
Fast Convolution
Michael Werman

School of Computer Science and Engineering
The Hebrew University of Jerusalem

Jerusalem 91904, Israel
werman@cs.huji.ac.il

Abstract

We present a very simple and fast algorithm to compute the convolution of an arbitrary sequence
x with a sequence of a specific type, a. The sequence a is any linear combination of polynomials,
exponentials and trigonometric terms. The number of steps for computing the convolution depends
on a certain complexity of a and not on its length, thus making it feasible to convolve a sequence
with very large kernels fast.

Computing the convolution (correlation, filter-
ing) of a sequence x together with a fixed sequence
a is one of the ubiquitous operations in graphics,
image and signal processing. Often the sequence
a is a polynomial, exponential or trigonometric
function sampled at discrete points or a piecewise
sum of such terms, such as, splines, or else the se-
quence can can be well approximated with a few
such terms. The computation of these convolutions
is usually computed straight from the definition
taking O(|x||a|) time or using a more complicated
FFT based O(|x| log |a|) time algorithm.

Here we present a simple and fast algorithm
to compute the convolution of x1, x2, . . . , xn with
am, am−1, . . . , a1, namely y1, y2, . . . , yn−m where
yi =

∑m
k=1 akxi+k−1. The number of steps of the

algorithm depends on a measure of complexity of
a and not onm, its length. The number of steps to
compute the convolution is O(dn) (m < n) where
the sequence a satisfies a linear homogeneous equa-
tion, (LHE),

∑d
i=0 βiar+i = 0 (where the β do not

Permission to make digital or hard copies of all or
part of this work for personal or classroom use is
granted without fee provided that copies are not
made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the
full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or
a fee.
Journal of WSCG, Vol.11, No.1., ISSN 1213-
6972 WSCG(92)2003, February 3-7, 2003, Plzen,
Czech Republic. Copyright UNION Agency (96)
Science Press

depend on r), or equivalently, ar =
∑d

i=1 αiar+i.
For d smaller than log |m| this is faster and much
simpler than using FFT.

Examples of such sequences are;
• polynomials of degree d− 1, ai =

∑d−1
j=0 λji

j ,
the LHE is∑d

j=0(−1)j
(

d
j

)
ai+j = 0, this is of complexity d.

• ai = βλi, the LHE is λai − ai+1 = 0, this is
of complexity 2.

• ai = λi
∑d−1

j=0 αji
j , the LHE is

∑d
j=0(−1)j

(
d
j

)
ai+jλ

d−j = 0, this is of complexity
d.

• ai = α sin(iθ) + β cos(iθ), the LHE is ai −
2 cos(θ)ai+1 + ai+2 = 0, this is of complexity 3.

• ai = λi(α sin(iθ) + β cos(iθ)), the LHE is
λ2ai − 2λ cos(θ)ai+1 + ai+2 = 0, this is of com-
plexity 3.

Sums of above like terms also satisfy a linear
homogeneous equation with a complexity that is
additive, such as ai = 3 sin(21πi/4)+(−2)i+i3−4,
this is of complexity 3 + 2 + 4 = 9.

The complete algorithm, consists of two steps;
initialization and the running computation:

• for i=1 . . . d

– yi =
∑m

k=1 akxi+k−1

– F d+1−i
d+1 = yi −

∑d−i+1
k=1 akxi+k−1

+
∑m+d−i+1

k=m akxi+k−1.

• for i = d+ 1 . . . n − m

– yi = F 0
i =

∑d
j=1 αjF

j
i

– for j = 1 . . . d

∗ F j
i+1 = F j−1

i −aj+1xi+am+j+1xm+i

The invariant is F j
i =

∑m
k=1 aj+kxi+k−1.

The correctness of the algorithm follows from,∑d
j=1 αjF

j
i =

∑d
j=1 αj

∑m
k=1 aj+kxi+k−1

=
∑m

k=1(
∑d

j=1 αjaj+k)xi+k−1

=
∑m

k=1 akxi+k−1 = yi.
There is no reason to save all the previous F ’s

so that the extra memory requirement over the in-
put/output is just O(d).

Notes:
• This is a special case of a recursive filter[Smi97],

where it is easy to define the sequence a.
yi =

∑d
j=1 αjyi−j−

∑d
k=1(

∑d+1−k
l=1 al)xi−k

+
∑d

k=1(
∑d+1−k

l=1 al)xm+i−k

• Special cases of LHE’s with a fast algorithm
such as the constant function (order 0 polynomial),
box filtering, [SBHC88], and exponential functions
have appeared before [Smi97, SBW02].

• The case of polynomials where the filter can
be space variant was treated in [SBHC88, Hec86]
using repeated integration and differentiation. They
gave slightly different formula as they used a con-
tinuous set up.

Formulas equivalent to ours can be derived us-
ing finite differences [MT33] and the summation
by parts formula:

∑m
k=1 x(r + k)a(k)

=
∑d

l=0(−1)lx−l(r +m+ l)∆la(m).
x−l (sum) is defined by, x0(i) = x(i) and xp(i) =∑i

j=0 xp−1(j), and ∆la(m) by ∆0a(m) = a(m)
and ∆p+1a(m) = ∆pa(m+ 1)−∆pa(m).

∆d+1a(m) = 0 whenever a(m) is a sequence of
equally spaced samples of a polynomial of degree d.
So that as in [SBHC88, Hec86] once the sequences
xl and ∆la(m) for l = 0..d are precomputed in
O(d) per element the computation of

∑m
k=1 x(r +

k)a(k) takes only O(d) time.
∆la(m) is especially easy to compute using that

∆l
(

x
n

)
=

(
x

n−l

)
and that any polynomial can be

written as
∑

βj

(
x
j

)
.

• The complexity of convolving with a sequence
that is a piecewise sum of simple functions such as
a spline can be computed by adding up the contri-
butions of each of the pieces.

• Almost exactly the same same formulas can
be used to compute the convolution for sequences
defined by linear equations that are not homoge-
neous. This saves a few arithmetic operations but
does not add any new functions, for if

∑d
i=0 βiar+i =

c then subtracting two consecutive sums gives β0ar−
βdar+d+1+

∑d−1
i=1 (βi+1 − βi)ar+i = 0 a LHS of or-

der d+ 1.
• Of course the algorithm can be used succes-

sively on rows then on columns for convolving 2-d1,
1or any dimension

signals, images, whenever the function is separable
in x and y and if the 1-d functions are simple, for
example, a(i, j) = 3 sin(2πi

10)(2j
3 − j2 + cos(2πj

20)).
Then the amount of work for each output is just
the sum of the two complexities.

The family of 2-d functions that satisfy a linear
homogeneous equation is much larger than what
can be computed with the method of separable
functions, as it is possible to add arbitrary 1-d
functions of linear combinations of x and y for free.
The reason that we do not propose using a straight
forward generalization of the the 1-d algorithm is
that the updating of the F ’s (in the algorithm) now
takes time proportional to the the perimeter of the
signal which is now very large, (O(

√
m) in 2-d).

Experiments

In order to test the algorithm we compared dif-
ferent convolutions with different algorithms. The
algorithms were convolution using a straight for-
ward implementation of the definition, convolution
based on FFT and our proposed fast convolution.
The code was written in JAVA and only the FFT
based algorithm was optimized, time is in ms.

N M d Conv FFT Fast
16384 16 3 160 611 110
16384 128 3 1212 751 110
16384 1024 3 9273 731 81
16384 2048 3 18066 751 101
8186 16 5 140 120 70
8186 128 5 991 101 70
8186 1024 5 8242 100 60
8186 2048 5 15332 90 50

References
[Hec86] P. Heckbert. Filtering by repeated inte-

gration. In Proceedings of SIGGRAPH,
pages 317–321, 1986.

[MT33] L. M. Milne-Thomson. The Calculus of
Finite Differences. Macmillan, 1933.

[SBHC88] P. Y. Simard, L. Bottou, P. Haffner,
and Y. Le Cun. Boxlets: a fast convolu-
tion algorithm for signal processing and
neural networks. Neural Information
Processing Systems, NIPS 11, 1988.

[SBW02] H. Schweitzer, W. Bell, and F. Wu.
Very fast template matching. In ECCV,
pages 358–372, 2002.

[Smi97] S. W. Smith. The Scientist and Engi-
neer’s Guide to Digital Signal Process-
ing. California Technical Publishing,
http://www.dspguide.com/, 1997.

