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ABSTRACT 

We describe the procedure for generalizing the representation of interacting virtual objects in a component based 

simulation framework. This extends our previous work where we did the same with the representation of the 

objects themselves. Isolating the interaction mechanisms into separate components provides us with several 

advantages; one of them is the ability to replace an interaction component by another, possibly at run time. 

An example simulation scene contains three kinds of interacting rigid bodies, using collision detection and 

response, simple velocity constraints, and scripted interactions. The example shows an engine that drives two 

gears and a fan. The generated airflow from the fan causes a balloon to hit another balloon. 

The goal of our work is to create a flexible an extensible “tinker toy” environment that incorporates different 

simulation domains while reusing existing tools.  
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1. INTRODUCTION 
Handling the physical interactions between the 

participating objects in a virtual environment is a 

challenging task. The vast number of different kinds 

of interactions, each of which can be treated using a 

whole set of available techniques, makes it hard for 

developers of simulation environments to choose the 

right algorithm in a particular situation. This choice 

however is important, because it has effect on both 

the physical and visual correctness of the simulation, 

and its real-time properties. Typically, a trade-off 

between these aspects has to be made prior to 

implementation, and it is very hard or even 

impossible to make changes afterwards. Allowing 

such changes to the interaction mechanisms can be 

desirable however, the more if these can happen at 

run time, like we will see further on. 

Creating a flexible environment that handles the 

above issues is difficult for several reasons. First of 

all, objects from disparate simulation domains each 

require specialized simulation techniques. For 

example, simulating particles means supporting large 

quantities of simple objects with simple or no 

interactions. Cloth objects must cope with complex 

deformable surfaces and the resulting stiff equations 

that need to be solved with suitable differential 

equation solvers. In the same way, the interaction 

mechanisms that describe how objects communicate 

with each other have to be treated with attention to 

their computational needs. These include the 

interferences between rigid bodies, which involves 

complex operations like detecting collisions and 

resolving contacts, interaction between parts of an 

articulated body and the response to external forces 

in general. 

Combining objects from disparate domains into a 

single simulation makes things even more 

complicated. This not only means supporting the 

different needs of various simulation domains, but 

also the cross-domain interactions, which are far 

more problematic. Most environments are dedicated 

and target only a single domain, not allowing for 

extensions to other domains or different interaction 

methods. 

This paper does not address all of the above 

issues but describes our approach in dealing with 
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some of them, along with some early results. By 

obtaining a certain level of abstraction where both 

virtual objects and their interaction mechanisms are 

described as sets of components, we get a flexible 

and extensible environment. At the same time, this 

abstraction opens up the possibilities for cross-

domain interactions. It also creates the interesting 

ability to replace interaction algorithms at run time, 

creating a level-of-detail approach for interaction 

algorithms in simulations. This can be useful in 

virtual environments that target visual correctness, 

rather than physical correctness. 

The rest of this document is organized as 

follows: the next section gives an overview of related 

work in the domain of physically based simulations. 

Section 3 gives a brief description of our architecture 

that provides us with the means to achieve our goals. 

Next, in section 4 we will elaborate on the approach 

of abstracting the interactions themselves, followed 

by some examples in section 5. Section 6 presents the 

next steps in this work. Finally, the conclusions about 

our work are drawn in section 7. 

2. RELATED WORK 
 In rigid body dynamics, modeling the 

interactions between interfering objects is the most 

difficult part of the simulation. Two major 

approaches that try to solve this problem can be 

identified: the constraint based methods and the 

impulse based approach.  

An overview of the use of constraints to avoid 

interference or penetration is given in [Bar97b]. In 

general this means restrictions on the way the objects 

are permitted to move are formulated. This can be 

done using energy functions that act as generalized 

spring forces, better known as “the penalty method”, 

or by converting object's accelerations into “legal” 

accelerations using constraint forces. 

A departure from these traditional constraint-

based methods came when Mirtich introduced 

“impulse-based simulation” [Mir96]. In this approach 

constraint forces are no longer explicitly applied 

between two contact points, but contacts are 

exclusively modeled through collision impulses that 

are applied between the interfering bodies. [Mir96] 

also addresses the issue of hybrid simulations, 

combining both types of simulation paradigms. 

Apart from solving the problem of interfering 

objects, there is also the concept of simulating linked 

articulated rigid bodies. In this case geometric 

constraints are posed on objects, linking them 

together. These systems are traditionally solved by 

reformulating the constraints as algebraic equations 

or by a technique called degrees of freedom analysis 

[Kra90].  

Instead of objects interacting among each other, 

there is also the issue of users interacting with objects 

in a virtual environment. [Wit90] presented a 

formulation for constrained dynamics that makes it 

possible to dynamically create complex physical 

models by snapping simple building block together. 

This way the process of model creation is integrated 

while running the simulation. Also related to this 

subject, [Smi01] describes a construction system that 

restricts object interactions, based on human 

intuitions, and automatically generates constraints for 

geometric objects. 

In [Bar97a] the need to incorporate different 

simulation domains within one simulation 

environment was pointed out. Using a technique 

called interleaved simulation, the authors treated 

several existing simulators from different domains as 

black boxes with simple generic interfaces. They 

combined a cloth simulator with a rigid body 

simulator, and a particle system with a rigid body 

simulator. This was done by instructing each system 

to take a step, first without regard to other system's 

constraints, then taking another step consistent with 

the already computed motion of other systems. 

3. A FRAMEWORK FOR PHYSICAL 

SIMULATIONS 
The pLab project, introduced in [Lae02], consists of 

a plugable component framework that aims on 

building highly extensible physical simulation 

environments. It accomplishes this by using plugins 

that introduce building blocks in the form of 

components into an application. An application built 

upon the framework uses an XML (eXtensible 

Markup Language) document [W3c02] as a blueprint 

of the component layout. This procedure is explained 

in more detail further on in this section. The 

motivation here was to find a way to easily combine 

and exchange existing tools in the domain of 

physically based simulation.  

Since we will continue and extend our work on the 

pLab framework in this paper, this section will give a 

brief overview of its features. 

Abstracting Simulation Objects 
The work described in [Lae02] explains the process 

of abstracting a simulation object in the pLab 

framework as a collection of separate components. 

Adding or exchanging components can alter the 

behavior of an object. 

This procedure treats individual objects in an 

environment as black boxes, all of which can be 



accessed in the same way through a generic interface. 

The approach is different from the one proposed in 

[Bar97a] in the way that instead of whole simulators, 

individual objects are treated as black boxes with 

their own interface.  

As an example, a simple static object in an 

environment would be described by a shape 

component containing all the object’s visual 

properties. Adding a simple state component would 

give it a place and orientation in the environment. 

Replacing the state component with a more complex 

version, which keeps track of dynamic properties like 

velocity and the ability to receive forces, would let 

the object exhibit some dynamic behavior. 

In the same way, the object can be given the ability to 

be human-triggerable by adding a user interaction 

component, containing the information on how it is to 

be triggered and what the resulting action would be. 

Continuing this approach, a complete functional 2D 

or 3D user interface can be built [Luy02]. 

Figure 1 shows a schematic description of a typical 

simulation object in the framework. The object has a 

shape component, which in this case is defined by a 

reference to a polygon mesh. Other objects with a 

similar shape can refer to the same component to 

define their visual properties. The state component of 

the object contains all properties to make it a rigid 

body.  

Components can also export operations, called 

“commands”. For example, the object is rendered on 

screen by calling the Draw command, and the 

VolumeIntegration command couples state and shape 

components by calculating the mass properties and 

setting them in the state component. The 

“Simulation” command describes the object’s actions 

in each of the different simulation stages. For 

example, the “Step” stage typically calculates the 

object’s state in the next time frame by integrating its 

properties. The rendering of the object takes place in 

the “PostStep” stage. Placing this simulation 

command in the simulation core ensures that the 

object participates in the environment. 

The XML Blueprint 
The components, which together form the 

application, are all introduced by separate plugins. 

Each plugin can be seen as a supplier of building 

blocks or components that have related tasks. For 

instance, the shape plugin contains several different 

kinds of shape components and their associated 

commands. The difference with traditional plugins is 

that traditional plugins have a fixed and limited 

functionality. In our case the role of the plugin’s 

contents is defined at run time, when the components 

are coupled. So in addition we need a description of 

how these components in the application are related 

to each other. This is realized using an XML 

document. 

The listing in figure 2 shows an example of such 

an XML document. It describes part of the same 

component layout as figure 1. Component tags can 

use a type attribute, containing a service name, to 

indicate what kind of component they want to 

embody. The service name is just an expression that 

associates certain functionalities with the component. 

The id attributes create a mechanism for referencing 

other components. The commands are created in the 

same way, but additionally have a subject tag to 

indicate on which component they operate. 

… 

<component id="00" name="Dummy Mesh"> 

     <!-- Embedded XGL code --> 

     <MESH>...</MESH> 

</component>   

 

<component id="01" name="Dummy Object"> 

 

     <!-- Component’s body --> 

     <component id="02" name="Dummy Object Mesh"> 

          <compref>00</compref> 

     </component> 

 

     <!-- Component’s interface --> 

     <command id="08" subject="02" type="Shape/Draw"/> 

     ...   

     <!-- Simulation command -->  

     <command id=”09” name=”DummyObject/Simulation”> 

          <command name=”Stage/Init”>…</command> 

          <command name=”Stage/PreStep”>…</command> 

          <command name=”Stage/Step”>…</command> 

          <command name=”Stage/PostStep”>…</command> 

          <command name=”Stage/Rewind”>…</command> 

          <command name=”Stage/Deinit”>…</command> 

      </command> 

</component> 

... 

Figure 2. An extract from a XML document, 

describing a virtual object. 

Figure 1. An abstract view on a dynamic 

simulation object and some of its properties. 
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One of the advantages of using XML here is the 

fact that existing XML formats can be reused by 

embedding them into the component descriptions. For 

instance, shapes can be defined by using XGL 

[Xgl02], an XML format designed to capture the 3D 

information of object geometries that can be rendered 

by OpenGL [Woo99]. 

The framework supplies an XML parser, the 

Expat parser [Cla01], which is wrapped into a plugin 

and to which XML handlers for various formats can 

be attached. A handler for the XGL format is also 

provided. 

4. ABSTRACTING OBJECT 

INTERACTION MECHANISMS 
Section 3 explained the approach of representing a 

virtual object as a set of components, each of which 

contributes to the object’s properties. It allows the 

introduction of disparate objects in a single 

environment, all having the same underlying abstract 

representation. However, it does not take into account 

the interactions between objects. These include 

interactions caused by complex mechanisms like 

collision detection and response, the joints in an 

articulated body, non-contact forces like gravity and 

magnetism, but also user interactions. 

Generalizing these mechanisms between objects in 

the same way as we did with the objects themselves, 

by describing them as sets of components, provides 

us with the following advantages: 

• The ability to combine different interaction 

mechanisms that have different needs into 

one simulation, all having the same 

representation. 

• The use of scripted interaction mechanisms 

or ad hoc solutions for specific situations. 

• Exchange interaction mechanisms with more 

suitable versions at runtime. 

The possibility to exchange the interaction 

mechanisms at run time has some interesting 

applications. Consider a virtual environment that 

contains a complex simulation. If the user is far away 

from the simulation scene, or if the scene is 

positioned behind the user, simple and 

computationally efficient algorithms are used to let 

the objects in the scene interact. If the user comes 

closer however, the simulation switches to algorithms 

that provide more visual accurate results.  

Because these algorithms are now isolated into a 

separate interaction component, this approach 

becomes feasible. 

Description of the interaction component 
Figure 3 depicts an interaction component that 

handles the communication between N bodies in an 

environment. Similar to the description of the objects 

themselves, a simulation command contains the 

operations that should be executed in each stage of 

the simulation. 

Section 5 shows an example scene in which different 

interaction mechanisms are combined in one 

simulation. The rest of this section discusses three 

different interaction techniques that were used in this 

scene, along with some example descriptions in 

XML. 

Collision Detection and Response 
The field of collision detection is probably one of the 

most covered fields within the domain of virtual 

environments. This results in a great amount of 

collision libraries, which have the complex task of 

reporting the interferences between several objects. 

<!-- Instantiate collision library --> 

<component id=”10” type=”CDetection/SOLIDlib”> 

    <command id=”11” subject=”10” type=”CDetection/Handle”/> 

</component> 

… 

<!-- Interaction component --> 

<component id=”00” name=”Collision  Interaction”> 

    <component id=”01” name=”CollisionComponent Body1”> 

    … 

    <component id=”0N” name=”CollisionComponent BodyN”> 

     

    <!-- Simulation command --> 

    <command id=”01” name=”ExampleCollision/Simulation”> 

 

        <command name=”Stage/Init”> 

            <!-- Add objects to collision library -- > 

        </command>         

        <command name=”Stage/Step”>     

             <!-- Update states in collision library -- > 

        </command> 

        <command name=”Stage/PostStep”>     

             <!-- Handle collisions -- > 

        </command> 

    </command> 

</component> 

Figure 4. An XML example of an interaction 

component handling collisions. 

 

Figure 3. A schematic view on an interaction 

component between N objects. 
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Again, the difficulty here is that all libraries target 

different domains and needs.  

A few examples: the H-COLLidE library [Gre99] 

targets haptic interaction, the V-COLLidE library 

[Hud97] large environments with many objects, PQP 

[Got99] supports additional distance computations, 

and SOLid [Ber99] can detect interferences in an 

environment that contains deformable objects. 

Figure 4 depicts part of the description of an 

interaction component in pLab that supports the 

detection of collisions. Instead of defining interaction 

components between every body that participates in 

the collision detection and response process, which 

typically involves nearly all objects in the 

environment, we define only one interaction 

component that interacts with the collision library and 

all participating objects. In the example of figure 4, 

the library is the SOLid collision detection library 

[Ber99].  

Additionally, we provided an extension in the form of 

a plugin to define the collision resolution algorithm, 

which ensures that none of the objects overlap. In this 

case, the simple but efficient bisection method was 

used. This procedure possibly involves rewinding the 

simulator to a previous time frame where no 

interferences were reported. This means all related 

objects have to provide actions for the “Rewind” 

stage of the simulator (figure 2), and have to keep 

previous states in a Memento component. 

Another extension defines the behavior of interfering 

objects after their collisions are resolved. We 

implemented the impulse-based method proposed in 

[Mir96], which calculates the impulses that need to 

be applied to interfering objects in order to break 

them apart. 

Constraints 
The collision detection and response technique is not 

always suitable for the simulation of object 

interactions. For instance, when a drawer is pulled 

out of a cabinet, the path that the drawer follows 

within the cabinet can easily be described using 

simple geometric constraints. The application of 

collision detection and response in this particular 

situation would lead to excessive calculations, and 

possibly a worse result. 

Clearly, in many cases it would be sufficient that the 

cabinet and the drawer interact using the geometric 

constraint mechanism.  

Geometric constraints are also useful when 

simulating articulated bodies. These comprise a set of 

rigid bodies connected by joints, forming a tree, a 

chain or a graph [Kra90]. Because external forces 

and other joints influence the forces applied at each 

joint in the system, possibly creating loops, suitable 

algorithms are needed to calculate the resulting forces 

at each joint. 

Figure 6 shows an example of a simulation command 

that enforces the states of two objects to have the 

same angular velocity. An extra parameter, the 

velocity factor, can be used to define a linear 

relationship between two velocities. It will be used in 

the example scene to express the fact that a gear that 

is two times the size of another gear, which is 

connected to the first gear, will rotate half as fast 

(figure 5). This simulation command is embedded in 

the interaction component. 

At the moment we consider only simple constraints 

between two bodies. However, the results remain 

valid if we introduce a constraint manager that 

resolves complex constraint graphs. 

Figure 6. An XML description of the simulation 

command of a constraint. 

Figure 7. An XML description of a Python script, 

embedded in a command. 

<!-- Simulation command --> 

<command id=”01” name=”ExampleConstraint/Simulation”> 

     

   <command name=”Stage/Step”>     

      <command subject="52" type="Constraint/AngularVelocity"/> 

         <cmdparam type="SetTargetState"> 

            <udata><cmdref>202</cmdref></udata> 

         </cmdparam> 

         <cmdparam type="SetVelocityFactor"> 

            <udata>-0.5</udata> 

         </cmdparam> 

      </command> 

   </command> 

   

</command> 

<command id="300" name="Hello" type="Script/Python"/> 

     <cmdparam type="SetCode"> 

          <udata>print "Hello pLab!"</udata> 

     </cmdparam> 

</command> 

Figuur 5. Two constrained gears.  



Scripted Interactions 
Object interactions are not always that complex. 

Sometimes their means of communication are 

relatively simple. For example, an engine can make 

an axis rotate by simply applying a torque to it. 

Instead of implementing specific extensions for each 

of these simple interactions, a more scalable approach 

allows an interaction component to just “describe” in 

some scripting language how the participating objects 

communicate. We embedded an interpreter for the 

Python scripting language into the framework. Python 

scripts can be wrapped into a command description in 

the XML blueprint, as shown in figure 7. 

The Python C API makes it possible not only to 

embed a python interpreter into an application, but 

also to extend the Python language with “extension 

modules” written in C, C++ and other languages. In 

order to allow Python to callback to the host 

application, in this case an application built on top of 

pLab, the host application was made an extension 

module itself. As the execution of the scripts is much 

slower than native C++ code, they are only useful in 

situations with simple interactions like the ones 

mentioned before. 

The applications of the Python scripts are not limited 

to the implementation of interaction algorithms. They 

can be used to generate user interfaces, define 

animation sequences, perform operations on objects, 

etc. 

5. SIMULATION EXAMPLE 
This section elaborates on an example scene that 

combines all three interaction techniques mentioned 

in the previous section. A simplified schematic view 

on this scene is given in figure 8. The figure only 

shows the objects in the environment along with their 

interactions. Other components, like the simulation 

core itself, the collision library and the differential 

equation solver, are omitted but also form 

indispensable parts of the simulation. 

The setup includes an engine that drives an axis. 

Mounted to this axis is a small gear that is coupled to 

another gear, which is twice as large and mounted to 

a second axis. The same axis contains a fan. In front 

of the fan are two balloons, a red and a green one. In 

this example, we will assume only the red balloon is 

close enough to the fan to get influenced by its 

airflow. The result of this particular simulation is that 

the fan starts rotating, which generates an airflow, 

and sets the red balloon on a collision course to the 

green balloon. The balloons collide and drift away. 

Figures 8, 9, 10 and 11 show the course of action. 

Focusing on interaction components, the simulation 

starts when the script that handles the interaction 

between the gear and the axis applies a torque to the 

axis. This is a one-way interaction. The rotation of 

the axis is handed to the connected gear with a 

velocity constraint that ensures both objects have the 

same angular velocity. Constraints of the same type 

let the rotation propagate through the gears to the fan. 

Between the two gears however, the rotation 

direction has to be reversed and the speed has to be 

cut in half. This situation was also shown in figure 6. 

Next, another script between the fan and the red 

balloon causes the red balloon to drift, according to 

the angular speed of the fan and their distance. When 

it collides with the green balloon, the collision library 

will detect and resolve the interference and apply the 

proper impulses to both objects. 

6. FUTURE WORK 
As indicated earlier, we need to work towards 

incorporating various simulation domains into one 

environment. The work described in this paper is a 

small step in that direction. Our approach was limited 

to the domain of rigid body dynamics, but it should 

be possible to extend this to the other domains like 

Figure 8. Schematic view on the objects and their interaction components. 
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cloth simulation and particle systems, and then 

further on to cross domain interactions. 

The issue of exchanging interaction mechanisms at 

run time was not addressed in this paper. Doing so 

would greatly improve the chances of keeping 

complex virtual environments real time, without 

affecting the visual correctness of the simulation. 

It would also be desirable if the user does not have to 

explicitly define the interaction mechanisms, but that 

they are detected automatically. For instance, one 

could specify just once what the behavior of a gear 

connected to an axis should be. This default behavior 

is then applied each time a user connects a gear to an 

axis. Also, if the objects would be aware of each 

other's proximity, they could be “snapped” together 

automatically by introducing a set of interaction 

mechanisms. 

Finally, we only examined object-object interactions, 

but in virtual environments there are also user-object 

interactions. If the user is also defined as a 

participating object in the environment, he or she can 

be treated in the same way as the other objects and 

the techniques introduced in this paper also apply. 

7. CONCLUSIONS 
We extended the pLab framework with support for 

different types of interaction techniques, describing 

how objects in a virtual environment interact with 

each other. 

To accomplish this, the interactions were generalized 

and viewed as black boxes, similar to the process of 

generalizing the objects in the scene themselves. 

Each interaction object received an interface with a 

simulation command that defines the interaction’s 

behavior during the simulation. 

Finally, we demonstrated the results in a scene where 

three different types of interaction coexisted, namely 

collision detection and response, velocity constraints 

and interactions described by a scripting language. 
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