
The Second Order Particle System
Tommi Ilmonen

Helsinki University of Technology
Telecommunications Software and Multimedia

Laboratory

P.O.Box 5400

Fin-02015 HUT, Finland

Tommi.Ilmonen@hut.fi

Janne Kontkanen
Helsinki University of Technology

Telecommunications Software and Multimedia
Laboratory

P.O.Box 5400

Fin-02015 HUT, Finland

Janne.Kontkanen@hut.fi

ABSTRACT

In this paper we present an extension to the classical particle system. We unify particles, particle sources, and
force generators into a second order particle system. In the second order particle system the particle sources and
force generators are subject to the forces as well as visual particles. This fundamental change, along with suitable
set of force classes, enables us to create better real-time simulations of fire, smoke, clouds, and explosions. We
use hierarchical spatial subdivision to reduce the computational workload.

Keywords
Particle systems, physical modeling, physically based animation, fluid dynamics

INTRODUCTION
Particle systems have been used for computer
graphics for decades. During this time minor changes
have been made to the fundamental paradigm laid out
by Reeves [Ree83]. The classical particle system has
particle sources, particles, and forces that affect the
particles.

Traditional particle systems have several problems
due to their overall architecture. Animations made
with classical particle systems tend to be rather static
– the particles fly around the system, but since the
forces are stationary the trajectories of the particles
do not change. Typically, this results to animations
that look artificial. It is possible to build quite
convincing particle effects using the traditional
method, but this requires special purpose software, a
lot of manual tuning, and a sufficient amount of
artistic insight to overcome the limitations of the
classical particle system. On the contrary, our
approach generates procedural perceptually valid
non-static force fields and the animator does not need
to animate the behavior of each force manually.

Typically particle systems do not have a sufficient
number of forces to create lively, organic animations.
This problem is demonstrated in figure 1(a) that has
valid forces acting on the particles, but only in the

macro level. One could make the animation more
realistic by adding vortices, for example, but they
would have to be animated since a stationary vortex
would not look realistic.

(a) Fire with traditional particle system (88 fps)

(b) Fire effect with the second order particle

system (70 fps).

Figure 1. Difference between fires created with

the classical- and second order particle systems.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1., ISSN 1213-6972

WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

Completely different approach would be to use
precalculated animations in place of real-time
particle effects. However, this method has severe
drawbacks: compromised resolution, lack of the third
dimension and the inability to react to an interactive
environment.

The second order particle system solves the problems
discussed above. By moving the force particles with
other particles we can make the trajectories time-
variant in an aesthetically pleasing way.

The application areas for the second order particle
systems are the same as for the classical particle
systems: movie production, computer games and
interactive multimedia installations. In this paper we
will concentrate on systems that run in real-time with
frame rate greater than 20 frames per second.

This paper is organized as follows. First we examine
previous work on particle systems and fluid
dynamics. Then we describe the features of the
second order particle system in general. After that we
show examples of how this system can be used. In
addition, we also describe the earlier methods that
have been used to create such effects. Finally, we
describe our implementation and algorithms and give
some ideas for future research.

BACKGROUND
The basic building blocks of particle systems are well
known and there are articles describing how one
should build a real-time particle system [Wit97]
[Lan98] [McA00] [Bur00]. Particle systems are a
popular tool for animation both in interactive
graphics [Bur00] and in off-line graphics [Ree85].
Thus most animation applications have direct support
for particle systems (including Alias|Wavefront
Maya, LightWave and others). Wejchert has shown
that it is important to use moving force fields when
the aim is to create convincing animations [Wej91].
Sims has given comprehensive overview of the
traditional particle systems [Sim90].

Particle systems have been used to create flock
behavior [Rey87] and structured systems [Ree85].
O’Brien has shown a method for improving the
performance of dynamics calculation [OBr01] by
grouping particles to reduce the workload of force
calculations.

Particle systems are often used to create animations
relying on fluid dynamics that can be modeled by
using simplified versions of Navier-Stokes equation.
Nguyen has demonstrated fire simulation [Ngu02].
Yngve has modeled explosions [Yng00] and Foster
has animated smo ke and liquids [Fos97] [Fos01].
These studies show the results of using physical
modeling to simulate natural phenomena. The
animations are often very realistic, but the
calculations are much too slow for real-time usage. In

addition, the methods also use a lot of memory,
preventing large-scale simulations.

THE SECOND ORDER PARTICLE

SYSTEM
In this section we describe the features of the second
order particle system. The system is a composition of
novel ideas and more established ones.

The novel feature of the second order particle system
is that forces and particle sources are also affected by
the forces in the system. This fundamental change
enables systems that are much more dynamic than
the classical particle systems. In the second order
particle system the force generators are special
particles – they can be created and deleted like
ordinary particles but they have the capability to
affect the trajectories of other particles. In figure
1(b) we have added dynamic micro-level force
generators by creating a number of small, moving
vortices.

We have named our approach the second order
particle system since this name reflects the relation to
traditional – or first order – particle systems. In first
order particle systems forces move only the visual
particles. In the second order particle system the
particles, the particle creators, and the force
generators are all affected by the forces acting in the
system.

First we specify terms that will be used. A system
stands for “the second order particle system”. A
particle is a point object with no volume or internal
structure. Visual particles are a subclass of particles
that can be represented by the rendering back-end.
Particles can have common properties such as area
and mass. Each particle belongs to one system. A
particle can have arbitrary internal logic to specify
how it reacts to forces and what other behavior it has
(this includes the potential to create new particles to
the system and to delete existing particles). Force

generators are special particles that exert force that
moves other particles. Forces generators – being
particles – are naturally affected by forces as well.
Force category implies how the force affects the
particles and force class specifies the behavior (or
force field) of the force. Each force generator can
only belong to one category (drag, gravity, electrical,
magnetic etc.) but several force classes (vortex,
blow, wind etc.) can belong to one category.

The most profound new idea in the second order
particle system is that forces affect other forces. This
feature enables completely new kinds of effects. It
also reflects the way several natural phenomena
work: For example, a powerful vortex causes new
smaller vortices to appear in its edges and the smaller
swirls move with flow of the liquid. In the traditional
particle system the minor swirls would either be

fixed or they would need to be moved by the
animator. In the second order particle system the
forces move with the system, leading to more
dynamic, realistic, and aesthetically pleasing motion.

By dividing forces to different categories we can get
better control over the animation. Category metaphor
mimics the different physical forces: gravity,
electrical interaction, magnetic interaction etc. By
using different force categories we can apply forces
selectively. For example, we can use this feature to
make fire particles float upwards with wind (particles
with negative weight and large area) while the rain
particles fall rapidly to the ground (heavy particles
with small area).

The forces can affect particles in any way. Since we
cannot foresee all the necessary force types it must be
possible to create new force classes when necessary.

There are situations where particles need to access
other particles in the system. This is necessary since
the behavior of the particle may depend on how
many particles surround it and what kind of particles
they are. For example a vortex creator might emit
more vortex-particles when there are a lot of ordinary
particles around it. Thus particles should have access
to other particles in the system.

EXAMPLE APPLICATIONS
We have created a number of particle systems that
display how the second order particle system can
create animations not possible with classical particle
systems. These examples show how the features
described above relate to realistic animation tasks
and also show results we have obtained with our
implementation of the second order particle system.

Fire
The first example is fire simulation. Fire has proven
to be difficult to model accurately although there has
been progress in creating visually plausible fire
animations. Nguyen has described how to create
highly realistic fire [Ngu02]. Lamorlette has
published a way to control the behavior of physically
based fire [Lam02]. However, both Nguyen’s and
Lamorlette’s systems are too slow to be used in real-
time applications.

In real-time applications fire has typically been
created with a particle system or an animated
billboard. The animated billboard may result in very
realistic fire if one films real fire and uses that as
base material. However, this kind of fire cannot react
to the environment and its 2D-properties are
painfully clear when viewed closely. Additionally,
the video material may consume a lot of memory.

Typical fire effect that has been done with a
traditional particle system is illustrated in figure 1(a).
The largest problem with this and similar fire effects

is that they are not dynamic – flame particles
originate from some area and simply fly to the given
direction. In figure 1(b) we have added vortices to
the system. Vortices make the fire much more
organic and one can see effects that take place in
natural fire – uneven distribution of the flames, more
random motion, and clustering of flames. The
vortices are added procedurally and they move with
the flames to make the animation look credible.
While the effect is still distinguishable from real fire
it is a significantly better-looking approximation than
what one would get with traditional particle systems.
This system demonstrates the effects we can create
with moving, dynamic force objects. The forces need
to interact with each other because it makes the
animation more organic.

T = 4s. The fire
below the ring has
heated the coals at
the bottom and part
of the ring is
burning.

T = 8s. The fire is
spreading in the
ring to the left and
up.

T = 16s. The coals
that were lit first
have consumed
their energy and are
not longer burning.

T = 24s. Only
remnants of coals
remain burning. The
vortices that make
the animations more
complex are shown
as cylinders.

Figure 2. Ring of fire. The last frame shows the

vortices as cylinders (70 fps).

The fire in figure 2 illustrates the use of particles that
react to their environment. We use the basic fire
effect from the previous example as the starting
point. In last frame of figure 2 we have made the

moving vortices visible (each vortex is represented
by a cylinder). Then we create a ring of coal
particles. The coals are initially not burning, but as
the fire heats them they start to burn gradually and
they burn until their fuel is consumed. In this case the
coals are ignited as their internal temperature rises
above a given threshold. The internal temperature
follows the air temperature with some delay. The air
temperature is approximated by calculating the
number of fire particles in the proximity of the coal.
This example shows a situation where it is necessary
for the particles (in this case coals) to have access to
the other objects in the system (in this case to be able
to count them).

Explosions
Explosions are another popular topic in computer
graphics. Physical modeling of explosions for
computer graphics has been done by Yngve with
convincing results [Yng00]. Explosions can be
presented with classical particle systems but – as
with fire – the explosions can look predictable and
simple. In figure 3 we have created an explosion that
is composed of several elements.

T = 0.3s. A
repelling force
field pushes the
particles away
from the center
of the
explosion.

T = 0.6s. The
repelling force
field gets
weaker and the
vortices begin
to cluster the
particles

T = 1.3s. Most
of the original
particles have
flown away, but
a few clusters
remain.

Figure 3. Complex explosion with thousands of

particles and over 20 forces (25-40 fps)

A large number of particles are created at the center
of the explosion with large random velocity. The
particles have slightly randomized mass and area to
make their trajectories less uniform. An explosive
force pushes all particles away from the center of the

explosion. Along with the explosion we send a group
of vortices to the system to create more variation.
After the explosion we add a small set of particles to
the center of the explosion to mimic the remnants of
the explosive matter. The explosions are configurable
and we can create explosions ranging from simple
expanding particle clouds to more complex
explosions with turbulences and disintegrating
particles.

Galaxy
Our third example shows a galaxy (figure 4).

Figure 4. Galaxy (220 fps).

With slightly different rendering style this system can
represent the motion of dust particles in a circular
chamber. We have placed star particles into the
system and we use a vortex to move the particles. We
also create vortices to the edge of the main vortex.
The smaller vortices create more variation to the
system by disturbing the motion of the stars.
Together these forces create motion that mimics the
behavior of the edge vortices in fluid motion. This
example demonstrates how we can mimic the effects
of physics if we know how they work and what is
their visible outcome. The structure of the force
fields is shown in figure 5.

Figure 5. The forces in the galaxy.

Smoke
Figure 6 shows smoke coming from a factory
chimney. We have attached three particle creators to
the top of the chimney. One source creates smoke
particles, another large vortices, and the third small
vortices.

Figure 6. Smoke (160 fps).

IMPLEMENTATION
We have implemented a version of the second order
particle system in C++. This implementation covers
all the features that were described in the previous
examples. Our system also proves that the features
can be implemented with high computational
efficiency.

Our implementation is a group of libraries that
together form The Visual Effects Engine – VEE.
These libraries provide a modular framework for
developing particle systems.

We have used two force categories in our
implementation: drag and gravity. Drag represents
the force that depends on the size of the particle.
Wind, vortex, and explosion are force classes that are
intuitively understood as affecting the particle via
drag. The other force category is gravity. The mass of
the object specifies how strongly it reacts to gravity.
These two categories do not cover all force types of
real physics; instead we are seeking the smallest
possible set of force categories that offer sufficient
flexibility. The names of the categories could be
arbitrary, but we have selected intuitive names
“drag” and “gravity”.

As the force generators are created procedurally it is
easy to create a great number of them. This can lead
to performance problems since calculating the
dynamics takes more time as the number of forces
increases. To counter this problem we have used
octree-optimization [Gla84]: The scene is split
hierarchically to boxes and the hierarchy is updated
progressively (as was done by O’Brien [OBr01]).
Since most of the forces have limited bounding box
we can avoid calculating the forces that could not
affect particles that are in another box. Whether this
optimization does in fact increase performance
depends entirely on the system. In some cases (with
few bounded forces) the overhead of updating the
octree may slow down the system by 40% whereas

with systems that have lots of small-volume forces
we can triple the frame rate (for example figures 4
and 6). The parameters (splitting- and collapsing
thresholds and maximum recursion limit) of the
octree division can be adjusted in run-time to
optimize the performance.

Description of the Algorithm
The following steps describe the high-level control
flow of the second order particle system:

1. Update the velocities of the particles

2. Update the particles

3. Move particles to the correct octree cells

4. Update the spatial hierarchy

5. Register force generators to proper cells

6. Render the particles

First, we update the velocities of each individual
particle, including force and particle generators. For
each particle the resultant acceleration is calculated
by accumulating the impulses exerted into the
particle by all the force generators in the current cell.
In the second step we update the positions of the
particles according to the velocities that were updated
in the first step. In this step additional effects related
to aging of particles may take place. For example,
particles may change color, they may die or they may
cause birth of new particles.

Next three steps (3, 4, and 5) deal with the spatial
subdivision. Third stage verifies that each particle is
in the correct octree cell. If not, the particle is re-
inserted into the octree. In fourth step the topology of
the octree is updated, so that the over-populated cells
are split into eight sub-cells and under-populated
ones are eliminated. When a leaf-cell is deleted the
particles in the cell are pushed into the parent-cell.
Correspondingly, when a cell is split into sub-cells,
the particles are pushed into the leaf-cells. In the fifth
step the force generators are registered to the octree.
Each force generator is inserted to the cells that
intersect or contain the bounding box of the force
field.

Finally the particles are rendered. Various parameters
may affect the visual appearance of each particle, but
in general the rendering module is independent of the
particle simulation system.

Rendering Back-ends
The particle system core is completely independent
of the rendering method. We have created an
OpenGL rendering engine that is used for real-time
operation and a Renderman-file generator. The
OpenGL engine can be configured in run time to use
different textures, image fading, and alpha
operations.

The Renderman-file generator is applied to connect
VEE to external Renderman-compliant renderers.
This engine outputs the particle system in Renderman
Interface Bytestream (RIB) format. We have used the
Blue Moon Rendering Tools (BMRT) renderer with
custom Renderman shaders for this purpose. Since
we can use more time in the off-line mode it is
possible to have more particles and forces than in a
real-time system. The real-time system can be used
for interactive design with fewer particles and the
final system can be rendered off-line with higher
quality.

Scripting Interface
To enable rapid particle system development we have
created bindings for the Python1 programming
language. Thus one can build, configure, and test
particle systems interactively within the Python
interpreter. This feature is practical since tuning the
parameters of the particle systems takes a number of
iterations. An interactive test environment helps this
work.

PERFORMANCE
All of the figures have been rendered with OpenGL
on a normal PC (1,5 GHz processor and NVidia
GeForce4 graphics card). The captions include the
rendering speed in average frames per second (fps).
These test cases have been updated with maximum
speed and new frames have been rendered even if the
previous frame had not been shown yet. Therefore
the fps count may exceed the display update
frequency. These performance figures cannot be
directly compared against other particle engines since
all engines have a different set of functionality,
flexib ility, and performance. They are intended to
show that our approach is useful for real-time
applications.

Compared to physical modeling our approach is
faster by a magnitude or two. Where rendering
physically modeled fire takes seconds per frame,
animations of comparable complexity (but lesser
realism) can be created with the second order particle
system running fast enough for interactive
applications (at least 25 frames per second). The
performance might be improved further by using
O’Brien’s dynamics simp lification approach
[OBr01].

CONCLUSIONS AND FUTURE WORK
We have presented a novel approach to computer
animation – the second order particle system. This
method is based on the traditional particle systems.

Second order particle systems can be used for
simulation of fire, smoke, and other natural

1 Python is an object-oriented scripting language, see

http://www.python.org

phenomena. Although the animations do not rival the
results of physical modeling in realism this approach
is computationally much more efficient, making it
useful for real-time systems. The lack of physical
limitations may also be a benefit when the animation
should not follow physical laws. The second order
particle system is not by definition a tool that must
produce physically valid results but with careful
selection of forces and behavioral rules it is possible
to create particle systems that look like real physical
fluid (or mechanics) systems.

Even though the second order particle system does
not simulate the physical world it has the potential to
create animations that look organic and credible (just
like the special effects used by Hollywood look
credible and “realistic” although they are often
extremely unrealistic). By introducing force particles
and programmable particles we have made the
system much more flexible and capable of new kinds
of animation.

We have implemented the second order particle
system with C++ and it is enough to be used in real-
time graphics applications with modern hardware.
Our approach suits also for off-line animation (i.e.
movie production). The flexibility of our approach
makes it computationally heavier than a traditional
particle system, but the second order systems can
create animations that are much more organic than
animations with traditional particle systems.

In the future we plan to make the real-time
renderings better looking by using vertex- and
fragment programs (i.e. shaders). Other interesting
topics are the creation of effects that are expressive
rather than realistic and finding better and more
flexible ways to control and create particle systems,
possibly with a new control language. We also plan
to test how the system would work with view-
dependent simplification; one could decrease the
number of particles and forces when the particle
system is far from the camera to improve
performance.

The octree division would be useful in culling parts
of the particle system in the rendering phase. Since
the octree division is done in any case we only need
to test the visibility of each octree-cell against the
view frustum.

ACKNOWLEDGEMENTS
This work has been funded by the Hels inki Graduate
School on Computer Science and Engineering of the
Academy of Finland.

REFERENCES
[Bur00] Burg, J. v.a., Building an Advanced Particle
System, Game Developer, pages 44-50, March 2000

[Fos97] Foster N., Metaxas D., Modeling the motion
of a hot, turbulent gas, Proceedings of the 24th
annual conference on Computer graphics and
interactive techniques, pages 181-188, 1997

[Fos01] Foster N., Fedkiw R., Practical animation of
liquids, Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages
23-30, 2001

[Gla84] Glassner A., Space subdivision for fast ray
tracing. IEEE Computer Graphics and Applications.
4(10), pages 15-22, 1984

[Lam02] Lamorlette A., Foster N., Structural
modeling of flames for a production environment,
Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages
729-735, 2002

[Lan98] Lander J., Ocean Spray in Your Face, Game
Developer, pages 13-9, July 1998

[McA00] McAllister, D., The Design of an API for
Partic le Systems, Technical report, University of
North Carolina, 2000

[Ngu02] Nguyen D. Q., Fedwik R., Jensen H. W.,
Physically based modeling and animation of fire,
Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages
721-728

[OBr01] O'Brien D., Fisher S., and Lin M.,
Automatic simplification of particle system
dynamics, Computer Animation, pages 210-218,
2001.

[Ree83] Reeves W. T., Particle Systems - A
Technique for Modeling a Class of Fuzzy Objects,
Computer Graphics 17:3 pp. 359-376, 1983

[Ree85] Reeves W., Blau R., Approximate and
probabilistic algorithms for shading and rendering
structured particle systems, Approximate and
probabilistic algorithms for shading and rendering
structured particle systems, pages 313-322, 1985

 [Rey87] Reynolds G., Flocks herds and schools: A
distributed behavioral model, Proceedings of the 14th
annual conference on Computer graphics and
interactive techniques, pages 25-34, 1987

[Sim90] Sims K. Particle Animation and Rendering
Using Data Parallel Computation, Proceedings of the
17th annual conference on Computer Graphics and
Interactive Techniques, pages 405-413, 1990

[Wej91] Wejchert J., Haumann D., Animating
Aerodynamics, SIGGRAPH Computer Graphics
pages 19-22, 1991

[Wit97] Witkin A., Physically Based Modeling:
Principles and Practice – Particle Systems,
SIGGRAPH-97 course material, 1997

[Yng00] Yngve D., O'Brien J. F., Hodgins J. K.,
Animating explosions, Proceedings of the 27th
annual conference on Computer graphics and
interactive techniques, pages 29-36, 2000

