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ABSTRACT 

Several sophisticated methods are available for efficient rendering of out-of-core terrain data sets. For huge data 

sets the use of preprocessed tiles has proven to be more efficient than continuous levels of detail, since in the 

latter case the screen space error has to be verified for individual triangles. There are some prevailing problems 

of these approaches: i) the partitioning and simplification of the original data set and ii) the accurate rendering of 

these data sets. Current approaches still trade the approximation error in image space for increased frame rates. 

To overcome these problems we propose a data structure and LOD scheme. These enable the real-time rendering 

of out-of-core data sets while guaranteeing geometric and texture accuracy of one pixel between original and 

rendered mesh in image space. To accomplish this, we utilize novel scalable techniques for integrated 

simplification, compression, and rendering. The combination of these techniques with impostors and occlusion 

culling yields a truly output sensitive algorithm for terrain data sets. We demonstrate the potential of our 

approach by presenting results for several terrain data sets with sizes up to 16k x 16k. The results show the 

unprecedented fidelity of the visualization, which is maintained even during real-time exploration of the data 

sets. 
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1. INTRODUCTION 
Rendering of textured terrain models has become a 

widely used technique in the field of GIS 

applications. Due to the mere size of the data sets, 

out-of-core techniques must be used to process and 

visualize such models. Sampling the area of the 

United States of about 9.2M km2 with a sampling 

rate of 10 meters would result in a data set of about 

300k x 300k height values. In most cases 

corresponding texture data is sampled at an even 

higher resolution. In urban areas sampling rates of 25 

cm are common. 

To achieve real time rendering without sacrificing 

accuracy, several aspects have to be considered. On 

one hand, to exploit the full performance of current 

GPUs, transmission of large data chunks is 

advantageous. On the other hand, no unnecessary 

data should be submitted, since bandwidth and I/O 

are often the bottleneck of current graphics systems. 

Furthermore, with the growing GPU power the 

management of fine-grained LODs on the CPU 

becomes more and more the limiting factor, and in 

many rendering applications the GPU is not working 

at full capacity. 

A high-performance terrain rendering system should 

comprise the following characteristics: 

• represent the input data faithfully  
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• allow for output sensitive rendering, in order to 

retain scalability (i.e. readily support LODs, 

occlusion culling, impostors) 

• submit and process textures and geometry with 

adequate granularity to take advantage of GPUs, 

without taxing the CPU. 



• allow for compact storage and on-the-fly 

decompression of textures and geometry to 

minimize bus bandwidth and storage 

requirements. 

• local accessibility of geometry and textures 

without global interdependency, in order to 

maximize concurrency and to avoid management 

overhead. 

Our method subdivides the geometry as well as the 

associated textures into equally sized blocks, which 

we refer to as tiles, and organizes them in a quadtree 

hierarchy. Tiles from coarser levels correspond to 

large areas, those from fine levels to small areas. 

Each geometry tile in the quadtree is represented by a 

triangulated irregular network (TIN). The vertices 

are  placed on a local regular grid, which has 

constant resolution for all tiles of the hierarchy. 

Likewise, textures are stored with constant 

resolution.  

Furthermore, for each tile in our model a guaranteed 

error bound is available. The approximation error  

doubles from level to level and is therefore a constant 

ratio of the tile extent. In contrast to common multi-

resolution meshes, which start with a global, coarse 

approximation of the triangle mesh and decide on a 

per-triangle basis if further subdivision is necessary, 

we restrict ourselves to one decision per quadtree 

cell. This means that each geometry tile only holds 

one precomputed triangulation, whose connectivity is 

stored using state of the art compression algorithms. 

During rendering we perform view-frustum and 

occlusion culling for the quadtree nodes, which are 

represented by bounding boxes as long as the 

geometry is not needed. The accuracy guarantee for 

the TINs is used to restrict the screen space error to 

be at most one pixel. 

With these techniques we are able to render the 

simplified data with an image fidelity equal to a 

rendering of the full-resolution dataset in real time, 

even if the input data becomes arbitrarily large. 

In the next section of this paper, we take a look at 

related work. In section 3 we give an outline of our 

algorithm. Section 4 describes how our discrete-LOD 

model is created in a preprocessing step and section 5 

shows how we perform the rendering of our data 

structure. Then we show some results we deduced 

from real data sets. Section 7 concludes the paper. 

2. RELATED WORK 
Fast rendering of terrain datasets with viewpoint 

adaptive resolution is an active area of research. 

After the initial approaches by [Gro95, Pup96, 

Lin96], many different data structures have been 

proposed. Since giving a complete overview is 

beyond the scope of this paper, we refer to recent 

surveys [Lin02, Paj02a] and only discuss the 

approaches most closely related to our work. 

Considering existing approaches for the efficient 

processing and display of terrain datasets, one can 

differentiate between two main classes. The first 

class consists of approaches that employ regular, 

hierarchical structures to represent the terrain, 

whereas approaches of the second class are 

characterized by the use of more general, mainly 

unconstrained triangulations. 

The most established methods of the first class make 

use of triangle bin-/quadtrees [Lin96, Duc97, Cli01], 

restricted quadtrees [Paj98, Ger99], RTINs [Eva01] 

and edge bisections [Lin02]. These structures 

facilitate compact storage due to their regularity, as 

topology and geometry information is implicitly 

defined. 

Approaches of the second class use less constrained 

triangulations. They include data structures like 

Multi-Triangulations [Pup96], adaptive merge trees 

[Xia96], hypertriangulations [Cig97] and the 

adaptation of Progressive Meshes [Hop97] to view-

dependent terrain rendering [Hop98]. As proven by 

Evans [Eva01], TINs are able to reduce the number 

of necessary triangles by an order of magnitude 

compared to regular triangulations since they adapt 

much better to high frequency variations. However, 

in order to capture irregular refinement or 

simplification operations and connectivity, a more 

complex data structure is needed. To alleviate these 

drawbacks, either Delaunay triangulations [Flo92, 

Rab97] or a modified quadtree structure have been 

used to represent irregular point sets [Paj02b].  

Since all adaptive mesh generation techniques spend 

considerable computation time to generate the view-

dependent triangulation, the extraction of a mesh 

with full screen-space accuracy is often not feasible 

in real-time applications. Many authors have 

proposed techniques to reduce the popping artifacts 

due to the insufficient triangle count [Coh96, Hop98] 

or to amortize the construction cost over multiple 

frames [Duc97, Hop97, Lin96]. Another approach is 

to reduce the per-triangle computation cost by 

assembling pre-computed terrain patches during run-

time to shift the bottleneck from the CPU to the GPU 

like the RUSTiC [Pom00] and CABTT [Lev02] data 

structures. These methods were further refined, by 

representing clusters with TINs in a quadtree [Kle01] 

or bintree domain [Cig03].  

To incorporate textures into the above mentioned 

hierarchies, the LOD management can be either 

decoupled from the geometry (e.g. the SGI clip-

mapping extension and the 3Dlabs Virtual Textures), 



which requires special hardware, or they can be 

handled by explicitly cutting them into tiles and 

arranging them into a pyramidal data structure 

[Döl00]. However, this leads to severe limitations on 

the geometry refinement system, since corresponding 

geometry has to be clipped to texture tile domains. 

3. OVERVIEW 
Our method consists of a separate preprocessing 

stage and the actual rendering stage. A typical input 

dataset for the preprocessing consists of a digital 

elevation model (DEM) of the terrain and associated 

texture maps (e.g. orthophotography). 

If desired, a map of surface normals (normal map) 

can be extracted from the DEM and processed in the 

same way as the textures. As detailed in the 

following section, the preprocessing (Fig. 1) 

recursively builds a LOD hierarchy of tiles (tile tree) 

through geometry simplification or texture filtering. 

Finally all resulting tiles are specifically encoded and 

stored. During geometry encoding, a separate 

bounding box hierarchy is extracted. 

Rendering is essentially parallelized among two 

threads. The main thread selects cells for rendering 

by considering their visibility and detail. An 

additional caching thread performs the asynchronous 

retrieval of associated cell data (e.g. geometry and 

texture maps). Once all pending requests are 

completed, the rendering thread hands over the cell 

data to the graphics hardware. In order to avoid 

bursts of high workload, the caching thread can also 

perform prefetching of tiles based on the history of 

requests or a prediction of the camera path. 

Since all operations are handled on a per-tile basis, 

and no interdependencies among tiles exist, this 

approach allows for very flexible compression and 

prefetching schemes. 

Therefore, this architecture is able to handle huge 

terrains, including textures and normal maps. As will 

be shown in section 5, the number of tiles to be 

rendered is generally constant. As a consequence, the 

frame rate is not limited by the amount of input data, 

but only depends on the complexity of the visible 

data and on the available graphics hardware. 

4. TILE TREE CONSTRUCTION 
In this section, we describe how the geometry is 

processed into a multiresolution data structure, which 

we call the tile tree.  Basically, the tile tree imposes a 

quadtree hierarchy on a set of tiles built from the 

input geometry and textures. The object space error 

is bounded throughout the whole pipeline.  

The tile tree root holds geometry and texture tiles 

that cover the whole domain of the dataset, and 

children partition their parents’ domain into equally 

sized quarters. Texture tiles at the leaves are 

initialized with the input texture data. Tiles on higher 

levels are then assembled from their children and 

downsampled by a factor of 2, that is, the texture 

resolution remains constant for all tile tree levels. 

Analogously to the texture sub-sampling process, we 

partition the input mesh into geometry tiles, which 

are stored at the tile tree leaves. Geometry tiles on 

higher levels are built by approximating the input 

mesh with half the accuracy of their children. We use 

the symmetric Hausdorff Distances [Kle96] between 

two meshes as a  measure of their approximation 

accuracy. Both texture and geometry tiles are 

discretized and compressed before storage.  

Figure 1. The preprocessing stage. 

Error Bounds 
All LOD algorithms strive to bound the screen space 

error, while rendering as few polygons as possible. In 

the general case, the screen space error İ depends on 

all viewing parameters: the eye position E, the 

viewing direction ni, the field-of-view φ  and the 

screen resolution r. 

Figure 2. The rendering stage. 

Since a precise calculation of the screen space error 

for a tentative simplification is too expensive, one 

approach is to establish only upper bounds on the 

object space error į. The screen-space error can then 

be easily derived at runtime from the precomputed 

object space error. From intercept theorems, we have 

that icos( ) d / dε δ α= ⋅ ⋅  where 2id cot( ) r /φ= ⋅  

and d ( iP E ) n= − ⋅  (fig. 3). 

Figure 3. Relationship of errors depicted in 2D.

To further simplify the problem, the direction of the 

object-space error (i.e. α) is neglected and only its 



magnitude į is regarded. This means that we do not 

consider the eye position, but only the distance of the 

observer. We do so for three reasons: First, 

considering the viewing direction does not save 

significant amounts of triangles, as Hoppe [Hop98] 

has pointed out. Secondly, we do not only want to 

reproduce the correct contours, but also the correct 

texture coordinates, which requires the object space 

error to be bounded isotropically anyway1. And 

finally the reduction of dimensions is exactly what 

we need to build discrete LODs without having too 

much redundancy in the data. 

Consider a tile T with an associated bounding box B. 

When the object space error for this tile is known to 

be less than įT and we want to guarantee a screen 

space error below a threshold τ we can use this tile, 

whenever B lies fully behind a plane with normal ni 

and distance i Td /δ τ⋅ . 

This means that doubling the observer distance 

allows us to double the permitted object space error, 

while maintaining the same screen space error 

bound. Furthermore, this allows us to represent the 

geometry of the considered tile on a local grid of 

constant resolution, because the relative accuracy 

within a tile is also constant. 

In comparison to a continuous view dependent 

approach (CVLOD), we render a larger number of 

triangles because the screen space error is 

overestimated in most places. If one considers an 

optimal CVLOD mesh, and the mesh complexity 

falls off quadratically with the permitted Hausdorff 

error 0

2

n
n δ≈ , the number of triangles would remain 

constant for a fixed viewing direction. In this case, 

the mesh complexity of our discrete LOD 

representation would exceed the CVLOD by at most 

a factor of 4 in the top-down view. When 

approaching from above, the average overhead 

would be 2 2 7
1 3

x dx∫ = , which is at the same time the 

maximum factor for a lateral view. Since looking 

from above is the simplest case for rendering (no 

overdraw, localized texture accesses), the over-

estimated mesh complexity does not have a 

significant impact on performance, and is well worth 

the cost for the simple, low-cost mesh generation, 

and the flexibility and complete independence of the 

data tiles. 

Simplification 
The geometry simplification starts by splitting the 

DEM, which typically is given by a regularly 

sampled heightfield, into equally sized base level 

tiles (e.g. 129x129 samples each, with overlapping 

borders). Then, a reasonable triangulation (e.g. 

regular) is imposed on the height-samples, and a 

presimplification with error bound įpre is performed 

on this mesh. The pre-simplification is meant to 

accommodate the fact that the input is a regular grid 

with a given discretization error, so įpre will be about 

one half inter-pixel spacing, as this is the amount of 

uncertainty inherent in the data. These presimplified 

base-tile meshes are then stored at the leaves of the 

tile tree, and all subsequent error metrics refer to 

these meshes. 

To make up a tile of the next tile-tree level l, four 

neighboring tiles are stitched together. The resulting 

mesh is then simplified to approximate the reference 

mesh with an error bound įl, which is chosen to 

guarantee an error against the base mesh of 2l τ⋅ . 

The tile outlines are preserved, but simplifying the 

borders is allowed if the error implied in the 

neighboring tile also lies below įl. This is an 

important property, since otherwise the number of 

border triangles would explode on huge datasets. To 

avoid unbounded complexity of the reference mesh, 

which would increase fourfold on every level using a 

naïve approach, we always measure the Hausdorff 

error against the penultimate simplification level. 

That way, the additional error already immanent in 

the reference can be conservatively estimated as 1

4
, 

so the overestimation adds up to 1 1

4 16 3
+ + + ≤… 41 . In 

order to maintain the overall Hausdorff error bound, 

a conservative estimate of the rounding error 

committed during compression is subtracted from the 

permitted simplification error bound for a tile.  

The simplification of a tile is highly local, since all 

measurements during simplification of a tile relate to 

the tile itself, one of its neighbors, or the 

corresponding reference tiles.  

A parallelization of the simplification is 

straightforward and the algorithm scales well since 

the memory requirement for simplifying a tile is 

bound by a constant. One can even avoid the 

dependency on neighboring tiles completely if the 

permitted error along the affected borders is 

restricted to half the magnitude of the allowed 

simplification error. That way, the difference 

between two neighbors is guaranteed to be less than 

the pixel-threshold, and resulting cracks can be 

handled as described in section 5.2. 

Textures 
Bounding the Hausdorff distance between the 

original and the simplified mesh guarantees the 

correct representation of contours for a given 

tolerance, but does not guarantee the correct coloring 
                                                           
1 ∞ Though the L  metric would be sufficient in this case. 



of the surface. In addition to conventional decal 

texture maps, we employ normal maps extracted 

from the input dataset. With normal maps, shading 

detail is preserved even in regions of coarse 

triangulation, which would otherwise be discarded 

by geometry-based shading (e.g. Gouraud shading). 

Of course, textures taken from photographs may 

already contain shaded and shadowed features, but 

nevertheless normal maps help to reveal the structure 

of the terrain, especially if additional moving light 

sources are used. 

To compress our textures and normal maps, we 

employ standard compression algorithms such as 

S3TC and JPEG. S3TC compressed textures offer the 

great advantage that decoding is implemented on 

most standard graphics hardware, thus sparing the 

CPU from decompression. Moreover, they reduce 

bandwidth and texture memory requirements, as the 

textures may reside in memory in their compressed 

form. The main disadvantage of S3TC are block 

artifacts, which are especially noticeable with normal 

maps, and the minimal level of control over the 

compressed image quality. JPEG offers better 

compression ratios and therefore lessens the load on 

the I/O, but needs to be decoded in the CPU, which 

can become a bottleneck. Also, the artifacts are more 

disturbing. Later standards as JPEG2000 featuring 

wavelet-codecs are desirable, especially for their 

inherent support of texture hierarchies, but need to be 

hardware supported to achieve similar efficiency. 

Since the tiles can be encoded independently, it is 

easy to mix different encoding schemes or use 

lossless formats whenever the signal to noise ratio 

falls below a certain threshold, but then one needs to 

take care that the tiles' borders do not become visible 

due to quality changes. 

Since terrain is rather flat, the textures can be 

projected from above with sufficient accuracy, and 

the level-of-detail for a texture tile can be chosen in 

the same way as for geometry tiles. This way, we 

establish a one-to-one correspondency between 

texture- and geometry tiles. As already mentioned, 

texture maps are constructed bottom-up from the 

input data by downsampling, which basically means 

building a standard image pyramid on top of the 

underlying input image (e.g. by averaging 4 

neighboring pixels). This also holds for the normal 

maps, since the defect in length accounts for the 

roughness of the surface. 

During rendering, we apply anisotropic filtering 

instead of a mip-mapping scheme. This does not only 

enhance rendering quality, but improves locality 

because the level of filtering is chosen by the 

maximum partial derivative.  

5. RENDERING 
We divide the rendering into two stages, the update 

stage and the cell rendering stage. During the update 

stage, the CPU traverses the bounding box hierarchy 

depth-first and decides which tiles need to be 

rendered. Compression 
One major drawback of using TINs compared to 

quadtree triangulations [Lin96, Duc97] is that the 

connectivity is no longer implicit. Fortunately, there 

are very efficient methods for coding and decoding 

connectivity [Gum98, Ros99] which rarely use more 

than 4 bits per vertex. Regarding the coordinates we 

factor the information into a bounding box – whose 

xy-coordinates are implicit and whose minimum and 

maximum elevation are explicitly stored in a separate 

structure – and a local grid address. As already 

mentioned before, the grid inside a tile's bounding 

box may have a constant resolution independent of 

the level. If we use 129x129-tiles for geometry the 

inner vertices can be addressed with 14 log h+     

bits, where h denotes the height of the bounding box 

measured in level-dependent units. Typically one 

will further discretize the bounding box axes with a 

constant number of bits, so that the rounding 

procedure does not dominate the Hausdorff error and 

thereby increase the triangle count. However, all in 

all the number of bits per vertex even in mountainous 

terrain rarely exceeds 32 bits per vertex. For 

experimental results see section 6. 

Quadtree Update 
The update stage can be implemented using a simple 

top-down traversal of the quadtree hierarchy. Each 

tile visited in that manner is first checked against the 

viewing frustum. If the tile's bounding box lies 

completely outside of the frustum, descent can stop. 

Otherwise, we need to decide whether the tile in 

question satisfies our error bound. Since this object-

space error bound is fixed throughout a whole 

quadtree level, and there are no constraints regarding 

the LOD-difference of neighboring tiles, the 

selection of an appropriate level of detail is 

straightforward. All tiles which may be rendered 

with a LOD of d or coarser lie completely behind a 

virtual plane which is a shifted copy of the image 

plane at distance 2d. If the tile is found to have 

sufficient detail, it is considered for rendering and, if 

necessary, geometry, texture and normal map for the 

tile are requested from the cache. If the tile LOD is 

not sufficient, we continue our descent. 

In a second stage, the tiles found to be visible are 

rendered. 



Repairing Cracks Occlusion Culling 
In case the LOD of two neighboring tiles differ, it is 

not sufficient to simply render the geometry. Even 

though the geometric errors between the tiles would 

fall below the pixel projection threshold, small 

cracks may become visible due to discretization in 

the rasterizer stage. But since the cracks are under 

screen space error control, there is no need to avoid 

them, they only need to be filled with the correct 

color. This is achieved by attaching a triangle strip 

along the border that reaches down the equivalent of 

one pixel. In this way, the holes are shaded 

consistently with the borders. 

During quadtree traversal we can ensure a front-to-

back ordering, which enables us to perform per-cell 

occlusion by conservatively testing tiles against 

potential occluders. 

One can do so by rendering potentially occluding 

geometry into the depth-buffer (while disregarding 

texture & color information) during quadtree 

traversal. Visibility tests on potentially visible cells 

can be performed by rendering an appropriate 

enclosure of the geometry and then testing if any 

pixels passed the depth test. As noticed by Lloyd 

[Llo02], bounding boxes give satisfying results. 

Caching & Prefetching We are able to render the occluders with a greater 

pixel error than the cells whose visibility is to be 

determined. This is due to the guaranteed error 

bounds on our geometry, as the bounding boxes can 

easily be scaled to compensate for the error 

introduced by using the coarse occluding geometry. 

If one accounts for discretization errors it is also 

possible to reduce the resolution of the depth buffer, 

thus minimizing fillrate requirements. 

Even in single-processor system, the CPU, GPU and 

IO subsystem can work more or less concurrently. To 

maintain and support such parallelism between the 

CPU and IO-subsystem, we employ caching and 

prefetching during the update and rendering stages. 

During the update stage, the caching thread receives 

requests from the rendering thread and fulfills them 

asynchronously. The threads are then synchronized 

to ensure completion of pending requests. While the 

terrain is rendered, which is a task independent of the 

IO subsystem, we can perform node prefetches based 

on the previously requested nodes and the estimated 

camera motion. These prefetched nodes are stored in 

a cache and will in many cases accelerate geometry 

requests in subsequent update stages. 

Impostors 
For a flight speed v there always exists a distance 

d(v) so that the 3 dimensional effects within a tile or 

region at this distance are no longer noticeable for 

several frames. This fact can be exploited by 

rendering these tiles or regions into textures and 

project these textures on a quad (impostor) which 

replaces the geometry. The error is tracked and the 

impostor is invalidated if the error exceeds a 

threshold. 

Output Sensitivity 
Since the rendering output always consists of a 

constant number of colored pixels, achieving output 

sensitivity is a very demanding task. With our basic 

LOD algorithm, we achieve, that the per frame 

complexity is within  (i.e. the number of 

visible tiles per LOD as well as the tile complexity is 

bounded by a constant). In order to be output 

sensitive in this theoretic sense, the number of visible 

tiles has to decrease with growing distance such that 

its series converges, which basically means that there 

are only finitely many visible LODs. In fact there are 

several real world effects, that suggest that this is a 

feasible demand. Occlusion, earth curvature, 

atmosphere (fog) and limited flight speed (distant 

features need not to be redrawn every frame) help to 

decrease complexity if taken into account. In the 

following, we will discuss practical aspects of 

techniques such as occlusion culling and impostors 

which make use of these effects. The tile granularity 

combined with the associated object space errors 

offers advantages for both methods. 

O(log n )

If one wants to guarantee a screen space error of one 

pixel, one has to sum up the errors  which are made 

on the different stages for the impostors. For example 

if one renders the impostor during setup a certain 

pixel error is made, but then again during rendering 

the texture a resampling error is added which also 

takes account for the resolution of the impostor 

texture. Both of these errors need to be added to the 

geometric error which reflects the parallax not 

represented in the flat geometry. 

6. IMPLEMENTATION & RESULTS 
For our experiments we implemented a simplifier, a 

renderer and a coding/decoding module as described 

in section 3. The simplifier performed edge-

collapses, which were generated and scheduled using 

error quadrics [GH97]. For each proposed collapse 

the Hausdorff error was computed by calculating the 

point-triangle as well as the edge-edge distances 

using the domain as an indicator, which elements 

need to be checked against each other. Since the z-

projection used for finding correspondencies in this 



approach does not necessarily yield the closest 

elements, we establish upper bounds on the error. In 

order to guarantee linear time-complexity, each 

collapse is either performed or deleted from the 

queue. 

The rendering was performed on a PC with a 1.8 

GHz Pentium 4 processor, 512MB RAM running 

Linux and a GeForce3 graphics card. 

 

 

Table 1. Geometry statistics of tested models. 

The largest dataset visualized so far with our 

approach shows the Puget Sound area in 

Washington, U.S. The input heightmap consists of 

16.385x16.385 height samples, with 10m inter-pixel 

spacing. Additionally, matching texture and normal 

maps were created. The presimplified dataset, which 

comprises geometry, S3TC-compressed textures and 

normal maps, uses 371MB of storage, as opposed to 

over 1GB needed by the uncompressed heightmap 

and texture data. Figure 4 depicts framerates of a 

high-speed (5.400km/h), low-altitude flight over the 

Puget Sound dataset. Rendering was performed on a 

768x576 screen with an error threshold 1τ <  and 

full resolution normal and texture mapping. 
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Figure 4. Frame rates for a Puget sound fly-over. 

We were also able to visualize a complex dataset of 

the Turtmann valley in Switzerland (Fig. 5) at high 

frame rates. The dataset features steep, mountainous 

parts of the alps at 2 meter resolution. It is actually a 

digital surface model, which means that even rocks, 

buildings and trees are present in the geometry. The 

data was cut into three slightly shifted 4k x 4k 

datasets and processed into three different tile trees. 

Note the flexibility of our approach, which easily 

integrated all three datasets into a single rendering 

process. We also implemented our terrain rendering 

engine on a 6-projector powerwall setup, where the 

isotropic error guarantee extends to accurate depth 

perception. Videos of the mentioned fly-overs can be 

downloaded at: http://cg.cs.uni-bonn.de/project-

pages/terrain. 

 

Figure 5. Snapshot of Turtmann valley fly-over. 

7. CONCLUSION & FUTURE WORK 
We have seen that it pays to guarantee conservative 

Hausdorff error bounds. This enables us to render 

huge datasets with incredible detail which previous 

approaches would clearly fail to handle in real-time 

due to the high triangle complexity. We have shown 

that off-the-shelf hardware is powerful enough to 

render huge textured datasets, and are eager to 

explore the rendering capabilities of our new 

approach with even larger and more detailed 

datasets. 
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