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ABSTRACT 

We describe techniques to establish local frames over point-sampled manifold surfaces. The tangential alignment 
of local frames is determined using a wave front algorithm starting from a set of pre-defined directions and 
conquering the remaining points. The repeated application of this algorithm is a relaxation procedure that 
maximizes coherence along the surface and minimizes the discrepancy to user defined or surface features. The 
resulting direction field serves as a parameterization for subsequent processes. 
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1. INTRODUCTION 
Representing surfaces using point samples without 
additional topology becomes increasingly popular 
[Gro01]. Point-based methods seem to originate from 
the idea of using points as rendering primitives 
[LeW85, GrD98, PZ+00, RuL00, KaV01]. In 
addition, real-world geometry is often scanned 
[LP+01, RHL02] and, naturally, represented as a set 
of points (possibly together with other information). 
Consequently, surface processing methods that do not 
require an explicit topology are appealing (e.g. 
[PaG01, ZP+02]) because they avoid the conversion 
steps to and from other representations such as 
meshes. 

A particular problem in surface processing is to find a 
suitable parameterization in order to apply techniques 
from the Euclidean domain to surfaces (e.g., texture 
mapping, fairing, filtering). Lots of work has been 
devoted to parameterize meshes [ED+95, Tau95, 
ZSS97, KC+98, LS+98, GSS99, GV+00]. Generating 
parameterizations for point-sampled geometry seems 

even more difficult than for meshes because of the 
missing neighborhood information among the points 
(see e.g. [PaG01, ZP+02, FC+02]). 

We propose to solve the parameterization and 
neighborhood ambiguities in one step by computing 
smooth direction fields over the surface. As a 
primitive operation to separate tangential from 
normal direction (i.e. if normals are not given as part 
of the data) we use the tangent plane fitting technique 
from Levin [Lev01,AB+01]. We smooth an arbitrary 
initial set of directions in tangential direction using 
relaxation techniques. A relaxation approach allows 
optimizing additional measures, for example, the 
discrepancy with principal curvature directions. 

Involving the user in the specification process allows 
the specification of a mapping from one surface to 
another. In addition, user specification of 
discontinuities in the direction field makes the 
relaxation procedure more robust, as it avoids the 
problem of automatically generating the necessary 
discontinuities on shapes different from a torus. 

If the direction field is smooth it can serve as a 
parameterization. Around a discontinuity, it 
essentially provides a polar coordinate system. If 
discontinuities are used to specify point-to-point 
correspondences, the direction field may completely 
specify a bijective mapping.  

We demonstrate the use of direction fields with some 
applications, i.e. generating a radial parameter 
domain and texture synthesis on surfaces. 
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2. RELATED WORK 
The idea of this work is to use direction fields as local 
parameterizations of point sampled geometry. This 
idea has been used for texture synthesis on manifold 
meshes. 

Praun et al. [PFH00] let the user define the local 
frames of a few vertices. The remaining directions are 
computed using an RBF scattered data interpolation 
approach, where distances are determined using 
Dijkstra’s algorithm on the edge graph. 

Wei and Levoy [WeL01] use a relaxation technique 
to generate a smooth vector field. The energy 
functional takes into account different types of 
symmetries. 

Turk [Tur01] exploits a multi resolution 
representation of the mesh and employs a push-pull 
technique to interpolate sparse user information about 
the vector field. 

Local frames for point sample geometry have been 
established in the context of processing operations 
and scale-space representations. 

Pauly and Gross [PaG00] grow patches of points that 
allow a projection onto a planar domain. Starting 
from a set of seeds, points are merged if their normal 
cone stays bounded. The set of planar parameter 
domains is used to define spectral transforms on the 
point-sampled geometry. 

Zwicker et  al. [ZP+02] define a discrete version of 
the surface’s gradient using k-nearest neighbors. This 
gradient is used to define the parametrization as an 
optimization problem. The solution minimizes a 
measure of distortion of the gradient along the 
surface. The local parameterizations are used for 
local operations on the geometry or texture mapping 
operations. 

Fleishman et al. [FC+02] build local frames that 
minimize a weighted least squares problem. The 
union of origins of the frames form a manifold 
surface, while each frame locally approximates the 
surface. The generation process of local frames 
defines a subdivision operation on the point set, 
which is used to build a multi scale representation of 
the surface. 

3. COMPUTING DIRECTION FIELDS 
The goal of the following procedure is to assign each 
point in a set P a direction that conforms with user-
defined or automatically detected directions so that 
the discrepancy of close points is minimized. We 
assume that each point pi has a corresponding normal 
ni. If the normals are not given we compute them 
using Levin’s projection operation [Lev01]. 

Any point might contain information about its (initial) 
direction di. Points may be constrained or 

unconstrained., i.e. their direction is changeable 
during the process, or not.  

The first phase of the process assignes each point pi a 
direction di using a Dijkstra-like approach. In 
subsequent processing steps each point has a 
direction. 

Specifying initial directions 
The specification of initial directions can be done in 
different ways. In most application we expect the user 
to position the discontinuities like sources and sinks 
explicitly within the point set (see, e.g., Figure 1). A 
source or sink is defined by a position and a radius r. 
Any point within a sphere of radius r gets a direction 
that points either to the center of the sphere (sink) or 
away (source) from it. This direction is then projected 
onto the tangent plane of each point. 

Initial directions could be also assigned by computing 
surface features such as principal curvature 
directions. 

To start our process we need to assign at least one 
point a direction. If no preferred directions are 
specified, this could be done randomly. 

Calculating initial directions 
Let PI ⊂0  be the set of points with an initial 

direction (constrained or unconstrained) and PO ⊂0  

be the set of points without information about the 
direction. In general, kO  and kI  are the sets after k 

iterations of the following procedure.  

In each iteration we select a point jp  from kO , 
calculate a direction for this point and move it from 

kO  to kI . 

Figure 1. Dragon model with several user 
defined discontinuities while calculating the 
directions. 



Selecting the next point 
The selection of the point for the next iteration is 
essential for the success of the algorithm and the 
quality of its output. It is necessary to select a point 
near points of kI  so that it is possible to determine a 
direction for the new point based on the directional 
information of the points in kI . 

The easiest way to ensure a sufficient neighbourhood 
of directions is to select the point from kO  that is 
closest to any point from kI .  

Our approach to this problem introduces another set 
of points kB  - the border set (see Figure 2). It 
contains all points in kO  that are near points from 

kI . For each of these points a distance to the next 
point in kI  is stored. We select the point with the 
smallest distance. 

Every point in the set kI  and kB  contains 
information about the distance dist to the closest 
point with an initial direction. The distance dist for 
points in kB  is calculated as  

 

     }|)(min{)( kijiijk Ippppdistpdist ∈−+= (1) 

 

The distances of points from kI  are final while those 
of the points in kB  may change if we find a shorter 
path to that point at any given time (resembling a 
Dijkstra-like strategy of computing shortest paths). 

In every iteration we select that point from kB  that 
has the smallest dist. After adding the selected point 
to kI  we find the points with maximal distance h to 
the point in kO  and add them to kB . This way the set 
of calculated points grows with constant speed into 
all directions. 

Computing the new direction 
In order to calculate the new direction we define a 
new set hikT ,,  containing all points in kI  that are 
within a distance h from jp . In practice this set is 
calculated using an octree structure for storing the 
positions of the points. The new direction jd  is 
calculated as the sum of the directions of all points in 

hikT ,,  weighted using the Gaussians iw . 
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The resulting direction is projected onto the plane 
defined by the normal of kp  and then normalized: 
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Figure 2. Directions are computed for each 
point iteratively. The sets kO (grey) and 

kB  (red) contain points that need to be 
processed. The set kI  (green) represents 
points with direction information. The 
border kB  is used to speed up the 
determination of the next point to be 
treated. 

Figure 3. The direction field resulting 
from the first pass of the algorithm 
starting in one, respectively two, user 
specified discontinuities. 



If either the sum of directions or the projected vector 
results to be zero, the result needs to be dropped and 
the point has to be processed again later. 

These steps are repeated and the direction field grows 
uniformly from all specified initial directions (see 
Figure 1) until all directions are calculated. Results 
are depicted in Figure 3. 

The choice of h is a factor for global smoothness of 
the directions generated. If h is small only few local 
points will be used to calculate the new direction and 
thus the directional field will only be locally smooth 
while a big h will lead to a global smoothness but has 
the deficit of slower processing. 

Smoothing the directions 
Since it may happen that the initial generation of 
directions does not result in a satisfactory smooth 
directional field it may be necessary to perform 
successive relaxation passes to smooth the directions 
to a certain degree. 

These passes are calculated like the first, with the 
difference that all points are already contained in kI . 
Because of this, all points have enough points in their 
environment which already have a direction, so the 
order of calculation is not as important as in the first 
pass. 

We recalculate the direction for every point using 
Equation (2) but limiting the calculation to points that 
are unconstrained. Figure 4 shows the result of this 
procedure starting from a random set of directions.  

Filtering a directional field several times in this way 
can lead to much better results in prospect of 
smoothness, especially if the factor h is increased for 
the passes, though even subsequent relaxation steps 
cannot resolve some problems arising through poorly 
positioned discontinuities. 

4. APPLICATIONS 
We demonstrate how to compute user-defined 
parameterizations for mapping one geometry to 
another. In addition we show how to use the coherent 

directions to generate globally smooth textures on 
point sampled geometry. 

User-defined parameterizations 
By defining the same number of sinks and sources in 
two models the resulting direction fields are 
topological equivalent (assuming the shapes have the 
same genus) and define a bijective mapping from 
surface to the other. This mapping is most easily 
exploited as local polar coordinate systems around 
sinks and sources. Figure 5 illustrates this idea for the 
Stanford bunny and a sphere. 

By selecting a starting point p on the surface of the 
object we can travel along this surface by calculating 
the surface direction of this point, moving in this 
direction a fixed distance e and projecting this new 
point back onto the surface using Levin’s projection 
operation [Lev01] (blue lines in Figure 5). 

Figure 4. Starting from a set of random directions this point set is smoothed iteratively by 
repeatedly averaging directions of the points. 

Figure 5. Specifying sinks and sources allows 
defining polar coordinate systems, which 
could be used to map information from one 
surface to another. If the same number of 
discontinuities is defined, a global mapping 
might be defined. 



By starting in a sink or source of the direction field 
we can now parametrize the local surface around this 
discontinuity with polar coordinates as any point can 
be identified by an angle and a distance (found by 
backtracing the direction field from the point to the 
discontinuity). 

The iso-contours (red lines in Figure 5) can be 
obtained by connecting points of the same distance to 
a discontinuity along several angles. 

Texture synthesis 
The calculated directions can be used to generate 
texture information for the point set surface by using 
an approach similar to [Tur01,WeL01]. 

We start in an initial point by assigning a random 
color from the texture. Selecting the point with the 
shortest distance to our initial point each step (similar 
to our method used in the directional field generation) 
a new color for that point is calculated by generating 
a NxN texture neighbourhood of the colors already 
generated and finding the point in the original texture 
that has the smallest error compared to the 
neighbourhood. 

The calculation of the texture neighbourhood is done 
by projecting the direction between p and all 
surrounding points qi onto p’s tangent plane. The 
resulting vectors di are normalized and multiplied by 
the distance between p and qi. In this way we preserve 
a certain degree of distance information between the 
points on the surface, which would be lost by simply 
projecting them onto the tangent plane. (Figure 6a) 

Now a regular grid G of NxN points tij with a distance 
of h (centered on p) is generated on the plane in 
alignment with the direction of the point and the 
vector orthogonal to the direction and the normal (in 
effect defining the up and right direction for the 
texture). (Figure 6b) 

Each of these points tij is assigned the color of the 
closest point di. If no point di is closer than a certain 

multiple of h (usually 2) the point is marked as 
unassigned. The central point of the grid (being the 
one we want to calculate a color for) is also marked 
as unassigned. 

The grid G is now compared to the source texture at 
all possible positions and the Gaussian of the error 
defines the likelihood for the position to be chosen. 
The color at the center of the grid is selected as the 
new color for our point. Figure 7 shows the Stanford 
bunny textured with anisotropic textures, several 
different isotropic textures synthesized on different 
point-sampled geometries are depicted in Figure 8. 

5. CONCLUSIONS 
We have presented an efficient technique to establish 
smooth direction fields over point-sampled geometry. 
Starting from a few user defined directions our 
approach typically establishes a smooth direction 
field in one pass over the surface. This process takes 
only a few seconds for all models depicted in this 
paper, which enables an interactive specification 
process. 

Smooth direction fields serve as parameter domains 
for local synthesis operations. If discontinuities are 
placed adequately, direction fields might specify a 
bijective mapping from one surface to another. 

In our future work we will exploit mappings among 
surfaces further. Together with hierarchical 
representations of point sets [FC+02] they would 

Figure 7. An anisotropic texture 
synthesized on the Stanford bunny. Note 
that the pattern are orthogonal and the 
textured bunnies together define local 
orthogonal grids on the surface. 

Figure 6a. Projection of the points onto the 
tangent Plane of p 

Figure 6b. Schematic of the grid tij used for 
texture synthesis. 



allow to apply linear techniques for the analysis and 
synthesis of shapes [PSS01]. With point sets, 
however, topological changes are possible, so that the 
linear space of shapes would no longer be fixed to a 
certain homotopy group. 
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Figure 6. An isotropic texture synthesized on the points of the hand model, the same texture on the 
stanford bunny in larger scale and a texture of bird seed on the bunny. 


