
Generalized Object Interactions in a Component

based Simulation Environment

Tom Van Laerhoven Chris Raymaekers
Expertise centre for Digital Media

Wetenschapspark 2
Diepenbeek, Belgium

Frank Van Reeth

{tom.vanlaerhoven, chris.raymaekers, frank.vanreeth}@luc.ac.be

ABSTRACT

We describe the procedure for generalizing the representation of interacting virtual objects in a component based

simulation framework. This extends our previous work where we did the same with the representation of the

objects themselves. Isolating the interaction mechanisms into separate components provides us with several

advantages; one of them is the ability to replace an interaction component by another, possibly at run time.

An example simulation scene contains three kinds of interacting rigid bodies, using collision detection and

response, simple velocity constraints, and scripted interactions. The example shows an engine that drives two

gears and a fan. The generated airflow from the fan causes a balloon to hit another balloon.

The goal of our work is to create a flexible an extensible “tinker toy” environment that incorporates different

simulation domains while reusing existing tools.

Keywords

Physically based simulation, rigid body, constraint, framework, virtual environment

1. INTRODUCTION
Handling the physical interactions between the

participating objects in a virtual environment is a

challenging task. The vast number of different kinds

of interactions, each of which can be treated using a

whole set of available techniques, makes it hard for

developers of simulation environments to choose the

right algorithm in a particular situation. This choice

however is important, because it has effect on both

the physical and visual correctness of the simulation,

and its real-time properties. Typically, a trade-off

between these aspects has to be made prior to

implementation, and it is very hard or even

impossible to make changes afterwards. Allowing

such changes to the interaction mechanisms can be

desirable however, the more if these can happen at

run time, like we will see further on.

Creating a flexible environment that handles the

above issues is difficult for several reasons. First of

all, objects from disparate simulation domains each

require specialized simulation techniques. For

example, simulating particles means supporting large

quantities of simple objects with simple or no

interactions. Cloth objects must cope with complex

deformable surfaces and the resulting stiff equations

that need to be solved with suitable differential

equation solvers. In the same way, the interaction

mechanisms that describe how objects communicate

with each other have to be treated with attention to

their computational needs. These include the

interferences between rigid bodies, which involves

complex operations like detecting collisions and

resolving contacts, interaction between parts of an

articulated body and the response to external forces

in general.

Combining objects from disparate domains into a

single simulation makes things even more

complicated. This not only means supporting the

different needs of various simulation domains, but

also the cross-domain interactions, which are far

more problematic. Most environments are dedicated

and target only a single domain, not allowing for

extensions to other domains or different interaction

methods.

This paper does not address all of the above

issues but describes our approach in dealing with

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1., ISSN 1213-6972

WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

some of them, along with some early results. By

obtaining a certain level of abstraction where both

virtual objects and their interaction mechanisms are

described as sets of components, we get a flexible

and extensible environment. At the same time, this

abstraction opens up the possibilities for cross-

domain interactions. It also creates the interesting

ability to replace interaction algorithms at run time,

creating a level-of-detail approach for interaction

algorithms in simulations. This can be useful in

virtual environments that target visual correctness,

rather than physical correctness.

The rest of this document is organized as

follows: the next section gives an overview of related

work in the domain of physically based simulations.

Section 3 gives a brief description of our architecture

that provides us with the means to achieve our goals.

Next, in section 4 we will elaborate on the approach

of abstracting the interactions themselves, followed

by some examples in section 5. Section 6 presents the

next steps in this work. Finally, the conclusions about

our work are drawn in section 7.

2. RELATED WORK
 In rigid body dynamics, modeling the

interactions between interfering objects is the most

difficult part of the simulation. Two major

approaches that try to solve this problem can be

identified: the constraint based methods and the

impulse based approach.

An overview of the use of constraints to avoid

interference or penetration is given in [Bar97b]. In

general this means restrictions on the way the objects

are permitted to move are formulated. This can be

done using energy functions that act as generalized

spring forces, better known as “the penalty method”,

or by converting object's accelerations into “legal”

accelerations using constraint forces.

A departure from these traditional constraint-

based methods came when Mirtich introduced

“impulse-based simulation” [Mir96]. In this approach

constraint forces are no longer explicitly applied

between two contact points, but contacts are

exclusively modeled through collision impulses that

are applied between the interfering bodies. [Mir96]

also addresses the issue of hybrid simulations,

combining both types of simulation paradigms.

Apart from solving the problem of interfering

objects, there is also the concept of simulating linked

articulated rigid bodies. In this case geometric

constraints are posed on objects, linking them

together. These systems are traditionally solved by

reformulating the constraints as algebraic equations

or by a technique called degrees of freedom analysis

[Kra90].

Instead of objects interacting among each other,

there is also the issue of users interacting with objects

in a virtual environment. [Wit90] presented a

formulation for constrained dynamics that makes it

possible to dynamically create complex physical

models by snapping simple building block together.

This way the process of model creation is integrated

while running the simulation. Also related to this

subject, [Smi01] describes a construction system that

restricts object interactions, based on human

intuitions, and automatically generates constraints for

geometric objects.

In [Bar97a] the need to incorporate different

simulation domains within one simulation

environment was pointed out. Using a technique

called interleaved simulation, the authors treated

several existing simulators from different domains as

black boxes with simple generic interfaces. They

combined a cloth simulator with a rigid body

simulator, and a particle system with a rigid body

simulator. This was done by instructing each system

to take a step, first without regard to other system's

constraints, then taking another step consistent with

the already computed motion of other systems.

3. A FRAMEWORK FOR PHYSICAL

SIMULATIONS
The pLab project, introduced in [Lae02], consists of

a plugable component framework that aims on

building highly extensible physical simulation

environments. It accomplishes this by using plugins

that introduce building blocks in the form of

components into an application. An application built

upon the framework uses an XML (eXtensible

Markup Language) document [W3c02] as a blueprint

of the component layout. This procedure is explained

in more detail further on in this section. The

motivation here was to find a way to easily combine

and exchange existing tools in the domain of

physically based simulation.

Since we will continue and extend our work on the

pLab framework in this paper, this section will give a

brief overview of its features.

Abstracting Simulation Objects
The work described in [Lae02] explains the process

of abstracting a simulation object in the pLab

framework as a collection of separate components.

Adding or exchanging components can alter the

behavior of an object.

This procedure treats individual objects in an

environment as black boxes, all of which can be

accessed in the same way through a generic interface.

The approach is different from the one proposed in

[Bar97a] in the way that instead of whole simulators,

individual objects are treated as black boxes with

their own interface.

As an example, a simple static object in an

environment would be described by a shape

component containing all the object’s visual

properties. Adding a simple state component would

give it a place and orientation in the environment.

Replacing the state component with a more complex

version, which keeps track of dynamic properties like

velocity and the ability to receive forces, would let

the object exhibit some dynamic behavior.

In the same way, the object can be given the ability to

be human-triggerable by adding a user interaction

component, containing the information on how it is to

be triggered and what the resulting action would be.

Continuing this approach, a complete functional 2D

or 3D user interface can be built [Luy02].

Figure 1 shows a schematic description of a typical

simulation object in the framework. The object has a

shape component, which in this case is defined by a

reference to a polygon mesh. Other objects with a

similar shape can refer to the same component to

define their visual properties. The state component of

the object contains all properties to make it a rigid

body.

Components can also export operations, called

“commands”. For example, the object is rendered on

screen by calling the Draw command, and the

VolumeIntegration command couples state and shape

components by calculating the mass properties and

setting them in the state component. The

“Simulation” command describes the object’s actions

in each of the different simulation stages. For

example, the “Step” stage typically calculates the

object’s state in the next time frame by integrating its

properties. The rendering of the object takes place in

the “PostStep” stage. Placing this simulation

command in the simulation core ensures that the

object participates in the environment.

The XML Blueprint
The components, which together form the

application, are all introduced by separate plugins.

Each plugin can be seen as a supplier of building

blocks or components that have related tasks. For

instance, the shape plugin contains several different

kinds of shape components and their associated

commands. The difference with traditional plugins is

that traditional plugins have a fixed and limited

functionality. In our case the role of the plugin’s

contents is defined at run time, when the components

are coupled. So in addition we need a description of

how these components in the application are related

to each other. This is realized using an XML

document.

The listing in figure 2 shows an example of such

an XML document. It describes part of the same

component layout as figure 1. Component tags can

use a type attribute, containing a service name, to

indicate what kind of component they want to

embody. The service name is just an expression that

associates certain functionalities with the component.

The id attributes create a mechanism for referencing

other components. The commands are created in the

same way, but additionally have a subject tag to

indicate on which component they operate.

…

<component id="00" name="Dummy Mesh">

 <!-- Embedded XGL code -->

 <MESH>...</MESH>

</component>

<component id="01" name="Dummy Object">

 <!-- Component’s body -->

 <component id="02" name="Dummy Object Mesh">

 <compref>00</compref>

 </component>

 <!-- Component’s interface -->

 <command id="08" subject="02" type="Shape/Draw"/>

 ...

 <!-- Simulation command -->

 <command id=”09” name=”DummyObject/Simulation”>

 <command name=”Stage/Init”>…</command>

 <command name=”Stage/PreStep”>…</command>

 <command name=”Stage/Step”>…</command>

 <command name=”Stage/PostStep”>…</command>

 <command name=”Stage/Rewind”>…</command>

 <command name=”Stage/Deinit”>…</command>

 </command>

</component>

...

Figure 2. An extract from a XML document,

describing a virtual object.

Figure 1. An abstract view on a dynamic

simulation object and some of its properties.

.

State/ApplyState

State/AddForce

Shape/VolumeIntegration

Shape/Draw

ref

shape

Polygon

Mesh

3D

Simulation

Object

Shape

State

Object/Simulation Simulation

Core

One of the advantages of using XML here is the

fact that existing XML formats can be reused by

embedding them into the component descriptions. For

instance, shapes can be defined by using XGL

[Xgl02], an XML format designed to capture the 3D

information of object geometries that can be rendered

by OpenGL [Woo99].

The framework supplies an XML parser, the

Expat parser [Cla01], which is wrapped into a plugin

and to which XML handlers for various formats can

be attached. A handler for the XGL format is also

provided.

4. ABSTRACTING OBJECT

INTERACTION MECHANISMS
Section 3 explained the approach of representing a

virtual object as a set of components, each of which

contributes to the object’s properties. It allows the

introduction of disparate objects in a single

environment, all having the same underlying abstract

representation. However, it does not take into account

the interactions between objects. These include

interactions caused by complex mechanisms like

collision detection and response, the joints in an

articulated body, non-contact forces like gravity and

magnetism, but also user interactions.

Generalizing these mechanisms between objects in

the same way as we did with the objects themselves,

by describing them as sets of components, provides

us with the following advantages:

• The ability to combine different interaction

mechanisms that have different needs into

one simulation, all having the same

representation.

• The use of scripted interaction mechanisms

or ad hoc solutions for specific situations.

• Exchange interaction mechanisms with more

suitable versions at runtime.

The possibility to exchange the interaction

mechanisms at run time has some interesting

applications. Consider a virtual environment that

contains a complex simulation. If the user is far away

from the simulation scene, or if the scene is

positioned behind the user, simple and

computationally efficient algorithms are used to let

the objects in the scene interact. If the user comes

closer however, the simulation switches to algorithms

that provide more visual accurate results.

Because these algorithms are now isolated into a

separate interaction component, this approach

becomes feasible.

Description of the interaction component
Figure 3 depicts an interaction component that

handles the communication between N bodies in an

environment. Similar to the description of the objects

themselves, a simulation command contains the

operations that should be executed in each stage of

the simulation.

Section 5 shows an example scene in which different

interaction mechanisms are combined in one

simulation. The rest of this section discusses three

different interaction techniques that were used in this

scene, along with some example descriptions in

XML.

Collision Detection and Response
The field of collision detection is probably one of the

most covered fields within the domain of virtual

environments. This results in a great amount of

collision libraries, which have the complex task of

reporting the interferences between several objects.

<!-- Instantiate collision library -->

<component id=”10” type=”CDetection/SOLIDlib”>

 <command id=”11” subject=”10” type=”CDetection/Handle”/>

</component>

…

<!-- Interaction component -->

<component id=”00” name=”Collision Interaction”>

 <component id=”01” name=”CollisionComponent Body1”>

 …

 <component id=”0N” name=”CollisionComponent BodyN”>

 <!-- Simulation command -->

 <command id=”01” name=”ExampleCollision/Simulation”>

 <command name=”Stage/Init”>

 <!-- Add objects to collision library -- >

 </command>

 <command name=”Stage/Step”>

 <!-- Update states in collision library -- >

 </command>

 <command name=”Stage/PostStep”>

 <!-- Handle collisions -- >

 </command>

 </command>

</component>

Figure 4. An XML example of an interaction

component handling collisions.

Figure 3. A schematic view on an interaction

component between N objects.

Interaction/Simulation

Interaction

Component

Simulation

Core

Object1

ObjectN

...

Again, the difficulty here is that all libraries target

different domains and needs.

A few examples: the H-COLLidE library [Gre99]

targets haptic interaction, the V-COLLidE library

[Hud97] large environments with many objects, PQP

[Got99] supports additional distance computations,

and SOLid [Ber99] can detect interferences in an

environment that contains deformable objects.

Figure 4 depicts part of the description of an

interaction component in pLab that supports the

detection of collisions. Instead of defining interaction

components between every body that participates in

the collision detection and response process, which

typically involves nearly all objects in the

environment, we define only one interaction

component that interacts with the collision library and

all participating objects. In the example of figure 4,

the library is the SOLid collision detection library

[Ber99].

Additionally, we provided an extension in the form of

a plugin to define the collision resolution algorithm,

which ensures that none of the objects overlap. In this

case, the simple but efficient bisection method was

used. This procedure possibly involves rewinding the

simulator to a previous time frame where no

interferences were reported. This means all related

objects have to provide actions for the “Rewind”

stage of the simulator (figure 2), and have to keep

previous states in a Memento component.

Another extension defines the behavior of interfering

objects after their collisions are resolved. We

implemented the impulse-based method proposed in

[Mir96], which calculates the impulses that need to

be applied to interfering objects in order to break

them apart.

Constraints
The collision detection and response technique is not

always suitable for the simulation of object

interactions. For instance, when a drawer is pulled

out of a cabinet, the path that the drawer follows

within the cabinet can easily be described using

simple geometric constraints. The application of

collision detection and response in this particular

situation would lead to excessive calculations, and

possibly a worse result.

Clearly, in many cases it would be sufficient that the

cabinet and the drawer interact using the geometric

constraint mechanism.

Geometric constraints are also useful when

simulating articulated bodies. These comprise a set of

rigid bodies connected by joints, forming a tree, a

chain or a graph [Kra90]. Because external forces

and other joints influence the forces applied at each

joint in the system, possibly creating loops, suitable

algorithms are needed to calculate the resulting forces

at each joint.

Figure 6 shows an example of a simulation command

that enforces the states of two objects to have the

same angular velocity. An extra parameter, the

velocity factor, can be used to define a linear

relationship between two velocities. It will be used in

the example scene to express the fact that a gear that

is two times the size of another gear, which is

connected to the first gear, will rotate half as fast

(figure 5). This simulation command is embedded in

the interaction component.

At the moment we consider only simple constraints

between two bodies. However, the results remain

valid if we introduce a constraint manager that

resolves complex constraint graphs.

Figure 6. An XML description of the simulation

command of a constraint.

Figure 7. An XML description of a Python script,

embedded in a command.

<!-- Simulation command -->

<command id=”01” name=”ExampleConstraint/Simulation”>

 <command name=”Stage/Step”>

 <command subject="52" type="Constraint/AngularVelocity"/>

 <cmdparam type="SetTargetState">

 <udata><cmdref>202</cmdref></udata>

 </cmdparam>

 <cmdparam type="SetVelocityFactor">

 <udata>-0.5</udata>

 </cmdparam>

 </command>

 </command>

</command>

<command id="300" name="Hello" type="Script/Python"/>

 <cmdparam type="SetCode">

 <udata>print "Hello pLab!"</udata>

 </cmdparam>

</command>

Figuur 5. Two constrained gears.

Scripted Interactions
Object interactions are not always that complex.

Sometimes their means of communication are

relatively simple. For example, an engine can make

an axis rotate by simply applying a torque to it.

Instead of implementing specific extensions for each

of these simple interactions, a more scalable approach

allows an interaction component to just “describe” in

some scripting language how the participating objects

communicate. We embedded an interpreter for the

Python scripting language into the framework. Python

scripts can be wrapped into a command description in

the XML blueprint, as shown in figure 7.

The Python C API makes it possible not only to

embed a python interpreter into an application, but

also to extend the Python language with “extension

modules” written in C, C++ and other languages. In

order to allow Python to callback to the host

application, in this case an application built on top of

pLab, the host application was made an extension

module itself. As the execution of the scripts is much

slower than native C++ code, they are only useful in

situations with simple interactions like the ones

mentioned before.

The applications of the Python scripts are not limited

to the implementation of interaction algorithms. They

can be used to generate user interfaces, define

animation sequences, perform operations on objects,

etc.

5. SIMULATION EXAMPLE
This section elaborates on an example scene that

combines all three interaction techniques mentioned

in the previous section. A simplified schematic view

on this scene is given in figure 8. The figure only

shows the objects in the environment along with their

interactions. Other components, like the simulation

core itself, the collision library and the differential

equation solver, are omitted but also form

indispensable parts of the simulation.

The setup includes an engine that drives an axis.

Mounted to this axis is a small gear that is coupled to

another gear, which is twice as large and mounted to

a second axis. The same axis contains a fan. In front

of the fan are two balloons, a red and a green one. In

this example, we will assume only the red balloon is

close enough to the fan to get influenced by its

airflow. The result of this particular simulation is that

the fan starts rotating, which generates an airflow,

and sets the red balloon on a collision course to the

green balloon. The balloons collide and drift away.

Figures 8, 9, 10 and 11 show the course of action.

Focusing on interaction components, the simulation

starts when the script that handles the interaction

between the gear and the axis applies a torque to the

axis. This is a one-way interaction. The rotation of

the axis is handed to the connected gear with a

velocity constraint that ensures both objects have the

same angular velocity. Constraints of the same type

let the rotation propagate through the gears to the fan.

Between the two gears however, the rotation

direction has to be reversed and the speed has to be

cut in half. This situation was also shown in figure 6.

Next, another script between the fan and the red

balloon causes the red balloon to drift, according to

the angular speed of the fan and their distance. When

it collides with the green balloon, the collision library

will detect and resolve the interference and apply the

proper impulses to both objects.

6. FUTURE WORK
As indicated earlier, we need to work towards

incorporating various simulation domains into one

environment. The work described in this paper is a

small step in that direction. Our approach was limited

to the domain of rigid body dynamics, but it should

be possible to extend this to the other domains like

Figure 8. Schematic view on the objects and their interaction components.

Python

Script Python

Script

Velocity

Constraint

Velocity

Constraint
Velocity

Constraint

Velocity

Constraint

Collision
detection
/response

cloth simulation and particle systems, and then

further on to cross domain interactions.

The issue of exchanging interaction mechanisms at

run time was not addressed in this paper. Doing so

would greatly improve the chances of keeping

complex virtual environments real time, without

affecting the visual correctness of the simulation.

It would also be desirable if the user does not have to

explicitly define the interaction mechanisms, but that

they are detected automatically. For instance, one

could specify just once what the behavior of a gear

connected to an axis should be. This default behavior

is then applied each time a user connects a gear to an

axis. Also, if the objects would be aware of each

other's proximity, they could be “snapped” together

automatically by introducing a set of interaction

mechanisms.

Finally, we only examined object-object interactions,

but in virtual environments there are also user-object

interactions. If the user is also defined as a

participating object in the environment, he or she can

be treated in the same way as the other objects and

the techniques introduced in this paper also apply.

7. CONCLUSIONS
We extended the pLab framework with support for

different types of interaction techniques, describing

how objects in a virtual environment interact with

each other.

To accomplish this, the interactions were generalized

and viewed as black boxes, similar to the process of

generalizing the objects in the scene themselves.

Each interaction object received an interface with a

simulation command that defines the interaction’s

behavior during the simulation.

Finally, we demonstrated the results in a scene where

three different types of interaction coexisted, namely

collision detection and response, velocity constraints

and interactions described by a scripting language.

8. REFERENCES
[Bar97a] Baraff, D., and Witkin. A. Partitioned

dynamics. Technical Report CMU-RI-TR-97-33,

Robotics Institute, Carnegie Mellon University,

1997.

[Bar97b] Barraf, D., and Witkin, A. Physically-based

Modeling, Principles and Practice. Number 19 in

Course Notes for SIGGRAPH’97. ACM, Los

Angeles, CA, USA, August 3-8 1997.

[Ber99] van der Bergen, G. A fast and robust GJK

implementation for collision detection of convex

objects. Journal of Graphics Tools, 4(2):7-25,

1999.

Figure 8. The initial setup of the scene. Figure 9. Collision time.

Figure 10. Both balloons drifting off. Figuur 11. Scene viewed from behind.

[Cla01] Clark, J. Expat – XML parser toolkit.

Software available at

http://www.jclark.com/xml/expat.html, 2001.

[Got99] Gottschalk, S., and Lin, M. PQP – the

proximity query package. Available at

http://www.cs.unc.edu/geom/SSV/; 1999.

[Gre99] Gregory, A., and Lin, M.C. A framework for

fast and accurate collision detection for haptic

interaction. In Proceedings of Virtual Reality’99

Conference, pages 38-45, Houston, TE, USA,

March 13-17 1999.

[Hud97] Hudson, T.C., and Cohen, J. V-COLLIDE:

Accelerated collision detection for VRML. In

Proceedings of VRML’97: Second Symposium on

the Virtual Reality Modeling Language,

Monterey, CA, February 24-26 1997.

[Kra90] Kramer, G.A. Solving geometric constraint

systems. In Proceedings of the Eight National

Conference on Artificial Intelligence, pages 708-

714, Boston, MA, USA, July 29 – August 3 1990.

[Lae02] Van Laerhoven, T., and Van Reeth, F. The

pLab project: An extensible architecture for

physically based simulations. In Proceedings of

Spring Conference on Computer Graphics, pages

129-135, Budmerice, SL, April 24-27 2002.

[Luy02] Luyten, K., and Van Laerhoven, T.

Specifying user interfaces for runtime modal

independent migration. In Proceedings of

CADUI’2002 International Conference on

Computer-Aided Design of User Interfaces, pages

238-294, Valenciennes, FR, May 15-17 2002.

[Mir96] Mirtich, B. Impulse-based Dynamic

Simulation of Rigid Body Systems. PhD thesis,

Berkeley University of California, 1996.

[Smi01] Smith, G., and Stuerzlinger, W., Integration

of constraints into a VR environment. In

Proceedings of Virtual Reality International

Conference, Lava Virtual 2001, pages 103-110,

Laval, FR, May 16-18 2001.

[Wit90] Witkin, A., and Gleicher, M. Interactive

dynamics. Computer Graphics (1990 Symposium

on Interactive 3D Graphics), 24(2):11-21; 1990.

[Woo99] Woo, M., and Neider, J. OpenGL

Programming Guide. Addison-Wesley, 3 edition,

1999.

[W3c02] World Wide Web Consortium. Extensible

markup language (XML). Web pages avalailable

at http://www.w3.org/XML/, 1998-2002.

[Xgl02] XGL Working Group. XGL file format

specification. Web pages available at

http://www.xglspec.org/, 2001.

