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Allée André Maurois

87065 LIMOGES CEDEX, FRANCE

poiraudeau@unilim.fr

ABSTRACT

The Morphological Image Analysis characterizes binary digitized 3D images in terms of shape (geometry)

and connectivity (topology) by means of the Minkowski functionals known from integral geometry. In three

dimensions, these functionals correspond to the enclosed volume, surface area, mean breadth and connectivity

(Euler characteristic). To compute these functionals, it is necessary to count the number of open cubes, open faces,

open edges and open vertices of the discretized object in the 3D image.

In this paper we propose a new method to count the number of these geometric elements in a discretized binary

image. We focus on the local configuration around a voxel and we report a fast algorithm for computing discrete

Minkowski functionals with related topological conditions using binary decision diagrams. These diagrams could

be applied to several binary image processing algorithms which evaluate a discrete function for small parts of this

image. We also choose to create and implement a reduced and ordered triple-ADD adapted to our problem. We

show that this algorithm is 17 times faster than the algorithm proposed recently in the literature by Michielsen.

Moreover, large volumes of data, which become increasingly accessible and current,can be treated thanks to this

algorithm.
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1 Introduction

Many fields of science are very data intensive and

often these data are obtained as images. The interpre-

tation of images involves some kind of image process-

ing. A key problem in low level vision is to reduce

the raw image data and to construct a more descriptive

representation in terms of relevant features, which can

be used more effectively by other level processing.

Hence, the main purpose of image analysis is to pro-

vide a quantitative characterization of the shape, struc-

ture and connectivity of the constituents. Therefore,

how to form a fast algorithm is of extreme importance

in applications [1].
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The purpose of this paper is to describe an efficient

and versatile method to compute the morphological

properties of images.

The mathematical morphology aims to character-

ize 3D shapes thanks to four measures [2]. These

measures, also called Minkowski functionals (or in-

trinsic volumes, quermass integrals), are respectively

the volume, the area, the mean breadth and the Euler-

Poincaré characteristic. They were initially defined for

convex objects in the field of integral geometry. In the

late fifties, Hadwiger showed that every measure on

the finite union of compact convex sets can be written

as a linear combination of the four Minkowski func-

tionals. These functionals have a property in common:

they are additive. The functional M� of the union

A [ B of two convex sets A and B is the sum of

the functional of the single convex sets subtracted by

the intersectionM�(A [B) =M�(A) +M�(B)�
M�(A \ B). This relation generalizes the common

rule for the addition of the volume of two convex sets

to the case of a general morphological measure, i.e.

the measure of the double-counted intersection has to

be subtracted.

Over the last few years, these functionals have

been widely used in a number of fields such as de-



termination of the large scale structures of the uni-

verse [3] and modelling of porous media [4]. How-

ever, they are not yet much used by the image pro-

cessing scientists. In the case of discrete images, the

property of additivity simplifies the processing of the

functionals.

2 Problem presentation

We define an n�dimensional discrete space as a lat-

tice grid of Zn. The nodes of this grid are generally

represented by hypercubes centered on the nodes.

A 3D binary image is usually defined as a cubic

grid ofZ3 and represented by a lattice of voxels, where

each voxel may have only one of the two values, say 0

or 1. The set of all voxels with a 1-value is called the

object of the image: they are also called black voxels

or full voxels or active voxels. The set of all voxels

with a 0-value is called the background of the image.

They are also called white voxels or empty voxels or

non-active voxels.

By considering each voxel as the union of the

disjoint collection of its interior, open faces, open

edges and open vertices, it is possible to determine

the four Minkowski functionals for a 3D discretized

object: the enclosed volume (V = n3), the surface

area (S = �6n3 + 2n2), the mean breadth (2B =
3n3 � 2n2 + n1) and the connectivity or Euler char-

acteristic (� = �n3 + n2 � n1 + n0) where n3 is the

number of open cubes (or open voxels), n 2 the number

of open faces, n1 the number of open edges and n0 the

number of open vertices [5].

The morphological characterization of a 3D object

is thus reduced to the enumeration elementary geomet-

rical objects (open cubes, open edges, open faces, open

vertices) which constitute this object. For example,

figure 1 shows a 3D simple object with 3 black voxels.
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Figure 1: Three black voxels: n3 = 3 open cubes,

n2 = 16 open faces , n1 = 28 open edges and n0 = 16
open vertices.

The enumeration of the number of open faces,

open edges, open vertices for a 3D image first re-

quires to examine all the 26 neighbors of each voxel

and then to calculate a Boolean function with these

values. In the literature, only the implementation pro-

posed by Michielsen and De Raedt in [6] seems to be

used for this problem. In this article, they describe

equations which determine how the number of open

faces, open edges and open vertices changes when one

adds one black voxel to a given 3D pattern to the posi-

tion x = (i; j; k). By using these equations, it is easy

to compute the Minkowski functionals for a given pat-

tern, simply by adding the black voxel one-by-one to

an initially complete white background. However, we

find that the method suggested in [6] has two draw-

backs. The first one relates to the algorithm itself, es-

pecially the number of neighbors to be explored: all

the 26 neighbors of the current voxel must be exam-

ined to be able to solve the equations. The second one

relates to the implementation of the algorithm. Two

arrays are used: the first one to store the whole 3D

analyzed image, the other to treat the 3D image being

analyzed (it is filled voxel by voxel), this is expensive

in memory and execution time. To our knowledge, this

algorithm was implemented in FORTRAN 90 on a sin-

gle processor. To limit the number of accesses to the

neighbors of a current voxel V and to avoid the use

of two arrays, we decided to tackle the problem differ-

ently.

First, we focused on the algorithmic considera-

tions, based on geometry which are used to reduce

the problem into smaller sub-problems, for instance

by taking into account the symmetries of the prob-

lem. The sub-problems are then usually solved by us-

ing lookup-tables or quadtrees [7]. But an approach

with a such large lookup-table is undesirable because

of memory occupation. Indeed, all the input variables

are examined once in order to compute the address

of the entry in the lookup-table : if n voxels are ex-

amined, the number of entries of lookup-tables is 2n.

Sometimes a trade-off is chosen between space and

time complexity. In [8] another approach was pro-

posed. It relies on the use of binary diagrams of deci-

sion (BDDs) to generate automatically a very efficient

code for image processing algorithms (such as the test

of simplicity or the thinning in 3D). The authors also

produce functions must faster than the previous imple-

mentations, reducing the execution time by a factor up

to 20.

Then, we decided to consider an approach by

BDDs as a convenient representation for the discrete

functions of booleans variables used in our problem

of counting the number of open faces, open vertices

and open edges. We will implement our algorithm in

C/C++ on a single processor.

3 Towards a fast enumeration of

the morphological characteris-

tics of a 3D discrete image

We consider the 3D image as a pure volume: it is de-

composed by a number of planes for the algorithm.

We also consider that the lattice is traversed from the



left column to the right, in line upwards, and from the

front plane of the image to the backwards plane. In

figure 2, we represent the local configuration around

the current voxel V by a sub-lattice. The 26 neighbor

voxels are noted Nip where i indicates the position of

the voxel in the plane (0 � i � 8) and p indicates the

plane in which the neighbor voxels are located (1: front

plane, 2: current plane, 3: back plane). For each new

black current voxel V , we always try to determine the

number of open faces (�n2), open edges (�n1), and

open vertices (�n0) introduced by the insertion of this

voxel into the lattice.

N01
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courant

front

plane

N82

N72

N12

N62

V

N22 N32

N42
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N73 N63 N53
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N41

N31N21N11
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Figure 2: 26 neighbor voxels of the current voxel V

First, we reduce the problem by examining only

the 13 neighbor voxels preceding the current black

voxel (Ni1 for i = 0::8, Nj2 for j = 1; 2; 3; 8). The

order of study of the value of these voxels depends on

the exploration sense of the lattice. The black current

voxel V will always add at least: 3 open faces, 3 open

edges and 1 open vertex to the 3D enumeration, what-

ever the value of the 13 other neighbor voxels (black or

white). These neighbor voxels will be examined one

by one when the lattice goes on to be explored.

For each geometric element (open face, open edge,

open vertex) of the current voxel, it is necessary to de-

termine if this element has already been counted. All

the preceding neighbor voxels likely to share this el-

ement with the current voxel must be examined: if

only one neighbor voxel is black, the considered el-

ement should not be taken into account, because it has

already been counted in the enumeration. The maxi-

mum number of open faces which can be added is 3,

the maximum number of open edges is 9, the maxi-

mum number of open vertices is 7. We also define the

following discrete equations which depend on the 13

preceding neighbor voxels:

Number of open faces : �n2 =

3 +Q01 +Q22 +Q82 (1)

Number of open edges : �n1 =

3 +Q01:Q22:Q21+Q01:Q41+Q01:Q61+

Q01:Q82:Q21+Q22:Q32+Q82+Q12:Q22:Q82+

Q22 +Q82 (2)
Number of open vertices : �n0 =

1 +Q82 +Q22:Q32+Q12:Q22:Q82+

Q01:Q41:Q51:Q61+Q81:Q01:Q61:Q71:Q82+

Q21:Q31:Q41:Q01:Q22:Q32+

Q11:Q21:Q01:Q81:Q12:Q22:Q82 (3)

with Qij = 1�Nij,

where Nij = 1 for a black voxel (object) and

Nij = 0 for a white voxel (background).

The experimental evaluation will show that the ex-

ecution time being much faster than the algorithm of

Michelsen is already significant by only using these

equations.

Then, we are still looking for an optimization for

our problem. We propose an algorithm which only ex-

amines the neighbor voxels whose values change the

result. This algorithm uses the same technique as that

used in the image processing which consists in evalu-

ating a Boolean function by transforming these equa-

tions in Binary Decision Diagrams (presented in the

next section). This algorithm is also composed of se-

ries of branching tests judiciously ordered to examine

the lowest number of neighbor voxels for each current

voxel: the tests will be stopped as soon as we ascertain

that a remaining geometric element has already been

shared by a neighbor voxel, as be studied in section 5.

Several authors, as [9, 10], noted the benefit of rep-

resenting images as a finite cell complex. A 3D image

can be decomposed into black or white voxels. But it

is also possible to give a complete description of an

area of a 3D image simply by using the borders which

separate it from the close areas. This space decom-

position is called intervoxel decomposition. A cell of

dimension 3 (3-cell) is an open cube. A 2-cell is a face

shared by two adjacent 3-cells. A 1-cell is an edge

shared by two adjacent 2-cells and a 0-cell is a vertex

shared by two adjacent 1-cells. Each single voxel con-

sists of one 3-cell, six 2-cells, twelve 1-cells, eight 0-

cells. In such a representation, our problem is limited

to the enumeration of cells. When we examine a new

current voxel, the intervoxel decomposition can be in-

cluded in equations (1)-(3). For example, equation (2)

becomes:

Number of open edges: �n1 = 12�Number of 1-cells

) Number of 1-cells = 9� (Q01:Q22:Q21+

Q01:Q41+Q01:Q61+Q01:Q82:Q21+Q22+

Q82 +Q12:Q22:Q82+Q22:Q32+Q82) (4)



4 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are compact and

efficient representations of the symbolic manipulation

of boolean functions. Their concept was introduced by

Lee et Akers [11]. Over the last few years, BDDs have

been used efficiently in many fields for many tasks

such as digital-system design, combinatorial optimiza-

tion, mathematical logic, artificial intelligence [12],

as well as image processing [13] and image encod-

ing [14].

4.1 Boolean functions with Boolean vari-

ables

The values of boolean variables are in B = f0; 1g. A

binary decision diagram (BDD) represents a boolean

function f(x1; x2; :::; xn): B
n ! B as a directed

acyclic graph, each node corresponds to a test of a

boolean variable xi (Shannon representation) :

f = �xifxi=0
+ xifxi=1

(1 � i � n)

Each node has two children which are also BDDs.

At each node, a child is chosen according to the value

of the variable associated to this node. The function

value is determined by tracing a path from the root to

a terminal node following the appropriate branch from

each node. Terminal nodes of the graph are the func-

tion values of B = f0; 1g.

A BDD is called ordered if each variable is

counted at most once on each path from the root to

the terminal node and if all the variables appear in the

same order along all paths from the root to terminal

nodes. So the co-factoring variables (splitting vari-

ables) always follow the same order:

(x1 < x2 < ::: < xn)

A BDD is called reduced if it respects the follow-

ing reduction rules : any node with two identical chil-

dren is removed and two nodes with isomorphic BDDs

are merged.

An ordered and reduced Binary Decision Diagram

is unique. The Binary Decision Diagrams have really

been developed after an article by Bryant [12] which

defined the ordered BDD (OBDDs) like a subset of

BDDs. The OBDDs are one of BDDs where the vari-

ables are strictly ordered from the root to the terminal

nodes. One of the advantages of OBDDs is canon-

icity: if variable ordering is fixed and reduction is ap-

plied, two equivalent boolean functions are guaranteed

to have the same BDD. An OBDD in its canonical

form is also called Reduced Ordered Binary Decision

Diagram (ROBDD).

Algorithms for the handling of graphs can be ap-

plied to BDDs. Their complexity is calculated in poly-

nomial time in the size of the BDDs and they gener-

ate canonical graphs. But one of the disadvantages of

ROBDDs is that their efficiency depends essentially on

the variable ordering. The determination of the most

effective order is a difficult NP-problem. Moreover,

the more appropriate order can evolve during the con-

struction of a ROBDD or during its use. Thus, most

ROBDDs are based on a dynamic variable ordering

implementation [15].

4.2 Discrete functions

The size of the BDD can be exponential in the number

of variables. A solution to the problem of this combi-

natorial explosion of some representations with ROB-

DDs is to extend the concept and to represent numeric-

valued functions over Boolean variables, with non-

Boolean ranges, such as integers. Thus one representa-

tion allows to represent all the range of terminal values

instead of using one BDD per value.

The Algebraic Decision Diagrams (ADDs) as the

Multi-Terminal BDDs (MTBDDs) [16] are derived

from BDDs where terminal nodes represent arbitrary

integer values in Z, not restricted to B .

An ADD represents a numeric-valued function

f(x1; x2; :::; xn): B
n ! B where each node is sub-

mitted to a test of a boolean variable xi. Keeping the

boolean variables allows the use of branching struc-

ture similar to BDDs. The discrete functions hav-

ing numeric range can efficiently be represented with

ADDs. For example, the function : f(x0; x1; x2) =
x0 +2 � x1 +4 � x2 corresponds to the unsigned inte-

ger value of the bits vector ”x0; x1; x2” .

5 Which BDD should be used to

count the number of geometric

elements?

The efficiency of a BDD is strongly related to its size

and its cost of construction. These parameters depend

essentially on three points: the function to be repre-

sented, the ordering of the boolean variables, and the

strategy used for the construction of the diagram.

In this section, we present our approach to im-

plement the discrete functions corresponding to equa-

tions (1)-(3) step by step. First, we choose the BDD

adapted to our problem, then, we propose an optimal

variable ordering.

5.1 Choice of a BDD

In [8], Robert et Malandain proposed to use ROB-

DDs for classical image processing techniques. All

of these techniques rely on only one boolean function

with boolean variables and for a given pixel the value

of its neighbors must be analyzed.
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Figure 3: Triple-ADD: the solid lines correspond to the branchings “then” (black voxels), the dotted lines corre-

spond to the branchings “else” (white voxel).

Our problem consists in implementing in the same

BDDs the three functions (�n2, �n1, �n0) presented

in section 3. There are discrete functions with boolean

variables. We also choose to use an ADD. Although

these discrete functions depend on the value of the 13

neighbor voxels, they are independent. It could thus

be possible to associate each equation with one ADD:

we would then have three ADDs to implement. How-

ever, we want to develop a fast algorithm. Thus, we

focus on the following criterion: we try to minimize

the number of accesses to image data. To respect it,

we decide to implement only one ADD for all the three

functions. We call it: triple-ADD. Each terminal node

of this triple-ADD does increment not one equation,

but three discrete equations. That is why it is impossi-

ble to use an existing package to create this particular

triple-ADD.

On the one hand, using only one triple-ADD for three

discrete functions is much faster than using three sim-

ple ADDs. On the other hand, the choice of the vari-

ables ordering for a simple ADD is easier to imple-

ment because it corresponds to the canonical form of

the studied function. For a triple-ADD, we must de-

fine an order according to the booleean variables used

in the three functions by considering their occurrence

in these equations. We also decide to use the 3D topol-

ogy, especially the connectivity to determine a variable

ordering for our triple ADD.

5.2 Choice of variables ordering

5.2.1 Notion of 3D discrete topology

The topological study of the binary images requires

the use of the discrete connectivity. The connectiv-

ity consists in defining relations of adjacency between

the nodes of the grid. For a 3D image, there are three

ways to define the notion of neighborhood between

voxels. The 6-connectivity is defined when a face is

shared by two voxels (6 because there are 6 faces per

voxel). The 18-connectivity is defined when a face or

an edge is shared by two voxels (18 because there are

6 faces and 12 edges per voxel). The 26-connectivity

is defined when a face or an edge or a vertice is shared

by two voxels (26 because there are 6 faces, 12 edges

and 8 vertices per voxel). We can also express these

3D relations of adjacency for the cell complex. A 2-

cell corresponds to a strict 6-adjacency between two

voxels. A 1-cell corresponds to a strict 18-adjacency

between two voxels. A 0-cell corresponds to a strict

26-adjacency between two voxels. By using the nota-



tion in figure 2, we propose a classification for the 26

neighbor voxels of the current voxel V according to

their connectivity:

� 6-connectivity: N01, N02, N22, N42, N62, N82

� 18-connectivity: N21, N41, N61, N81, N12,

N32, N52, N72, N23, N43, N63, N83

� 26-connectivity: N11, N31, N51, N71, N31,

N33, N53, N73

5.2.2 Determination of a topological order

As our criterion consists in minimizing the number

of accesses to the voxels, we must choose a variable

ordering so that the greatest number of geometric el-

ements is eliminated for each test. A neighborhood

by one face eliminates immediately one face, four

edges and four vertices. This case corresponds to a

6-connectivity (voxels: N01 or N22 or N82). The

occurrence of such voxels in our three discrete equa-

tions is one time for �n2 (open faces), four times for

�n1 (open edges), and four times for �n0 (open ver-

tices). A neighborhood by one edge eliminates one

edge and two vertices. This case corresponds to a 18-

connectivity (voxels: N21 or N81 or N41 or N61 or

N12 or N32). A neighborhood by one vertex elimi-

nates only one vertex. This case corresponds to a 26-

connectivity (voxels: N11 or N31 or N71 or N51).

We also choose the connectivity as a strategy to

define an order between our 13 boolean variables.

The first branching tests are carried out on the 6-

connectivity voxels, then on the 18-connectivity vox-

els and at last on the 26-connectivity voxels. The vox-

els having the same connectivity are then ordered ac-

cording to the exploration sense of the lattice. The

order for the thirteen boolean variables of our triple-

ADD is the following:

N01 < N22 < N82 < N21 < N81 < N41 < N61 <
N12 < N32 < N11 < N31 < N71 < N51

In figure 3.a, we propose a classification of the

open faces, open edges and open vertices of the cur-

rent voxel. In figure 3.b, we represent the beginning

of our ordered and reduced triple-ADD. For example,

if the three voxels having 6-connectivity are black, the

branching tests are stopped after analyzing the value of

these voxels. The only three 1-values of these voxels

eliminate any possibility of counting new geometric

elements because all the terms of the three functions

are cancelled : �n2 is still equal to 3 (for the 3 open

faces: F2, F3 and F4 which might be shared by neigh-

bor voxels following the current voxel), �n1 is still

equal to 3 (open edges: e6, e7 and e12) and �n0 is

still equal to 1 (open vertice v7). The complete final

diagram is composed of 181 terminal nodes which are

distributed in the following way:

Length of Number of Length�
branching test terminal nodes Number

3 2 6

4 2 8

5 7 35

6 7 42

7 15 105

8 14 112

9 34 306

10 32 320

11 36 396

12 16 192

13 16 208

Total 181 1730

Table 1: Distribution of the length of the branching

test in our reduced and ordered triple-ADD

Then we implement the triple-ADD in a C/C++ source

code and we choose to keep the nested structure of the

BDD in the generated code as shown in figure 3.c. The

diagram is also transformed into a series of branching

tests (if...else...). Even if the C/C++ source

code is a little long, it is also very effective: at each

stage, the function is guaranteed to examine only the

pertinent input data, i.e. the values which affect the re-

sult. For each value, at least three tests and branchings

are performed : the minimal length of the branching

tests is three when the three voxels of 6-connectivity

(N01, N22 and N82) are black because only these

three neighbor voxels values are examined. The max-

imal length of the branching tests is 13. In [8], on

average, at each voxel 8.7 neighbor voxels values are

examined to set one boolean function. In our algo-

rithm, only 9.5 (1730=181) neighbor voxel values are

examined to set up all the three boolean functions.

In fact, during the counting of the number of ge-

ometric elements in a 3D image, we can estimate

that the length of branching tests most frequently per-

formed for a black voxel is three. This case corre-

sponds to a black voxel located inside the 3D object

(N01, N81 and N22 are black voxels), i.e. all the three

remaining faces of the current voxel are shared by the

preceding neighbor voxels.

6 Experimental evaluation

In this section, we show the efficiency of using a re-

duced and ordered triple-ADD to enumerate the num-

ber of open faces, open edges, open vertices in a 3D

binary image. To evaluate the algorithms, a 1 GHz

Duron PC is used with a level-one 128 Ko cache mem-

ory and a 256 Mo RAM, and we compile source code

with Visual C++ 6.0.

To count the number of geometric elements, we

implement and compare three algorithms. The first



one is the “Michielsen and De Raedt algorithm” as it

can be viewed in [5]. The second one implements the

three equations: �n2, �n1, �n0 without optimiza-

tion; it is also necessary to determine for each new

black voxel all the thirteen neighbor voxel values. We

call it “algorithm of equations”. The last one is the

algorithm presented previously and named “algorithm

of the triple-ADD”. It is the longest source code.

Many systems observed in nature may be modeled

by point patterns [17]. For example, a system of par-

ticles may be viewed as a system of points generated

by the centres of the particles. Points systems may

be considered as black-and-white pictures. In order to

study the characteristics (degree of randomness, clus-

tering, periodic ordering,. . . ) of the point system on

a cubic lattice, we attach cubes to each point. As in

the article by Michielsen and De Raedt, we choose to

use the germs model to study the execution time of

our algorithm. We consider a collection of N vox-

els Vi (i = 1::N ) in a cubic domain. These voxels

are called the germs of the model and their positions

are generated from a uniformly uncorrelated random

distribution (Poisson law). We consider the germs to

be cubes of length r = 1 (voxel) and the grains as

enlarged cubes of edge 2r + 1, r � 0. The study of

the coverage of the image by the grains gives infor-

mation about the system under investigation. We will

now study the counting of open cubes, open faces,

open edges and open vertices for sets of points which

are randomly positioned in a cube of length Lx. By

making use of the graining procedure described above,

we transform the point pattern into a pattern of cubic

grains of edge length a = 2r + 1, r � 0 and study

the processing time as function of r. The first tests

simulate a germ model with N = 1; 024 grains for

a 128 � 128 � 128 image (Lx = 128). The maxi-

mal number of black voxels in such a 3D image will

be 126 � 126 � 126 = 2; 000; 376 because we let a

border of one white voxel all around the lattice. The

execution time of these three algorithms during the

graining procedure are represented in figure 4. On

average, the algorithm of the triple-ADD is 17 times

faster than the Michielsen and De Raedt algorithm and

twice as fast as the algorithm of equations. Then, we

have simulated a new germs model with N = 4; 000
grains for a 500 � 500 � 500 image (Lx = 500).

The execution times for the algorithms of equations

and triple-ADD are represented in figure 5. The two

curves can be divided in three parts. In the first part,

r varies from 0 to 5: very tiny cubes are isolated from

each other. In the second part, the radius r increases

up to 25 and grains join. Finally, the whole lattice is

filled. We note that for large volume data, the algo-

rithm of triple-ADD is on average 2.2 times faster than

the algorithm of equations.

The binary decision diagrams, used up to now for clas-

sical image processing techniques with one boolean

function, seem to be well adapted to our problem. In-

deed, the algorithm of triple-ADD is 17 times faster

than the Michielsen and De Raedt algorithm (which

is also memory expensive) and 2.2 times faster than

the algorithm of equations, as volume data increase.
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Figure 4: Execution time as a function of radius r dur-

ing the graining procedure for N = 1; 024 germs in an

image of length Lx = 128.
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Figure 5: Execution time as a function of radius r dur-

ing the graining procedure for N = 4; 000 germs in an

image of length Lx = 500.

In the following table, we represent the evolution

of the number of black voxels during the beginning of

the graining procedure for a 500� 500� 500 image:

Nb of Nb of Nb of Nb of

graining blacks Voxels Voxels

voxels Vt3 Vothers
0 4,000 0 4,000

1 107,514 47,712 59,802

2 496,075 317,052 179,023

3 1,356,936 1,008,254 348,682

4 2,817,760 2,244,454 573,306

5 5,052,381 4,199,777 852,604



We have only distinguished two types of voxels. The

first ones are called Vt3. These voxels represent the

voxels having performed exactly 3 tests, i.e. the min-

imum number of branching. For these V t3 voxels, the

first two ordered neighbor voxels (N01 and N22) are

black. The location of the Vt3 voxels in the 3D image

depends on the value of the following 6-connectivity

voxel N82. If the neighbor voxel N82 is black, the

current Vt3 voxel is located inside the 3D object. If

the neighbor voxelN82 is white, the current V t3 voxel

is located on the left border of the 3D object: at least

one face (F6) of the current Vt3 voxel is not shared by

preceding voxels. The other voxels are called Vothers:

they undergo up to 3 tests and they represent all the

other black voxels of the 3D image. We can notice

that the more the graining procedure is engaged, the

higher the number of black voxels, but the shorter the

branching because we have more and more V t3 voxels.

7 Conclusions and perspectives

In this paper, we propose a fast algorithm which relate

topological conditions using binary decision diagrams.

Counting the number of open faces, open edges, open

vertices can be done time-efficiently thanks to the use

of a reduced and ordered triple-ADD, even if the data

volume is large. The number of open cubes corre-

sponds to the number of black voxel in the 3D image.

Once all these geometric elements have been enumer-

ated, it is possible to calculate the Minkowki function-

als.

In the future, we would like to use this method to

represent 3D convex and non-convex bodies thanks to

a mapping in R2 [18].
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