
Scalable Compression and Rendering of Textured
Terrain Data

Roland Wahl Manuel Massing Patrick Degener Michael Guthe Reinhard Klein

 University of Bonn
Institute of Computer Science II

Römerstraße 164
D-53117 Bonn, Germany

{wahl,massing,degener,guthe,rk}@cs.uni-bonn.de

ABSTRACT

Several sophisticated methods are available for efficient rendering of out-of-core terrain data sets. For huge data

sets the use of preprocessed tiles has proven to be more efficient than continuous levels of detail, since in the

latter case the screen space error has to be verified for individual triangles. There are some prevailing problems

of these approaches: i) the partitioning and simplification of the original data set and ii) the accurate rendering of

these data sets. Current approaches still trade the approximation error in image space for increased frame rates.

To overcome these problems we propose a data structure and LOD scheme. These enable the real-time rendering

of out-of-core data sets while guaranteeing geometric and texture accuracy of one pixel between original and

rendered mesh in image space. To accomplish this, we utilize novel scalable techniques for integrated

simplification, compression, and rendering. The combination of these techniques with impostors and occlusion

culling yields a truly output sensitive algorithm for terrain data sets. We demonstrate the potential of our

approach by presenting results for several terrain data sets with sizes up to 16k x 16k. The results show the

unprecedented fidelity of the visualization, which is maintained even during real-time exploration of the data

sets.

Keywords

Terrain rendering, level of detail, out-of-core rendering, compression

1. INTRODUCTION
Rendering of textured terrain models has become a

widely used technique in the field of GIS

applications. Due to the mere size of the data sets,

out-of-core techniques must be used to process and

visualize such models. Sampling the area of the

United States of about 9.2M km2 with a sampling

rate of 10 meters would result in a data set of about

300k x 300k height values. In most cases

corresponding texture data is sampled at an even

higher resolution. In urban areas sampling rates of 25

cm are common.

To achieve real time rendering without sacrificing

accuracy, several aspects have to be considered. On

one hand, to exploit the full performance of current

GPUs, transmission of large data chunks is

advantageous. On the other hand, no unnecessary

data should be submitted, since bandwidth and I/O

are often the bottleneck of current graphics systems.

Furthermore, with the growing GPU power the

management of fine-grained LODs on the CPU

becomes more and more the limiting factor, and in

many rendering applications the GPU is not working

at full capacity.

A high-performance terrain rendering system should

comprise the following characteristics:

• represent the input data faithfully
Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972

WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

• allow for output sensitive rendering, in order to

retain scalability (i.e. readily support LODs,

occlusion culling, impostors)

• submit and process textures and geometry with

adequate granularity to take advantage of GPUs,

without taxing the CPU.

• allow for compact storage and on-the-fly

decompression of textures and geometry to

minimize bus bandwidth and storage

requirements.

• local accessibility of geometry and textures

without global interdependency, in order to

maximize concurrency and to avoid management

overhead.

Our method subdivides the geometry as well as the

associated textures into equally sized blocks, which

we refer to as tiles, and organizes them in a quadtree

hierarchy. Tiles from coarser levels correspond to

large areas, those from fine levels to small areas.

Each geometry tile in the quadtree is represented by a

triangulated irregular network (TIN). The vertices

are placed on a local regular grid, which has

constant resolution for all tiles of the hierarchy.

Likewise, textures are stored with constant

resolution.

Furthermore, for each tile in our model a guaranteed

error bound is available. The approximation error

doubles from level to level and is therefore a constant

ratio of the tile extent. In contrast to common multi-

resolution meshes, which start with a global, coarse

approximation of the triangle mesh and decide on a

per-triangle basis if further subdivision is necessary,

we restrict ourselves to one decision per quadtree

cell. This means that each geometry tile only holds

one precomputed triangulation, whose connectivity is

stored using state of the art compression algorithms.

During rendering we perform view-frustum and

occlusion culling for the quadtree nodes, which are

represented by bounding boxes as long as the

geometry is not needed. The accuracy guarantee for

the TINs is used to restrict the screen space error to

be at most one pixel.

With these techniques we are able to render the

simplified data with an image fidelity equal to a

rendering of the full-resolution dataset in real time,

even if the input data becomes arbitrarily large.

In the next section of this paper, we take a look at

related work. In section 3 we give an outline of our

algorithm. Section 4 describes how our discrete-LOD

model is created in a preprocessing step and section 5

shows how we perform the rendering of our data

structure. Then we show some results we deduced

from real data sets. Section 7 concludes the paper.

2. RELATED WORK
Fast rendering of terrain datasets with viewpoint

adaptive resolution is an active area of research.

After the initial approaches by [Gro95, Pup96,

Lin96], many different data structures have been

proposed. Since giving a complete overview is

beyond the scope of this paper, we refer to recent

surveys [Lin02, Paj02a] and only discuss the

approaches most closely related to our work.

Considering existing approaches for the efficient

processing and display of terrain datasets, one can

differentiate between two main classes. The first

class consists of approaches that employ regular,

hierarchical structures to represent the terrain,

whereas approaches of the second class are

characterized by the use of more general, mainly

unconstrained triangulations.

The most established methods of the first class make

use of triangle bin-/quadtrees [Lin96, Duc97, Cli01],

restricted quadtrees [Paj98, Ger99], RTINs [Eva01]

and edge bisections [Lin02]. These structures

facilitate compact storage due to their regularity, as

topology and geometry information is implicitly

defined.

Approaches of the second class use less constrained

triangulations. They include data structures like

Multi-Triangulations [Pup96], adaptive merge trees

[Xia96], hypertriangulations [Cig97] and the

adaptation of Progressive Meshes [Hop97] to view-

dependent terrain rendering [Hop98]. As proven by

Evans [Eva01], TINs are able to reduce the number

of necessary triangles by an order of magnitude

compared to regular triangulations since they adapt

much better to high frequency variations. However,

in order to capture irregular refinement or

simplification operations and connectivity, a more

complex data structure is needed. To alleviate these

drawbacks, either Delaunay triangulations [Flo92,

Rab97] or a modified quadtree structure have been

used to represent irregular point sets [Paj02b].

Since all adaptive mesh generation techniques spend

considerable computation time to generate the view-

dependent triangulation, the extraction of a mesh

with full screen-space accuracy is often not feasible

in real-time applications. Many authors have

proposed techniques to reduce the popping artifacts

due to the insufficient triangle count [Coh96, Hop98]

or to amortize the construction cost over multiple

frames [Duc97, Hop97, Lin96]. Another approach is

to reduce the per-triangle computation cost by

assembling pre-computed terrain patches during run-

time to shift the bottleneck from the CPU to the GPU

like the RUSTiC [Pom00] and CABTT [Lev02] data

structures. These methods were further refined, by

representing clusters with TINs in a quadtree [Kle01]

or bintree domain [Cig03].

To incorporate textures into the above mentioned

hierarchies, the LOD management can be either

decoupled from the geometry (e.g. the SGI clip-

mapping extension and the 3Dlabs Virtual Textures),

which requires special hardware, or they can be

handled by explicitly cutting them into tiles and

arranging them into a pyramidal data structure

[Döl00]. However, this leads to severe limitations on

the geometry refinement system, since corresponding

geometry has to be clipped to texture tile domains.

3. OVERVIEW
Our method consists of a separate preprocessing

stage and the actual rendering stage. A typical input

dataset for the preprocessing consists of a digital

elevation model (DEM) of the terrain and associated

texture maps (e.g. orthophotography).

If desired, a map of surface normals (normal map)

can be extracted from the DEM and processed in the

same way as the textures. As detailed in the

following section, the preprocessing (Fig. 1)

recursively builds a LOD hierarchy of tiles (tile tree)

through geometry simplification or texture filtering.

Finally all resulting tiles are specifically encoded and

stored. During geometry encoding, a separate

bounding box hierarchy is extracted.

Rendering is essentially parallelized among two

threads. The main thread selects cells for rendering

by considering their visibility and detail. An

additional caching thread performs the asynchronous

retrieval of associated cell data (e.g. geometry and

texture maps). Once all pending requests are

completed, the rendering thread hands over the cell

data to the graphics hardware. In order to avoid

bursts of high workload, the caching thread can also

perform prefetching of tiles based on the history of

requests or a prediction of the camera path.

Since all operations are handled on a per-tile basis,

and no interdependencies among tiles exist, this

approach allows for very flexible compression and

prefetching schemes.

Therefore, this architecture is able to handle huge

terrains, including textures and normal maps. As will

be shown in section 5, the number of tiles to be

rendered is generally constant. As a consequence, the

frame rate is not limited by the amount of input data,

but only depends on the complexity of the visible

data and on the available graphics hardware.

4. TILE TREE CONSTRUCTION
In this section, we describe how the geometry is

processed into a multiresolution data structure, which

we call the tile tree. Basically, the tile tree imposes a

quadtree hierarchy on a set of tiles built from the

input geometry and textures. The object space error

is bounded throughout the whole pipeline.

The tile tree root holds geometry and texture tiles

that cover the whole domain of the dataset, and

children partition their parents’ domain into equally

sized quarters. Texture tiles at the leaves are

initialized with the input texture data. Tiles on higher

levels are then assembled from their children and

downsampled by a factor of 2, that is, the texture

resolution remains constant for all tile tree levels.

Analogously to the texture sub-sampling process, we

partition the input mesh into geometry tiles, which

are stored at the tile tree leaves. Geometry tiles on

higher levels are built by approximating the input

mesh with half the accuracy of their children. We use

the symmetric Hausdorff Distances [Kle96] between

two meshes as a measure of their approximation

accuracy. Both texture and geometry tiles are

discretized and compressed before storage.

Figure 1. The preprocessing stage.

Error Bounds
All LOD algorithms strive to bound the screen space

error, while rendering as few polygons as possible. In

the general case, the screen space error İ depends on

all viewing parameters: the eye position E, the

viewing direction ni, the field-of-view φ and the

screen resolution r.

Figure 2. The rendering stage.

Since a precise calculation of the screen space error

for a tentative simplification is too expensive, one

approach is to establish only upper bounds on the

object space error į. The screen-space error can then

be easily derived at runtime from the precomputed

object space error. From intercept theorems, we have

that icos() d / dε δ α= ⋅ ⋅ where 2id cot() r /φ= ⋅

and d (iP E) n= − ⋅ (fig. 3).

Figure 3. Relationship of errors depicted in 2D.

To further simplify the problem, the direction of the

object-space error (i.e. α) is neglected and only its

magnitude į is regarded. This means that we do not

consider the eye position, but only the distance of the

observer. We do so for three reasons: First,

considering the viewing direction does not save

significant amounts of triangles, as Hoppe [Hop98]

has pointed out. Secondly, we do not only want to

reproduce the correct contours, but also the correct

texture coordinates, which requires the object space

error to be bounded isotropically anyway1. And

finally the reduction of dimensions is exactly what

we need to build discrete LODs without having too

much redundancy in the data.

Consider a tile T with an associated bounding box B.

When the object space error for this tile is known to

be less than įT and we want to guarantee a screen

space error below a threshold τ we can use this tile,

whenever B lies fully behind a plane with normal ni

and distance i Td /δ τ⋅ .

This means that doubling the observer distance

allows us to double the permitted object space error,

while maintaining the same screen space error

bound. Furthermore, this allows us to represent the

geometry of the considered tile on a local grid of

constant resolution, because the relative accuracy

within a tile is also constant.

In comparison to a continuous view dependent

approach (CVLOD), we render a larger number of

triangles because the screen space error is

overestimated in most places. If one considers an

optimal CVLOD mesh, and the mesh complexity

falls off quadratically with the permitted Hausdorff

error 0

2

n
n δ≈ , the number of triangles would remain

constant for a fixed viewing direction. In this case,

the mesh complexity of our discrete LOD

representation would exceed the CVLOD by at most

a factor of 4 in the top-down view. When

approaching from above, the average overhead

would be 2 2 7
1 3

x dx∫ = , which is at the same time the

maximum factor for a lateral view. Since looking

from above is the simplest case for rendering (no

overdraw, localized texture accesses), the over-

estimated mesh complexity does not have a

significant impact on performance, and is well worth

the cost for the simple, low-cost mesh generation,

and the flexibility and complete independence of the

data tiles.

Simplification
The geometry simplification starts by splitting the

DEM, which typically is given by a regularly

sampled heightfield, into equally sized base level

tiles (e.g. 129x129 samples each, with overlapping

borders). Then, a reasonable triangulation (e.g.

regular) is imposed on the height-samples, and a

presimplification with error bound įpre is performed

on this mesh. The pre-simplification is meant to

accommodate the fact that the input is a regular grid

with a given discretization error, so įpre will be about

one half inter-pixel spacing, as this is the amount of

uncertainty inherent in the data. These presimplified

base-tile meshes are then stored at the leaves of the

tile tree, and all subsequent error metrics refer to

these meshes.

To make up a tile of the next tile-tree level l, four

neighboring tiles are stitched together. The resulting

mesh is then simplified to approximate the reference

mesh with an error bound įl, which is chosen to

guarantee an error against the base mesh of 2l τ⋅ .

The tile outlines are preserved, but simplifying the

borders is allowed if the error implied in the

neighboring tile also lies below įl. This is an

important property, since otherwise the number of

border triangles would explode on huge datasets. To

avoid unbounded complexity of the reference mesh,

which would increase fourfold on every level using a

naïve approach, we always measure the Hausdorff

error against the penultimate simplification level.

That way, the additional error already immanent in

the reference can be conservatively estimated as 1

4
,

so the overestimation adds up to 1 1

4 16 3
+ + + ≤… 41 . In

order to maintain the overall Hausdorff error bound,

a conservative estimate of the rounding error

committed during compression is subtracted from the

permitted simplification error bound for a tile.

The simplification of a tile is highly local, since all

measurements during simplification of a tile relate to

the tile itself, one of its neighbors, or the

corresponding reference tiles.

A parallelization of the simplification is

straightforward and the algorithm scales well since

the memory requirement for simplifying a tile is

bound by a constant. One can even avoid the

dependency on neighboring tiles completely if the

permitted error along the affected borders is

restricted to half the magnitude of the allowed

simplification error. That way, the difference

between two neighbors is guaranteed to be less than

the pixel-threshold, and resulting cracks can be

handled as described in section 5.2.

Textures
Bounding the Hausdorff distance between the

original and the simplified mesh guarantees the

correct representation of contours for a given

tolerance, but does not guarantee the correct coloring

1 ∞ Though the L metric would be sufficient in this case.

of the surface. In addition to conventional decal

texture maps, we employ normal maps extracted

from the input dataset. With normal maps, shading

detail is preserved even in regions of coarse

triangulation, which would otherwise be discarded

by geometry-based shading (e.g. Gouraud shading).

Of course, textures taken from photographs may

already contain shaded and shadowed features, but

nevertheless normal maps help to reveal the structure

of the terrain, especially if additional moving light

sources are used.

To compress our textures and normal maps, we

employ standard compression algorithms such as

S3TC and JPEG. S3TC compressed textures offer the

great advantage that decoding is implemented on

most standard graphics hardware, thus sparing the

CPU from decompression. Moreover, they reduce

bandwidth and texture memory requirements, as the

textures may reside in memory in their compressed

form. The main disadvantage of S3TC are block

artifacts, which are especially noticeable with normal

maps, and the minimal level of control over the

compressed image quality. JPEG offers better

compression ratios and therefore lessens the load on

the I/O, but needs to be decoded in the CPU, which

can become a bottleneck. Also, the artifacts are more

disturbing. Later standards as JPEG2000 featuring

wavelet-codecs are desirable, especially for their

inherent support of texture hierarchies, but need to be

hardware supported to achieve similar efficiency.

Since the tiles can be encoded independently, it is

easy to mix different encoding schemes or use

lossless formats whenever the signal to noise ratio

falls below a certain threshold, but then one needs to

take care that the tiles' borders do not become visible

due to quality changes.

Since terrain is rather flat, the textures can be

projected from above with sufficient accuracy, and

the level-of-detail for a texture tile can be chosen in

the same way as for geometry tiles. This way, we

establish a one-to-one correspondency between

texture- and geometry tiles. As already mentioned,

texture maps are constructed bottom-up from the

input data by downsampling, which basically means

building a standard image pyramid on top of the

underlying input image (e.g. by averaging 4

neighboring pixels). This also holds for the normal

maps, since the defect in length accounts for the

roughness of the surface.

During rendering, we apply anisotropic filtering

instead of a mip-mapping scheme. This does not only

enhance rendering quality, but improves locality

because the level of filtering is chosen by the

maximum partial derivative.

5. RENDERING
We divide the rendering into two stages, the update

stage and the cell rendering stage. During the update

stage, the CPU traverses the bounding box hierarchy

depth-first and decides which tiles need to be

rendered. Compression
One major drawback of using TINs compared to

quadtree triangulations [Lin96, Duc97] is that the

connectivity is no longer implicit. Fortunately, there

are very efficient methods for coding and decoding

connectivity [Gum98, Ros99] which rarely use more

than 4 bits per vertex. Regarding the coordinates we

factor the information into a bounding box – whose

xy-coordinates are implicit and whose minimum and

maximum elevation are explicitly stored in a separate

structure – and a local grid address. As already

mentioned before, the grid inside a tile's bounding

box may have a constant resolution independent of

the level. If we use 129x129-tiles for geometry the

inner vertices can be addressed with 14 log h+   

bits, where h denotes the height of the bounding box

measured in level-dependent units. Typically one

will further discretize the bounding box axes with a

constant number of bits, so that the rounding

procedure does not dominate the Hausdorff error and

thereby increase the triangle count. However, all in

all the number of bits per vertex even in mountainous

terrain rarely exceeds 32 bits per vertex. For

experimental results see section 6.

Quadtree Update
The update stage can be implemented using a simple

top-down traversal of the quadtree hierarchy. Each

tile visited in that manner is first checked against the

viewing frustum. If the tile's bounding box lies

completely outside of the frustum, descent can stop.

Otherwise, we need to decide whether the tile in

question satisfies our error bound. Since this object-

space error bound is fixed throughout a whole

quadtree level, and there are no constraints regarding

the LOD-difference of neighboring tiles, the

selection of an appropriate level of detail is

straightforward. All tiles which may be rendered

with a LOD of d or coarser lie completely behind a

virtual plane which is a shifted copy of the image

plane at distance 2d. If the tile is found to have

sufficient detail, it is considered for rendering and, if

necessary, geometry, texture and normal map for the

tile are requested from the cache. If the tile LOD is

not sufficient, we continue our descent.

In a second stage, the tiles found to be visible are

rendered.

Repairing Cracks Occlusion Culling
In case the LOD of two neighboring tiles differ, it is

not sufficient to simply render the geometry. Even

though the geometric errors between the tiles would

fall below the pixel projection threshold, small

cracks may become visible due to discretization in

the rasterizer stage. But since the cracks are under

screen space error control, there is no need to avoid

them, they only need to be filled with the correct

color. This is achieved by attaching a triangle strip

along the border that reaches down the equivalent of

one pixel. In this way, the holes are shaded

consistently with the borders.

During quadtree traversal we can ensure a front-to-

back ordering, which enables us to perform per-cell

occlusion by conservatively testing tiles against

potential occluders.

One can do so by rendering potentially occluding

geometry into the depth-buffer (while disregarding

texture & color information) during quadtree

traversal. Visibility tests on potentially visible cells

can be performed by rendering an appropriate

enclosure of the geometry and then testing if any

pixels passed the depth test. As noticed by Lloyd

[Llo02], bounding boxes give satisfying results.

Caching & Prefetching We are able to render the occluders with a greater

pixel error than the cells whose visibility is to be

determined. This is due to the guaranteed error

bounds on our geometry, as the bounding boxes can

easily be scaled to compensate for the error

introduced by using the coarse occluding geometry.

If one accounts for discretization errors it is also

possible to reduce the resolution of the depth buffer,

thus minimizing fillrate requirements.

Even in single-processor system, the CPU, GPU and

IO subsystem can work more or less concurrently. To

maintain and support such parallelism between the

CPU and IO-subsystem, we employ caching and

prefetching during the update and rendering stages.

During the update stage, the caching thread receives

requests from the rendering thread and fulfills them

asynchronously. The threads are then synchronized

to ensure completion of pending requests. While the

terrain is rendered, which is a task independent of the

IO subsystem, we can perform node prefetches based

on the previously requested nodes and the estimated

camera motion. These prefetched nodes are stored in

a cache and will in many cases accelerate geometry

requests in subsequent update stages.

Impostors
For a flight speed v there always exists a distance

d(v) so that the 3 dimensional effects within a tile or

region at this distance are no longer noticeable for

several frames. This fact can be exploited by

rendering these tiles or regions into textures and

project these textures on a quad (impostor) which

replaces the geometry. The error is tracked and the

impostor is invalidated if the error exceeds a

threshold.

Output Sensitivity
Since the rendering output always consists of a

constant number of colored pixels, achieving output

sensitivity is a very demanding task. With our basic

LOD algorithm, we achieve, that the per frame

complexity is within (i.e. the number of

visible tiles per LOD as well as the tile complexity is

bounded by a constant). In order to be output

sensitive in this theoretic sense, the number of visible

tiles has to decrease with growing distance such that

its series converges, which basically means that there

are only finitely many visible LODs. In fact there are

several real world effects, that suggest that this is a

feasible demand. Occlusion, earth curvature,

atmosphere (fog) and limited flight speed (distant

features need not to be redrawn every frame) help to

decrease complexity if taken into account. In the

following, we will discuss practical aspects of

techniques such as occlusion culling and impostors

which make use of these effects. The tile granularity

combined with the associated object space errors

offers advantages for both methods.

O(log n)

If one wants to guarantee a screen space error of one

pixel, one has to sum up the errors which are made

on the different stages for the impostors. For example

if one renders the impostor during setup a certain

pixel error is made, but then again during rendering

the texture a resampling error is added which also

takes account for the resolution of the impostor

texture. Both of these errors need to be added to the

geometric error which reflects the parallax not

represented in the flat geometry.

6. IMPLEMENTATION & RESULTS
For our experiments we implemented a simplifier, a

renderer and a coding/decoding module as described

in section 3. The simplifier performed edge-

collapses, which were generated and scheduled using

error quadrics [GH97]. For each proposed collapse

the Hausdorff error was computed by calculating the

point-triangle as well as the edge-edge distances

using the domain as an indicator, which elements

need to be checked against each other. Since the z-

projection used for finding correspondencies in this

approach does not necessarily yield the closest

elements, we establish upper bounds on the error. In

order to guarantee linear time-complexity, each

collapse is either performed or deleted from the

queue.

The rendering was performed on a PC with a 1.8

GHz Pentium 4 processor, 512MB RAM running

Linux and a GeForce3 graphics card.

Table 1. Geometry statistics of tested models.

The largest dataset visualized so far with our

approach shows the Puget Sound area in

Washington, U.S. The input heightmap consists of

16.385x16.385 height samples, with 10m inter-pixel

spacing. Additionally, matching texture and normal

maps were created. The presimplified dataset, which

comprises geometry, S3TC-compressed textures and

normal maps, uses 371MB of storage, as opposed to

over 1GB needed by the uncompressed heightmap

and texture data. Figure 4 depicts framerates of a

high-speed (5.400km/h), low-altitude flight over the

Puget Sound dataset. Rendering was performed on a

768x576 screen with an error threshold 1τ < and

full resolution normal and texture mapping.

0

50

100

150

200

250

300

0 50 100 150 200

Framerate

avg. Framerate

real-time

Figure 4. Frame rates for a Puget sound fly-over.

We were also able to visualize a complex dataset of

the Turtmann valley in Switzerland (Fig. 5) at high

frame rates. The dataset features steep, mountainous

parts of the alps at 2 meter resolution. It is actually a

digital surface model, which means that even rocks,

buildings and trees are present in the geometry. The

data was cut into three slightly shifted 4k x 4k

datasets and processed into three different tile trees.

Note the flexibility of our approach, which easily

integrated all three datasets into a single rendering

process. We also implemented our terrain rendering

engine on a 6-projector powerwall setup, where the

isotropic error guarantee extends to accurate depth

perception. Videos of the mentioned fly-overs can be

downloaded at: http://cg.cs.uni-bonn.de/project-

pages/terrain.

Figure 5. Snapshot of Turtmann valley fly-over.

7. CONCLUSION & FUTURE WORK
We have seen that it pays to guarantee conservative

Hausdorff error bounds. This enables us to render

huge datasets with incredible detail which previous

approaches would clearly fail to handle in real-time

due to the high triangle complexity. We have shown

that off-the-shelf hardware is powerful enough to

render huge textured datasets, and are eager to

explore the rendering capabilities of our new

approach with even larger and more detailed

datasets.

8. ACKNOWLEDGEMENTS
We like to thank the Jet Propulsion Laboratory for

making their Landsat imagery available on the web

for free as well as the Georgia Institute of

Technology for the Puget Sound and Grand Canyon

datasets. Special thanks to Prof. Dr. Richard Dikau

from the Geomorphological and Environmental

Research Group who made the Turtmann Valley data

available to us.

9. REFERENCES
[Cig97] Cignoni P., Puppo E., and Scopigno R.,

Representation and visualization of terrain surfaces at

variable resolution. The Visual Computer, vol. 13(5),

pp. 199-217, 1997.

[Cig03] Cignoni P., Ganovelli F., Gobbetti E., Marton F.,

Ponchino F., and Scopigno R., BDAM – Batched

Dynamic Adaptive Meshes for High Performance

Terrain Visualization. Computer Graphics Forum, vol.

22(3), pp. 505-514, 2003.

[Cli01] Cline D., and Egbert P. K., Terrain decimation

through quadtree morphing. IEEE Transactions on

Visualization and Computer Graphics, vol. 7(1), pp.

62-69, 2001.

[Coh96] Cohen-Or D., and Levanoni Y., Temporal

continuity of levels of detail in delaunay triangulated

terrain. IEEE Visualization ’96, 1996.

[Döl00] Döllner J., Baumann K., and Hinrichs K.,

Texturing techniques for terrain visualization. IEEE

Visualization ‘00, pp. 227-234, 2000.

[Duc97] Duchaineau M. A., Wolinsky M., Sigeti D. E.,

Miller M. C., Aldrich C., and Mineev-Weinstein M. B.,

ROAMing terrain: Real-time optimally adapting

meshes. IEEE Visualization ‘97, pp. 81-88, 1997.

[Eva01] Evans W., Kirkpatrick D., and Townsend G.,

Right triangulated irregular networks. Algorithmica,

vol. 30(2), pp. 264-286, 2001.

[Flo92] De Floriani L., and Puppo E., An on-line algorithm

for constrained delauney triangulations. CVGIP:

Graphical Models and Image Processing, 54(4), pp.

290-300, 1992.

[Gro95] Gross M., Gatti R., and Staadt O., Fast

multiresolution surface meshing. IEEE Visualization

‘95, pp. 207-234, 1995.

[GH97] Garland M., and Heckbert P. S., Surface

simplification using quadric error metrics. SIGGRAPH

97 Conference Proceedings, pp. 209-216, 1997.

[Ger99] Gerstner T., Multiresolution Compression and

Visualization of Global Topographic Data.

GeoInformatica, 7(1), pp. 7-32, 2003; SFB 256 report

29, Univ. Bonn, 1999.

[Gum98] Gumhold S. and Straßer W., Real time

compression of triangle mesh connectivity.

SIGGRAPH 98 Conference Proceedings, pp. 133-140,

1998.

[Hop97] Hoppe H., View-dependent refinement of

progressive meshes. SIGGRAPH 97 Conference

Proceedings, pp. 189-198, 1997.

[Hop98] Hoppe H., Smooth view-dependent level-of-detail

control and its application to terrain rendering. IEEE

Visualization ‘98, pp. 35-42, 1998.

[Kle96] Klein R., Liebich G. and and Straßer W., Mesh

Reduction with Error Control, Proc. of IEEE

Visualization, pp.311-318, 1996.

[Kle01] Klein R. and Schilling A., Efficient

Multiresolution Models, in A. Schilling (ed.)

Festschrift zum 60. Geburtstag von Wolfgang Straßer,

pp. 109-130, 2001.

[Lev02] Levenberg J., Fast view-dependent level-of-detail

rendering using cached geometry. IEEE Visualization

2002, pp. 259-266, 2002.

[Lin96] Lindstrom P., Koller D., Ribarsky W., Hughes L.

F., Faust N., and Turner G., Real-Time, continuous

level of detail rendering of height fields. SIGGRAPH

96 Conference Proceedings, pp. 109-118, 1996.

[Lin02] Lindstrom P., and Pascucci V., Terrain

simplification simplified: A general framework for

view-dependent out-of-core visualization. IEEE

Transaction on Visualization and Computer Graphics,

vol. 8(3), pp. 239-254, 2002.

[Llo02] Lloyd B., and Egbert P., Horizon occlusion culling

for realtime rendering of hierarchical terrains. IEEE

Visualization 2002, pp. 403-409, 2002.

[Paj98] Pajarola R., Large scale terrain visualization using

the restricted quadtree triangulation. Technical Report

TR 292, ETH Zürich, 1998.

[Paj02a] Pajarola R., Overview of quadtree based terrain

triangulation and visualization. Technical Report UCI-

ICS TR 02-01, University of California, Irvine, 2002

[Paj02b] Pajarola, R., Antonijuan M. and Lario R.,

QuadTIN: Quadtree based Triangulated Irregular

Networks. IEEE Visualization 2002, pp. 395-402,

2002.

 [Pom00] Pomeranz A. A., Roam using surface triangle

clusters (rustic). Master's thesis, University of

California at Davis, 2000.

[Pup96] Puppo E., Variable resolution terrain surfaces.

Eight Canadian Conference on Computational

Geometry, pp. 202-210, 1996.

[Rab97] B. Rabinovich, and Gotsman C., Visualization of

large terrains in resource-limited computing

environments. IEEE Visualization ‘97, pp. 95-102,

1997.

[Ros99] Rossignac J., Edgebreaker: Connectivity

compression for triangle meshes. IEEE Transactions on

Visualization and Computer Graphics, vol. 5(1), pp.

47-61, 1999.

[Xia96] Xia J. C., and Varshney A., Dynamic view-

dependent simplification for polygonal models. IEEE

Visualization ‘96, pp. 327-334, 1996.

	INTRODUCTION
	RELATED WORK
	OVERVIEW
	TILE TREE CONSTRUCTION
	Error Bounds
	Simplification
	Textures
	Compression

	RENDERING
	Quadtree Update
	Repairing Cracks
	Caching & Prefetching
	Output Sensitivity
	Occlusion Culling
	Impostors

	IMPLEMENTATION & RESULTS
	CONCLUSION & FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

