
Direction Fields over Point-Sampled Geometry

Marc Alexa Tobias Klug Carsten Stoll

Interactive Graphics Systems Group
Department of Computer Science
Technische Universität Darmstadt

 Fraunhoferstr. 5
 64283 Darmstadt, Germany

{alexa,tklug,cstoll}@gris.informatik.tu-darmstadt.de

ABSTRACT

We describe techniques to establish local frames over point-sampled manifold surfaces. The tangential alignment
of local frames is determined using a wave front algorithm starting from a set of pre-defined directions and
conquering the remaining points. The repeated application of this algorithm is a relaxation procedure that
maximizes coherence along the surface and minimizes the discrepancy to user defined or surface features. The
resulting direction field serves as a parameterization for subsequent processes.

Keywords
Point-sampled geometry, surface processing, local frames, surface parameterization.

1. INTRODUCTION
Representing surfaces using point samples without
additional topology becomes increasingly popular
[Gro01]. Point-based methods seem to originate from
the idea of using points as rendering primitives
[LeW85, GrD98, PZ+00, RuL00, KaV01]. In
addition, real-world geometry is often scanned
[LP+01, RHL02] and, naturally, represented as a set
of points (possibly together with other information).
Consequently, surface processing methods that do not
require an explicit topology are appealing (e.g.
[PaG01, ZP+02]) because they avoid the conversion
steps to and from other representations such as
meshes.

A particular problem in surface processing is to find a
suitable parameterization in order to apply techniques
from the Euclidean domain to surfaces (e.g., texture
mapping, fairing, filtering). Lots of work has been
devoted to parameterize meshes [ED+95, Tau95,
ZSS97, KC+98, LS+98, GSS99, GV+00]. Generating
parameterizations for point-sampled geometry seems

even more difficult than for meshes because of the
missing neighborhood information among the points
(see e.g. [PaG01, ZP+02, FC+02]).

We propose to solve the parameterization and
neighborhood ambiguities in one step by computing
smooth direction fields over the surface. As a
primitive operation to separate tangential from
normal direction (i.e. if normals are not given as part
of the data) we use the tangent plane fitting technique
from Levin [Lev01,AB+01]. We smooth an arbitrary
initial set of directions in tangential direction using
relaxation techniques. A relaxation approach allows
optimizing additional measures, for example, the
discrepancy with principal curvature directions.

Involving the user in the specification process allows
the specification of a mapping from one surface to
another. In addition, user specification of
discontinuities in the direction field makes the
relaxation procedure more robust, as it avoids the
problem of automatically generating the necessary
discontinuities on shapes different from a torus.

If the direction field is smooth it can serve as a
parameterization. Around a discontinuity, it
essentially provides a polar coordinate system. If
discontinuities are used to specify point-to-point
correspondences, the direction field may completely
specify a bijective mapping.

We demonstrate the use of direction fields with some
applications, i.e. generating a radial parameter
domain and texture synthesis on surfaces.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1., ISSN 1213-6972
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

2. RELATED WORK
The idea of this work is to use direction fields as local
parameterizations of point sampled geometry. This
idea has been used for texture synthesis on manifold
meshes.

Praun et al. [PFH00] let the user define the local
frames of a few vertices. The remaining directions are
computed using an RBF scattered data interpolation
approach, where distances are determined using
Dijkstra’s algorithm on the edge graph.

Wei and Levoy [WeL01] use a relaxation technique
to generate a smooth vector field. The energy
functional takes into account different types of
symmetries.

Turk [Tur01] exploits a multi resolution
representation of the mesh and employs a push-pull
technique to interpolate sparse user information about
the vector field.

Local frames for point sample geometry have been
established in the context of processing operations
and scale-space representations.

Pauly and Gross [PaG00] grow patches of points that
allow a projection onto a planar domain. Starting
from a set of seeds, points are merged if their normal
cone stays bounded. The set of planar parameter
domains is used to define spectral transforms on the
point-sampled geometry.

Zwicker et al. [ZP+02] define a discrete version of
the surface’s gradient using k-nearest neighbors. This
gradient is used to define the parametrization as an
optimization problem. The solution minimizes a
measure of distortion of the gradient along the
surface. The local parameterizations are used for
local operations on the geometry or texture mapping
operations.

Fleishman et al. [FC+02] build local frames that
minimize a weighted least squares problem. The
union of origins of the frames form a manifold
surface, while each frame locally approximates the
surface. The generation process of local frames
defines a subdivision operation on the point set,
which is used to build a multi scale representation of
the surface.

3. COMPUTING DIRECTION FIELDS
The goal of the following procedure is to assign each
point in a set P a direction that conforms with user-
defined or automatically detected directions so that
the discrepancy of close points is minimized. We
assume that each point pi has a corresponding normal
ni. If the normals are not given we compute them
using Levin’s projection operation [Lev01].

Any point might contain information about its (initial)
direction di. Points may be constrained or

unconstrained., i.e. their direction is changeable
during the process, or not.

The first phase of the process assignes each point pi a
direction di using a Dijkstra-like approach. In
subsequent processing steps each point has a
direction.

Specifying initial directions
The specification of initial directions can be done in
different ways. In most application we expect the user
to position the discontinuities like sources and sinks
explicitly within the point set (see, e.g., Figure 1). A
source or sink is defined by a position and a radius r.
Any point within a sphere of radius r gets a direction
that points either to the center of the sphere (sink) or
away (source) from it. This direction is then projected
onto the tangent plane of each point.

Initial directions could be also assigned by computing
surface features such as principal curvature
directions.

To start our process we need to assign at least one
point a direction. If no preferred directions are
specified, this could be done randomly.

Calculating initial directions
Let PI ⊂0 be the set of points with an initial

direction (constrained or unconstrained) and PO ⊂0

be the set of points without information about the
direction. In general, kO and kI are the sets after k

iterations of the following procedure.

In each iteration we select a point jp from kO ,
calculate a direction for this point and move it from

kO to kI .

Figure 1. Dragon model with several user
defined discontinuities while calculating the
directions.

Selecting the next point
The selection of the point for the next iteration is
essential for the success of the algorithm and the
quality of its output. It is necessary to select a point
near points of kI so that it is possible to determine a
direction for the new point based on the directional
information of the points in kI .

The easiest way to ensure a sufficient neighbourhood
of directions is to select the point from kO that is
closest to any point from kI .

Our approach to this problem introduces another set
of points kB - the border set (see Figure 2). It
contains all points in kO that are near points from

kI . For each of these points a distance to the next
point in kI is stored. We select the point with the
smallest distance.

Every point in the set kI and kB contains
information about the distance dist to the closest
point with an initial direction. The distance dist for
points in kB is calculated as

 }|)(min{)(kijiijk Ippppdistpdist ∈−+= (1)

The distances of points from kI are final while those
of the points in kB may change if we find a shorter
path to that point at any given time (resembling a
Dijkstra-like strategy of computing shortest paths).

In every iteration we select that point from kB that
has the smallest dist. After adding the selected point
to kI we find the points with maximal distance h to
the point in kO and add them to kB . This way the set
of calculated points grows with constant speed into
all directions.

Computing the new direction
In order to calculate the new direction we define a
new set hikT ,, containing all points in kI that are
within a distance h from jp . In practice this set is
calculated using an octree structure for storing the
positions of the points. The new direction jd is
calculated as the sum of the directions of all points in

hikT ,, weighted using the Gaussians iw .

}|{,, hppIpT ikhik <−∈=

2

2

)(h

pp

i

i

epw

−−

= (2)

∑
∈

=′
hij Dp

jijk pwdd
2,

)(*

The resulting direction is projected onto the plane
defined by the normal of kp and then normalized:

 kkkk nnddd *,−′=

Figure 2. Directions are computed for each
point iteratively. The sets kO (grey) and

kB (red) contain points that need to be
processed. The set kI (green) represents
points with direction information. The
border kB is used to speed up the
determination of the next point to be
treated.

Figure 3. The direction field resulting
from the first pass of the algorithm
starting in one, respectively two, user
specified discontinuities.

If either the sum of directions or the projected vector
results to be zero, the result needs to be dropped and
the point has to be processed again later.

These steps are repeated and the direction field grows
uniformly from all specified initial directions (see
Figure 1) until all directions are calculated. Results
are depicted in Figure 3.

The choice of h is a factor for global smoothness of
the directions generated. If h is small only few local
points will be used to calculate the new direction and
thus the directional field will only be locally smooth
while a big h will lead to a global smoothness but has
the deficit of slower processing.

Smoothing the directions
Since it may happen that the initial generation of
directions does not result in a satisfactory smooth
directional field it may be necessary to perform
successive relaxation passes to smooth the directions
to a certain degree.

These passes are calculated like the first, with the
difference that all points are already contained in kI .
Because of this, all points have enough points in their
environment which already have a direction, so the
order of calculation is not as important as in the first
pass.

We recalculate the direction for every point using
Equation (2) but limiting the calculation to points that
are unconstrained. Figure 4 shows the result of this
procedure starting from a random set of directions.

Filtering a directional field several times in this way
can lead to much better results in prospect of
smoothness, especially if the factor h is increased for
the passes, though even subsequent relaxation steps
cannot resolve some problems arising through poorly
positioned discontinuities.

4. APPLICATIONS
We demonstrate how to compute user-defined
parameterizations for mapping one geometry to
another. In addition we show how to use the coherent

directions to generate globally smooth textures on
point sampled geometry.

User-defined parameterizations
By defining the same number of sinks and sources in
two models the resulting direction fields are
topological equivalent (assuming the shapes have the
same genus) and define a bijective mapping from
surface to the other. This mapping is most easily
exploited as local polar coordinate systems around
sinks and sources. Figure 5 illustrates this idea for the
Stanford bunny and a sphere.

By selecting a starting point p on the surface of the
object we can travel along this surface by calculating
the surface direction of this point, moving in this
direction a fixed distance e and projecting this new
point back onto the surface using Levin’s projection
operation [Lev01] (blue lines in Figure 5).

Figure 4. Starting from a set of random directions this point set is smoothed iteratively by
repeatedly averaging directions of the points.

Figure 5. Specifying sinks and sources allows
defining polar coordinate systems, which
could be used to map information from one
surface to another. If the same number of
discontinuities is defined, a global mapping
might be defined.

By starting in a sink or source of the direction field
we can now parametrize the local surface around this
discontinuity with polar coordinates as any point can
be identified by an angle and a distance (found by
backtracing the direction field from the point to the
discontinuity).

The iso-contours (red lines in Figure 5) can be
obtained by connecting points of the same distance to
a discontinuity along several angles.

Texture synthesis
The calculated directions can be used to generate
texture information for the point set surface by using
an approach similar to [Tur01,WeL01].

We start in an initial point by assigning a random
color from the texture. Selecting the point with the
shortest distance to our initial point each step (similar
to our method used in the directional field generation)
a new color for that point is calculated by generating
a NxN texture neighbourhood of the colors already
generated and finding the point in the original texture
that has the smallest error compared to the
neighbourhood.

The calculation of the texture neighbourhood is done
by projecting the direction between p and all
surrounding points qi onto p’s tangent plane. The
resulting vectors di are normalized and multiplied by
the distance between p and qi. In this way we preserve
a certain degree of distance information between the
points on the surface, which would be lost by simply
projecting them onto the tangent plane. (Figure 6a)

Now a regular grid G of NxN points tij with a distance
of h (centered on p) is generated on the plane in
alignment with the direction of the point and the
vector orthogonal to the direction and the normal (in
effect defining the up and right direction for the
texture). (Figure 6b)

Each of these points tij is assigned the color of the
closest point di. If no point di is closer than a certain

multiple of h (usually 2) the point is marked as
unassigned. The central point of the grid (being the
one we want to calculate a color for) is also marked
as unassigned.

The grid G is now compared to the source texture at
all possible positions and the Gaussian of the error
defines the likelihood for the position to be chosen.
The color at the center of the grid is selected as the
new color for our point. Figure 7 shows the Stanford
bunny textured with anisotropic textures, several
different isotropic textures synthesized on different
point-sampled geometries are depicted in Figure 8.

5. CONCLUSIONS
We have presented an efficient technique to establish
smooth direction fields over point-sampled geometry.
Starting from a few user defined directions our
approach typically establishes a smooth direction
field in one pass over the surface. This process takes
only a few seconds for all models depicted in this
paper, which enables an interactive specification
process.

Smooth direction fields serve as parameter domains
for local synthesis operations. If discontinuities are
placed adequately, direction fields might specify a
bijective mapping from one surface to another.

In our future work we will exploit mappings among
surfaces further. Together with hierarchical
representations of point sets [FC+02] they would

Figure 7. An anisotropic texture
synthesized on the Stanford bunny. Note
that the pattern are orthogonal and the
textured bunnies together define local
orthogonal grids on the surface.

Figure 6a. Projection of the points onto the
tangent Plane of p

Figure 6b. Schematic of the grid tij used for
texture synthesis.

allow to apply linear techniques for the analysis and
synthesis of shapes [PSS01]. With point sets,
however, topological changes are possible, so that the
linear space of shapes would no longer be fixed to a
certain homotopy group.

6. REFERENCES
[AB+01] Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S.,

Levin, D., Silva, T. Point Set Surfaces, IEEE
Visualization 01, pp. 21-28, 2001

[ABK98] Amenta, N., Bern, M., Kamvysselis, M. A new
voronoi-based surface reconstruction algo-rithm.
Proceedings of SIGGRAPH 98, 415–422, 1998

 [ED+95] Eck, M., DeRose, T.D., Duchamp, T., Hoppe, H.,
Lounsberry, M., Stuetzle, W. Multiresolution analysis
of arbitrary meshes. Proceedings of SIGGRAPH 95,
1995

[FC+02] Fleishman, S., Cohen-Or, D., Alexa, M., Silva, C.
Progressive Point Set Surfaces. ACM Transactions on
Graphics, to appear

[Gro01] M. Gross. Are points the better graphics
primitives? Computer Graphics Forum, 20(3), 2001.
ISSN 1067-7055.

[GrD98] Grossman, J.P., Dally, W.J. Point sample
rendering. Eurographics Rendering Workshop 1998,
181–192, 1998

[GSS99] Guskov, I., Sweldens, W., Schröder, P.
Multiresolution signal processing for meshes.
Proceedings of SIGGRAPH 99, 325–334, 1999

[GV+00] Guskov, I., Vidimce, K., Sweldens, W.,
Schröder, P. Normal meshes. Proceedings of
SIGGRAPH 2000, 95–102, 2000

[KaV01] Kalaiah, A., Varshney, A. Differential point
rendering. In Rendering Techniques, S. J. Gortler and
K. Myszkowski, Eds. Springer-Verlag.

[KC+98] Kobbelt, L., Campagna, S., Vorsatz, J., Seidel,
H.-P. Interactive multi-resolution modeling on arbitrary
meshes. Proceedings of SIGGRAPH 98, 105–114,
1998

[LS+98] Lee, A., Sweldens, W., Schröder, P., Cowsar, L.,
Dobkin, D. Maps: Multiresolution adaptive
parameterization of surfaces. Proceedings of
SIGGRAPH 98, 95–104, 1998

[Lev00] Levin, D. Mesh-independent surface interpolation.
Tech. rep., Tel-Aviv University.

http://www.math.tau.ac.il/˜levin, 2000
[LeW85] M. Levoy and T. Whitted. The use of points as a

display primitive. Tr 85-022, University of North
Carolina at Chapel Hill, 1985

[LP+01] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz,
D. Koller, L. Pereira, M. Ginzton, S. Anderson, J.
Davis, J. Ginsberg, J. Shade, and D. Fulk. The digital
Michelangelo project: 3d scanning of large statues.
Proceedings of SIGGRAPH 2000, 131–144, July 2000

[Lin01] L. Linsen. Point cloud representation. Technical
report, Fakultät fuer Informatik, Universität Karlsruhe,
2001

[PaG01] Pauly, M., Gross, M. Spectral processing of point-
sampled geometry. Proceedings of SIGGRAPH 2001,
379–386, 2001

[PZ+00] Pfister, H., Zwicker, M., van Baar, J., Gross, M.
Surfels: Surface elements as rendering primitives.
Proceedings of SIGGRAPH 2000, 335–342, 2000

[PFH00] Praun, E., Finkelstein, A., Hoppe, H. Lapped
Textures. Proceedings of ACM SIGGRAPH, 465-470,
2000.

[PSS01] Praun, E., Sweldens, W., Schröder, P. Consistent
mesh parameterizations. Proceedings of SIGGRAPH
2001, 179–184, 2001

[RHL02] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy.
Real-time 3d model acquisition. ACM Transactions on
Graphics, 21(3):438–446, July 2002 (Proceedings of
ACM SIGGRAPH 2002)

[RuL00] Rusinkiewicz, S., Levoy, M. Qsplat: A multi-
resolution point rendering system for large meshes.
Proceedings of SIGGRAPH 2000, 343–352, 2000

[Tau95] Taubin, G. A signal processing approach to fair
surface design. Proceedings of SIGGRAPH 95, 351–
358, 1995

[Tur01] Turk, G. Texture synthesis on surfaces.
Proceedings of SIGGRAPH 2001, 347–354, 2001

[WeL01] Wei, L.-Y., Levoy, M. Texture synthesis over
arbitrary manifold surfaces. Proceedings of
SIGGRAPH 2001, 355–360, 2001

[ZSS97] Zorin, D., Schröder, P. Sweldens, W. Interactive
multiresolution mesh editing. Proceedings of
SIGGRAPH 97, 259–268, 1997

[ZP+02] M. Zwicker, M. Pauly, O. Knoll, and M. Gross.
Pointshop 3d: An interactive system for point-based
surface editing. ACM Transactions on Graphics,
21(3):322–329, July 2000

Figure 6. An isotropic texture synthesized on the points of the hand model, the same texture on the
stanford bunny in larger scale and a texture of bird seed on the bunny.

