangles,
which can be exploited by the built in transformation and scan-conversion hardware of
graphics workstations.

Using z-buffer method and supposing a hemicube to be placed over the surfaces, the
form factor calculation algorithm is shown below, proving that it really has O(N? - P?)
time complexity.

for i=1to N do for j =1to N do F;; =0;
fori=1to N do
camera = center of AA;;
for k=1to 5do /| consider each face of the hemicube
window = kth face of the hemicube;
for t=0to P—1do for y =0to P —1 do pizel[z,y] = 0;
Z-BUFFER ALGORITHM (color of surface j is j) // requires O(N) time
for t=0to P—1do fory=0to P—1do
if (pizel[z,y] > 0) then F; izelsy += wi(z — P/2,y — P[2)/P?;
endfor
endfor

315

Randomized form factor calculation

Probabilistic or randomized approaches can often reduce the complexity for the price of
generating the correct result only with a given probability that can be made very close
to 1. A randomized approach to form factor calculation is based on the recognition that
the formula defining the form factors can be taken to represent the probability of a quite
simple event if the underlying probability distributions are defined properly.

An appropriate such event would be a surface j being hit by a particle leaving surface
¢ if the underlying probability distributions are defined as following:

1. Assume the origin of the particle on the surface to be selected randomly by uniform
distribution.

2. Let the direction in which the particle leaves the surface be selected by a distribution
proportional to the cosine of the angle between the direction and the surface normal.

This probability can be estimated by random simulation. Let us generate n particles
randomly using uniform distribution on the surface i to select the origin, and a cosine
density function to determine the direction. The origin and the direction define a ray
which may intersect other surfaces. That surface will be hit whose intersection point
is the closest to the surface from which the particle comes. If shooting n rays randomly
surface j has been hit k; times, then the probability or the form factor can be estimated by
the relative frequency, ﬁ',-j = k;j/n, since k; is a random variable of binomial distribution
with expectation value nF;; and square variance nFj;(1—F;;). Thus the expectation value
and square variance of the relative frequency are:

: o Fy(1—Fy) _ 1
Elfy)=Fy o)== < — (")
This means that if the square variance of the form factor estimation is expected to be less
than some D, then n must be greater than 1/4D.
Summarizing the pseudo code of the randomized form factor calculation is as follows:

for :=1to N do for j =1to N do F; =0;
fori=1to N do for j=1to ndo

P = a random point on surface ¢ by uniform distribution

d = a random direction from 7 by cosine distribution

if ray(ﬁ,(i) hits surface s first then F;, += 1/n;
endfor

The only step which requires O(N?) time is the initialization of the form factor matrix
by zeros, the rest part is only an O(N - n) algorithm. Since n is independent of N, the
randomized form factor method can calculate the form factors in O(N) time. This means
that if n < N, then the randomized algorithm can estimate only a subset of the form
factors, those having very small values are ignored by the random simulation.

The O(N?) initialization phase can be improved by sparse matrix techniques, which
store only non-zero matrix elements with their indices in appropriate data structures. The
handling of these data structures, however, can pose additional computational problem
which must be taken into consideration. If the non-zero elements and their indices are
stored in a balanced binary tree, for instance, then the update of a single matrix element
is an O(log N) process, making the form factor computation have O(N log N) complexity.

316

Solution of the linear equation

The most obvious way to solve a linear equation is to apply the Gauss elimination method.
Unfortunately it fails to solve the radiosity equation for more complex models effectively,
since it has O(N?) time complexity, and also it accumulates the round of errors of digital
computers and magnifies these errors to the extent that the matrix is close to singular.

Fortunately another technique, called iteration, can overcome both problems. Ex-
amining the radiosity equation, '

Bi=E;+0;)_ B;-F;
J

we will see that it gives the equality of the energy which has to be radiated due to
emission and reflection (right side) and the energy really emitted (left side). Suppose
that only estimates are available for B; radiosities, not exact values. These estimates can
be regarded as right side values, thus having substituted them into the radiosity equation,
better estimates can be expected on the left side. If these estimates were exact — that is,
they satisfied the radiosity equation —, then the iteration would not alter the radiosity
values. Thus, if this iteration converges, its limit will be the solution of the original
radiosity equation.

In order to examine the method formally, the matrix version of the radiosity equation
is used to describe a single step of the iteration:

B(m+1)=R-B(m)+E (8)

A similar equation holds for the previous iteration too. Subtracting the two equations,
and applying the same consideration recursively, we get:

B(m +1) — B(m) = R- (B(m) — B(m — 1)) = R™ - (B(1) — B(0)) (9)
The iteration converges if
lim |B(m +1) —B(m)|| =0, thatisif lim IR™|| =0

for some matrix norm. Let’s use the |R|s norm defined as the maximum of absolute
row sums, and a vector norm that is compatible with it:.

IRlleo = max{}_ Fij - @i}, |Iblleo = max{|ti[} (10)
J

Denoting ||R|| by ¢, we have:

B+ ~B(m)] = IR (B(0)~BO)I < IRI"-1B1)~BO)] =" B() ~BO)]
according to the properties of matrix norms. Since F;; represents the portion of the
radiated energy of surface ¢, which actually reaches surface j, 3°; Fi; is that portion
which is radiated towards any other surface. This obviously cannot exceed 1, and for
physically correct models, diffuse reflectance p; < 1, giving a norm that is definitely less
than 1. Consequently ¢ < 1, which provides the convergence with, at least, the speed of
a geometric series.

The complexity of the iteration solution depends on the operations needed for a single
step and the number of iterations providing convergence. A single step of the iteration

317

requires the multiplication of an N dimensional vector and an N x N dimensional matrix,
which requires O(N?) operations.

Concerning the number of necessary steps, we concluded that the speed of the con-
vergence is at least geometric by a factor ¢ = |R||c. The infinite norm of R is close
to being independent of the number of surface elements, since as the number of surface
elements increases, the value of form factors decreases, sustaining a constant sum of rows,
representing that portion of the energy radiated by surface 7, which is gathered by other
surfaces, multiplied by the diffuse coefficient of surface :. Consequently, the number of
necessary iterations is independent of the number of surface elements, making the iteration
solution an O(NN?) process.

Gauss-Seidel iteration

The convergence of the iteration can be improved by the method of Gauss-Seidel iteration.
Its basic idea is to use the new iterated values immediately when they are available, and
not to postpone their usage until the next iteration step.

Denoting the lower triangle matrix and the upper triangle matrix of R by L and U
respectively, the Gauss-Seidel iteration can be defined in matrix form:

B(m+1)=L-B(m+1)+U-B(m)+E (12)

As for the normal iteration, the equation representing step m — 1 of the iteration is
subtracted from this, resulting in:

B(m +1) ~ B(m) = L- (B(m) - B(m— 1)) + U+ (B(m + 1) = B(m)) (13)
Denoting B(m + 1) — B(m) by 6B(m + 1) we get:
B(m+1)=L-éB(m+1)+ U 6B(m) (14)

Let o; and B; be the sum of absolute values of the elements in the row ¢ of L and U
respectively, that is:

n i—1 n n
i =Y Ll =Y IRil, Bi=)_|Uiil= > Ryl (15)
j=1 j=1 7=1 j=i+1

Using the definition of ||R||c we have: a; + 8; < ||R|[c = ¢. Let us estimate the absolute
value of the element 7 of §B(m + 1) using equation 14:

|6B(m +1)|; < a; - ||6B(m +1)|| + B; - ||6B(m)|| (16)
Expressing the norm of §B(m + 1) from this, we are left with:

16B(m + 1)|| < max{e; - [|6B(m + 1)|| + Bi - [|6B(m)|[} (17)

Let a = o; and B = B; for that ¢+ which maximizes the right hand side of this inequality.
Rewriting this inequality with these two new variables:

16B(m + 1)|| < e [|6B(m +1)]| + 8- [[6B(m)]] (18)

318

Expressing |[§B(m + 1)|| we have:

B

16B(m + DIl < 7oy

- ||6B(m)| (19)

The iteration is convergent if 3/(1 — &) < 1. Since @ + 8 < g where ¢ is the norm of R
and ¢ < 1, we can write:

B . q—a_q_a(l—q)

l—a-1-a_ I~ 1 (20)

This means that Gauss-Seidel iteration is always convergent for radiosity equations and
its speed of convergence is better than that of the normal iteration.

A trick, called successive relaxation, can further improve the speed of convergence.
Suppose that during the mth step of the iteration the radiosity vector B(m + 1) was
computed. The difference from the previous estimate is 6B = B(m + 1) — B(m) showing
the magnitude of difference, as well as the direction of the improvement in the N dimen-
sional space. According to practical experience, the direction is quite accurate, but the
magnitude is underestimated, requiring the correction by a relaxation factor w:

B*(m+1)=B(m)+w-6B (21)

The determination of w is a crucial problem. For many special matrices, the optimal
relaxation factors have already been determined, but concerning our radiosity matrix,
only practical experiences can be relied on. Cohen [CGIB86] suggests that relaxation
factor 1.1 is usually satisfactory.

Progressive refinement

The previously discussed radiosity method determined the form factor matrix first, then
solved the linear equation by iteration. Most of the form factors, however, have very little
effect on the final image, thus, if they were taken to be 0, a great amount of time and
space could be gained for the price of a negligible deterioration of the image quality. A
criterion for selecting unimportant form factors can be established by the careful analysis
of the iteration solution of the radiosity equation:

Bi(m+1)=E; + o ZBj(m) -Fyy=E; + Z (B; due to B;(m)) (22)

If B; is small, then the whole column 7 of R will not make too much difference, thus
it is not worth computing and storing its elements. Suppose we have an estimate B;
allowing for the calculation of the contribution of this surface to all the others, and for
determining a better estimate for other surfaces by adding this new contribution to their
estimated value. If an estimate B; increases by AB;, due to the contribution of other
surfaces to this radiosity, other surface radiosities should also be corrected according to
the new contribution of B;, resulting in an iterative and progressive refinement of surface
radiosities:
B = B + ;- (AB;) - F; (23)

A radiosity increment of a surface, which has not yet been used to update other surface
radiosities, is called unshot radiosity. In fact, in equation 23, the radiosity of other

319

surfaces should be corrected according to the unshot radiosity of surface j. It seems
reasonable to select for shooting that surface which has the highest unshot radiosity.
Having selected a surface, the corresponding column of the form factor matrix should be
calculated. This reduces the burden of the storage from the N x N matrix elements to
only a single column containing N elements, but necessitates the recalculation of the form
factors. Let us realize that equation 23 requires Fy;, Fy;, ..., Fnj, that is a single column
of the form factor matrix, to calculate the radiosity updates due to AB;. The hemicube
method, however, supports “parallel” generation of the rows of the form factor matrix,
not of the columns. For different rows, different hemicubes have to be built around the
surfaces. Fortunately, the reciprocity relationship can be applied to evaluate a single
column of the matrix based on a single hemicube:

AA;
AA;

These considerations have formulated an iterative algorithm, called progressive re-
finement. The algorithm starts by initializing the total (B;) and unshot (U;) radiosities
of the surfaces to their emission, and stops if the unshot radiosity is less than an acceptable
threshold for all the surfaces:

forj:ltoNdij=Ej;Uj=Ej
do
j = Index of the surface of maximum Uj;
Calculate Fj1, Fj; ..., Fjn by a single hemicube;
fori=1to Ndo AB; = p; - Uj . Fj,‘ . AAJ'/AA,'; U; += AB;; B; += AB;;
U; =0;
error = max{U, Uy, ...,Un};
while error > threshold,

Fji-AAj=F;-AA; = F;=F;- 21 (i=1,..,N) (24)

This algorithm is always convergent, since the total amount of unshot energy decreases
in each step by an attenuation factor of less than 1. This statement can be proven by
examining the total unshot radiosities during the iteration, supposing that U; was the
maximal in step m, and using the notation ¢ = ||R||c again:

N
ZU(m+1)—ZU (m)+U; - Zé’z F,,_(ZU(m ~U;i+U;) 0i-F5 <
7 i

N 1—q X N
S(U(m) =(1-9)- U (- —=)- 2 Ui(m)=¢"- 3 Ui(m) (25)

since ¢ = ma,x;{Efv 0i F;;} < 1land U; > >N U;/N, because it is the maximal value
among U;-s.

Note that, in contrast to the normal iteration, the attenuation factor ¢* defining the
speed of convergence now does depend on N, slowing down the convergence. Its effect
can be evaluated by determining the number of iterations needed to make

error = max{U;,Us,...,Un} < ¢

which stops the algorithm. Since after the mth step of iteration

) N
max{Uy(m), Uz(m), ..., Un(m)} < 3 Ui(m) < (1 — —— EU (0), (26)

320

the stopping condition is satisfied if

(1-1=9m

= c (27)

€
< =
>N U:(0)
Expressing m we get:

m> logC _ —logC —logC-N
log(1-(1-q)/N) ~ (1-9)/N) ~ 1-g

Thus the slow down of the convergence is approximately a factor of N, which makes the
number of necessary iterations proportional to N. A single iteration contains a single loop
of length N in progressive refinement, resulting in O(N?) overall complexity. Interestingly,
progressive refinement does not decrease the O(N?) time complexity, but it can achieve
O(N) space complexity instead of the O(N?) behavior obtained by the original method.

(28)

Probabilistic progressive refinement

In probabilistic form factor computation, rays were fired from surfaces to determine which
other surfaces can absorb their radiosity. In progressive refinement, on the other hand,
the radiosity is shot proportionally to the precomputed form factors. These approaches
can be merged in a method which randomly shoots photons carrying a given portion of
energy. As in progressive refinement, the unshot and total radiosities are initialized to
the emission of the surfaces. At each step of the iteration a point is selected at random
on the surface which has the highest unshot radiosity, a direction is generated according
to the directional distribution of the radiation (cosine distribution), and a given portion,
say 1/nth, of the unshot energy is delivered to that surface which the photon encounters
first on its way. The program of this algorithm is then:

for j=1to Ndo B; =U; = E;
do
j = Index of the surface of maximum U;
P = a random point on surface j by uniform distribution
d = a random direction from 7 by cosine distribution
if ray(ﬁ,d-) hits surface ¢ first then U; += g; - U;/n; B; += p; - U;/n;
Uj -= Uj/n;
error = max{Uy, Uy, ...,Un};
while error > threshold,;

This is possibly the simplest algorithm for radiosity calculation. Since it does not rely
on form factors, shading models other than diffuse reflection can also be incorporated.

Let us realize that this algorithm is always convergent since the total unshot radiosity
decreases in each step by a factor less than 1 as for the case of deterministic progressive
refinement. Using the considerations made when the speed of the convergence in the
progressive refinement was calculated, we can conclude that the number of the required
iteration steps is proportional to N - n. This means that this algorithm also requires
O(n - N?) time to determine the radiosities. This algorithm has very appealing storage
complexity. Since it does not require the form factors to be calculated and stored (the

321

random shooting distributes the energy proportionally to the form factors), the storage
complexity is O(N).

Since this is a randomized algorithm, the radiosities to which this is converging approx-
imate the real radiosities with only a given probability. The probability can be controlled
by the factor n. The definition of this factor is a crucial problem since if it is small, then
the result will probably be inaccurate, but if it is large, then the algorithm will be very
slow. It can be shown that the expectation of the calculated radiosities will be equal to
the real radiosities and the square variance will be lower then E?/(4n — N) where E is the
total energy of the system. Thus by increasing n the variance can be kept under control.

Conclusions

This paper reviewed the radiosity calculation algorithms which can be classified to classical
methods which separate the steps of form factor calculation and the solution of the linear
equation and direct methods which do not require a separate form factor calculation
step. Due to the output size of the problem, the form factor calculation cannot be
better than O(N?), both in space and time, if all the form factors are needed but optimal
algorithm based on geometric considerations doing this job in O(N?- P?) time are available.
However, if the negligible form factors need not be computed even better algorithms can
be constructed using randomized techniques. If we can assume the form factor matrix
to be initialized by zeros, an O(n - N) method can be elaborated. If no such initialized
matrix is available, sparse matrix techniques result in O(n- N log N) time and O(N) space
algorithms. These methods come to the foreground if NV is very large.

Classical methods require the solution of a linear equation which requires O(N 3) time
if Gauss elimination is used, but only O(N?) time if iteration is applied. It has been shown
that both the normal and the Gauss-Seidel iteration are always convergent for radiosity
equations, and that the Gauss-Seidel iteration’s speed of convergence is always better.

Direct methods do not separate the form factor calculation from the radiosity deter-
mination. The progressive refinement has thus O(N) storage complexity but, as has been
proven, has still O(N?) time complexity. Its randomized version does not use the concept
of form factors at all, which resulted in an extremely simple algorithm, but its complexity
characteristics could not be made better that that of the progressive refinement.

References

[BKP91] Jeffrey C. Beran-Koehn and Mark J. Pavicic. A cubic tetrahedra adaption
of the hemicube algorithm. In James Arvo, editor, Graphics Gems II, pages
299-302. Academic Press, Boston, 1991.

[CG85] Michael Cohen and Donald Greenberg. The hemi-cube, a radiosity solution for
complex environments. In Proceedings of SIGGRAPH ’85, pages 31-40, 1985.

[CGIB86] Michael F. Cohen, Donald P. Greenberg, David S. Immel, and Phillip J. Brock.
An efficient radiosity approach for realistic image synthesis. IEFEE Computer
Graphics and Applications, 6(3):26-35, 1986.

[SH81] Robert Siegel and John R. Howell. Thermal Radiation Heat Transfer. Hemi-
sphere Publishing Corp., Washington, D.C., 1981.

322

