
Interacting Agents with Memory
in Virtual Ecosystems

Bedřich Beneš

Dep. of Computer Science

ITESM CCM México D.F.

Bedrich.Benes@itesm.mx

Javier Abdul Cordóba

Dep. of Computer Science

ITESM CEM México D.F.

abdul@itesm.mx

Juan Miguel Soto

Dep. of Computer Science

ITESM CEM México D.F.

mguerrer@itesm.mx

ABSTRACT

An agent-based modeling of virtual ecosystems is presented. A virtual ecosystem develops by

plant competition according to biologically inspired rules and tends to reach stability. Virtual

agents enter the ecosystem and perform actions that favor certain plant species and cause system

instabilities. Agents liberate space for some plant species by eliminating the others, they take

out old plants if an area is overcrowded, they seed plants, water them, etc. Agents synchronize

by message passing to cover the area efficiently and not to interpenetrate their areas of influence.

Each agent has a local memory of pending tasks. When a memory overflow arises the agent

divide the pending tasks among the nearest agents.

Keywords

Virtual plant ecosystem, visual simulation, agents with memory, procedural modeling

1. Introduction

There are many ways to model shape of a 3D

object or of an entire scene. One of the most

interesting areas belongs to procedural mod-

eling, where a shape of an object is defined

by some action or piece of code. The clas-

sical approaches include fractal-based mod-

eling, particle systems, grammar-based tech-

niques, etc. The procedural techniques are

more or less sophisticated and with increas-

ing computer powers new things are becom-

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice

and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1., ISSN 12136972

WSCG’2003, February 37, 2003, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

ing possible. The new approach introduced

in this paper is based on autonomous agents

(automata) that interact with 3D objects.

Agents are procedurally driven automata that

can perform certain actions on the ecosys-

tem and can communicate. Every agent has

its local memory that serves for postponing

the work that cannot be done at the moment.

The stack of tasks is not infinite and some

work could possibly be forgotten if a mem-

ory overflow occurs. To avoid this the agents

can communicate and share the work.

After the previous work description the

ecosystems modeling and development are

described. Section 3 deals with ecosystem

rendering and the following section describes

their development. Section 5 introduces the

agents and the next Section 6 deals with the

implementation. The last two sections de-

scribe results and conclusions.



2. Previous Work

The first procedural models of plants were

deeply rooted in fractals [Oppen86] and their

usage in computer graphics were very lim-

ited. The formal specification of these tech-

niques - Lindenmayer systems (L-systems)

was introduced by Lindenmayer [Linde68],

later used by Smith [Smith84], and nowa-

days are being extensively improved by

Prusinkiewicz and his collaborates (see the

book [Prusi90] and the tutorial [Jones00]).

Plants were first simulated as closed sys-

tems with no interaction with their environ-

ment [Aono84, Smith84, Oppen86]. These

models do not reflect real conditions that

is an important drawback. The light in-

fluence of the plant shape was mentioned

for example in [Arvo88, Měch96, Prusi93].

The irradiance evaluation is complicated and

some simplifications could be used. We

have suggested the use of hardware-assisted

rendering to calculate the direct illumina-

tion of plants leaves in [Beneš96]. So-

called Open L-systems introduced by Měch

et al. [Měch96] presents a formal specifica-

tion of plant-environment interactions.

Deussen et al. [Deuss98] used two level sim-

ulation to create a visual model of a virtual

plant ecosystem. Our paper is an extension

of this approach. Plants compete for space by

comparing their ecological neighborhoods. If

two neighborhoods interpenetrate the weaker

plants is removed. Plants also have their 3D

representation that is used to render photo re-

alistic images.

Another virtual ecosystems simulation was

recently described by Lane and Prusinkie-

wicz [Lane02]. Two approaches are de-

scribed here, the local-to-global and the

global-to-local. In the first one the entities are

planted, develop, and interact that leads to a

certain plant distribution. The rules for com-

petition govern the resulting model. This is a

typical artificial life approach where the local

rules lead to an emergent phenomenon. The

global-to-local approach involves user’s as-

sistance that defines the initial plant distribu-

tion. The theoretical framework introduced

in this paper is an extension of L-systems to

multiset L-systems.

The problem of ecosystem stability was ad-

dressed in [Beneš02]. An artificial environ-

mental feedback assures the ecosystems to

always grow to a stable state. The system

reaches stability even after wrong initializa-

tion or after an ecological catastrophe. This

approach is explained in Section 4.

We focus on the non-plant agents interact-

ing with ecosystems in this paper. Probably

the first approach was a simulation of a bug

eliminating some parts of plants in [Prusi95].

Traumatic reiteration was used here. Buds

that are eliminated cease production of a hor-

mone that inhibits the other buds from grow-

ing. The lack of this hormone is propagated

down in the plant structure and causes the

closest bud to wake up from its dormant state.

The newly growing bud starts producing the

hormone that stops the other buds.

An another paper dealing with more elabo-

rated models of insect attacking plants has

been recently published [Hanan02]. The pa-

per presents examples of a formal specifica-

tion by means of L-systems of insects inter-

acting with plant or plants in different ways

ranging from a single insect foraging on a

plant to insects flying in an ecosystem. The

paper also discusses plant response to a dam-

age, behavior modeling, insect perception

modeling, etc.

3. Geometry and Rendering

We use two geometrical representations of a

plant. The first is necessary to simulate plant

competitions whereas the other is required to

display the scene by photo realistic rendering.

For the first case a plant is represented by its

2D position and the radius of influence called

the ecological neighborhood. This is dis-

played as a set of circles (see in Figure 1).



To get photorealistic images we save scene

time samples as scene description files for the

Persistence of Vision ray-tracer. Here, the

set of 3D geometric primitives represents the

scene objects. Bézier surfaces model flower

petals and grass blades, generalized cylinders

are used for stems, line segments represent

tiny leaves, spherical cap is used as a model

of the head of the english daisy, etc.

The scenes are

Figure 1: An

ecosystem dis-

played as a set

of circles

a bit excessive,

for example a

scene with hundred

thousands plants

takes more than

fifty megabytes of

the disc space and

requires more than

1GB of memory

to be rendered.

To diminish these

requirements we use instancing. Plants

are quantized to groups that are similarly

old. For example each plant from the age

between zero and fifty days has one repre-

sentative in the scene. Plants are instanced

by transformations in real scene that leads to

significant memory saves. Only translations

and rotations are used. The visual quality

of each scene depends on the number of in-

stances used. Increasing number of instance

leads to better quality but increases memory

requirements. We have noticed that about

hundred representatives that are instanced in

scenes with hundred thousands plants do not

disturb visually at all. The plant repetition

is noticeable if there are less than twenty

different objects for the same scenes. It

would be interesting to see how the number

of instances influences the visual quality of

an image and the amount of disc space. An

example of a close-up of a scene consisting

of forty thousand objects is on Figure 2.

4. Ecosystems

We use the local-to-global approach with an

environmental feedback to assure stability of

simulations. The simulation algorithm de-

scribed in [Lane02] and extended by the en-

vironmental feedback in [Beneš02] is briefly

describe it here.

Figure 2: A model of a virtual ecosys-

tem ray-traced using instancing

An ecosystem is represented as a homoge-

neous planar continuous area. A scene is

described and plants are put to their initial

conditions. Plants develop according to the

local rules and compete for resources. The

competition is simulated by collision detec-

tion of the circular ecological neighborhoods

of plants. If two circles interpenetrate, the

collision is detected, and the weaker plant is

eliminated.

Competitions could be classified into two im-

portant classes. Plants are competing be-

tween the same species and between the oth-

ers. In all cases so called viability function is

evaluated. The function favors plants in the

middle of their age. In other words small and

fragile as well as old and weak plants have

smaller chance to survive. If two plants of the

same specie compete the viability function

value depends merely on their age. The situa-

tion is different for plants of different species.

The environmental feedback simulates the

phenomenon of running-off resources if there

are more plants of the same plant specie at the

same place. This makes them weak and ben-



efits the other plant species in competitions.

We measure the average area of all ecological

neighborhoods and scale the viability func-

tions correspondingly (see [Beneš02] for de-

tails). It means that the winner of the compe-

tition of two species depends on their age and

frequency. For example if the last representa-

tive of one plant specie meet with grass that is

overcrowding the environment, the grass has

a very small (but non-zero) chance to win the

competition. We have never seen any plant

specie to extinct in our simulations. The in-

correctly initialized ecosystem reaches sta-

bility fast and plants just grow and change

their places. An example of a top-view of

a stable ecosystem is showed in Figure 3.

The initially incorrectly initialized ecosystem

reaches stability in approximately 100 days

and keeps till the end of simulation. The av-

erage number of daisies was 50 and there are

ten thousands grass blades. The size of the

file was less than 2.5MB.

Figure 3: Randomly initialized

ecosystem (top left) reaches the stabil-

ity after one year (top right) and keeps

it (down). The number of plants does

not vary very much, but they change

their positions

5. Agents

This paper extends the concept of one cur-

rently submitted paper [Beneš03], where the

agents that enters an ecosystem interact in a

limited way and do not have memory. Agents

entering the field wander by a random walk

till they reach a plant to be eliminated. They

move to this plant and perform the action.

If there is another one close they move to

this plant etc. This can cause some plants to

be skipped as shown in Figure 4. An agent

has a position counter, computes an accumu-

lated average of the skipped plant positions,

and broadcasts this information to all agents.

If there is an agent with no work it simply

takes this direction, because there is certainly

something to do. This approach gives effi-

cient results but the missing memory causes

agents to wander randomly on the field with-

out any specific purpose.

The new approach introduced here is the

agent’s memory and the communication. Be-

fore describing it, let’s mention the way

agents are implemented and how they be-

have.

5.1. Agent Description

An agent is represented by the actual posi-

tion, area of influence, and the direction it

moves. At the beginning the agents appear

at the edge of the ecosystem and enter it. For

simplicity, the agents will be described as cir-

cles with an arrow indicating the direction of

their motion. Every agent has the FIFO (first

in - first out) memory. The memory has a fi-

nite depth, we use ten elements in our imple-

mentation.

5.2. Agent Behavior

An agent enters the ecosystem and starts its

work that includes eliminating weeds, elimi-

nating plants that are located at incorrect po-

sition, eliminating old plants etc. An agent

has its initial direction of the motion, that is

perpendicular to the edge of the field, and

walks in this direction till some task (plant)

appears in its area of interest. Then it moves

there and performs the action. If a new task

appears, it moves there, etc. If there are two



tasks to do, the agent will move to the closest

one.

This can cause some tasks to be skipped as

shown in Figure 4. The agent has the plants A

and B in its region of interest. After moving

to the closest one, i.e., A, the plant B leaves

the radius and the plant C enters. In the next

step the agent will move to the plant C and

the plant B would be forgotten. In this case

the plant B will be put onto the stack. At the

moment there is no plant in the radius of the

agent it performs backtracking i.e., takes the

position from the top of the stack and moves

there. This approach leads to more efficient

task distribution than a random walk.

Figure 4: (left) Moving to the plant A

causes the plant B to leave the agent’s

region of interest. The position of the

plant B is put on the stack

5.3. Communication

There are two problematic cases. The first

is when two agents meet and their radii in-

terpenetrate. It corresponds to the situation

when two agents work in the same, or almost

the same, area. We solve this situation in

the following way. We compare the depth of

the stack of both agents and the numbers of

plants to be served that each agents should

do. The agent that has more things to do

leaves this area moving to the position of the

plant that is on the top of its stack. This keeps

the agent with less work inside the area that

has some plants.

Another critical case is when an agent detects

the stack overflow. It means there is too much

work to do for one agent. In this case the

agent calls the closest colleague and they per-

form synchronization of their tasks i.e., ne-

gotiation. The agent with the stack overflow

asks the colleague the depth of its stack. Then

it sends the half of this length of the plant

positions from the bottom of its own stack.

These plants are too far and it is worth to visit

the plants from the top of the stack first.

5.4. Lifetime

Agents enter the ecosystem at the same time

once a week and work for several hours.

Since different task has different duration we

convert the time it to the trajectory that is

passed by each agent. We suppose that the

agent’s motion is done with speed 0.5m/sec

and work on one plant takes ten seconds. This

work is converted to the same units, i.e., to

the passed trajectory. Every agent has its lo-

cal counter of distance passed. When the

length that corresponds to the assigned time

is exceeded the agent leaves the field.

6. Implementation

The entire system in implemented in C++

with support of OpenGL and runs on Win32

and UNIX. The output is either displayed us-

ing OpenGL or ray-traced.

The critical point of the program is the de-

tection of the collision or proximity of one

circle to another one. First, we used k-d trees

to perform this task efficiently. Later we no-

ticed that the area is totally filled quite fast,

that implies the 2D space is filled homoge-

neously. This allows us to use simple reg-

ular subdivision of the space. We divide the

2D area into squares and detect plants that are

inside each of them. It is important to notice

that one plant can belong to more than one

square. This complicates the tests a bit. We

maintain two lists of plants for each square,

the list of those that reside there, and of the

ones that just enter by their ecological neigh-

borhoods.

The initialization is done in a jittering-like

way. We put ni plants of the i-th specie there.

Since the area is divided to m squares, we just

fill randomly each square by ni/m plants.



The program runs sufficiently fast. Simula-

tion of one year development of an area of

100m
2 that includes 250 000 plants with the

time step four days takes less than three min-

utes on IBM PC 1GHz.

The scene description files for the ray-tracer

are up to 20MB depending on the number of

instances. The rendering times on the same

computer were up to 20 minutes.

Figure 5: A stable area that contains

grass and daisies (up) is cleaned by

seven virtual agents from grass and

prepared for seeding the daisies

7. Results

Some complex scenes can be obtained only

by the development simulation. A typical

case is a well-treated garden. We aim to show

that this can be simulated really efficiently,

fast, and simply by the technique introduced

here.

The user seeds some plants and assigns rules

to the agents. The rest is the emergent phe-

nomena of the simulation. To demonstrate

this we have created the following example.

A lawn with english daisies (see in Figure 5)

is decided to contain daisy beds. The lawn

is left to grow for forty days to reach sta-

bility. Then the agents repeatedly enter and

eliminate the grass from the assigned area.

The daisies are protected and just the grass

is eliminated. Now, in the day 30, the area is

prepared to cultivate daisies.

Figure 6: Daisy beds are cultivated

and protected against the grass that in-

vades their space from all sides (up).

The field is abandoned (down) and af-

ter one year the daisy bed disappears

Agents plant daisies and then repeatedly

eliminate grass as can be seen in the top im-

age in Figure 6. This image is taken from the

day 200 of the simulation. After one more

year of the cultivation the garden is aban-

doned. First the daisies start to grow very fast



to all sides and the grass also invades their

space. After one year the daisy bed has dis-

appeared, as can be seen on the last image.

The simulation area was 5m2 and the average

number of plants was 30 000. The total time

of the simulation was less than two minutes.

8. Conclusions

A procedural modeling based on virtual

agents is presented. The agents are automata

with finite memory that can move over an

ecosystem, perform some actions, and com-

municate. The agents can share their tasks

efficiently and avoid collisions and duplica-

tion of work. As they move on a virtual field

they keep a track of the work that was im-

possible to do and in a critical moments they

can share it among them. Similar way allows

to solve collisions when some agents meet at

the same place.

There are many possible applications of this

technique, but the apparent one is creating

a realistic scenes by procedural modeling.

Precise, maybe user assisted, definition of

the agents and their tasks together with the

ecosystem simulation could allow an efficient

and realistic simulation of scenes that are dif-

ficult or impossible to model by other tech-

niques.

9. REFERENCES

[Aono84] M. Aono and T.L. Kunii.

Botanical Tree Image Generation.

IEEE Computer Graphics and

Applications, 4(5):10–34, 1984.

[Arvo88] J. Arvo and D. Kirk. Modeling

Plants with Environment-Sensitive

Automata. In Proceedings of

Ausgraph’88, pages 27–33, 1988.

[Beneš96] B. Beneš. An Efficient

Estimation of Light in Simulation of

Plant Development. In Computer

Animation and Simulation’96,

Springer Computer Science, pages

153–165. Springer–Verlag Wien New

York, 1996.

[Beneš02] B. Beneš. A Stable Modeling of

Large Plant Environments. In

Proceedings of the ICCVG’02, pages

94–101. Association for Image

Processing, 2002.

[Beneš03] B. Beneš, J.M. Soto, and J.A.

Cordoba. Using Procedural Agents in

Virtual Plant Ecosystems. submitted

to the TP CG’03, IEEE, 2003.

[Deuss98] O. Deussen, P. Hanrahan,

B. Lintermann, R. Měch, M. Pharr,

and P. Prusinkiewicz. Realistic

Modeling and Rendering of Plant

Ecosystems. In Proceedings of

SIGGRAPH’98, Annual Conference

Series 1998, pages 275–286, 1998.

[Hanan02] J. Hanan, P. Prusinkiewicz,

M. Zalucki, and D. Skirvin.

Simulation of Insect Movement with

Respect to Plant Architecture and

Morphogenesis. Computers and

Electronics in Agriculture, to appear.

[Jones00] H. Jones. Modelling of Growing

Natural Forms. In Eurographics’00

Tutorials. Springer–Verlag, 2000.

[Lane02] B. Lane and P. Prusinkiewicz.

Generating Spatial Distribution for

Multilevel Models of Plant

Communities. In Proceedings of

Graphics Interface’02, pages 69–80,

2002.

[Linde68] A. Lindenmayer. Mathematical

Models for Cellular Interaction in

Development. Journal of Theoretical

Biology, Parts I and II(18):280–315,

1968.

[Měch96] R. Měch and P. Prusinkiewicz.

Visual Models of Plants Interacting

With Their Environment. In

Proceedings of SIGGRAPH ’96,

volume 30(4) of Annual Conference

Series 1996, pages 397–410, 1996.



[Oppen86] P. Oppenheimer. Real Time

Design and Animation of Fractal

Plants and Trees. In Proceedings of

SIGGRAPH ’86, volume 20(4) of

Annual Conference Series 1986, pages

55–64, 1986.

[Prusi90] P. Prusinkiewicz and

A. Lindenmayer. The Algorithmic

Beauty of Plants. Springer–Verlag,

New York, 1990. With J.S.Hanan,

F.D. Fracchia, D.R.Fowler, M.J.de

Boer, and L.Mercer.

[Prusi93] P. Prusinkiewicz, J. Hanan,

M. Hammel, and R. Měch. L-systems:

from the Theory to Visual Models of

Plants. Machine Graphics and Vision,

2(4):12–22, 1993.

[Prusi95] P. Prusinkiewicz, M. James,

R. Měch, and J. Hanan. The Artificial

Life of Plants. In SIGGRAPH ’95

Course Notes, volume 7, pages

1-1–1-38. ACM SIGGRAPH, 1995.

[Smith84] A.R. Smith. Plants, Fractals and

Formal Languages. In Proceedings of

SIGGRAPH ’84, volume 18(3) of

Annual Conference Series, pages

1–10, 1984.


