
Application of LSTM Neural Networks in Language
Modelling

Daniel Soutner and Luděk Müller

University of West Bohemia, Faculty of Applied Sciences, Department of Cybernetics,
Univerzitnı́ 22, Plzeň, Czech rep.

www.kky.zcu.cz
{dsoutner,muller}@kky.zcu.cz

Abstract. Artificial neural networks have become state-of-the-art in the task of
language modelling on a small corpora. While feed-forward networks are able to
take into account only a fixed context length to predict the next word, recurrent
neural networks (RNN) can take advantage of all previous words. Due the diffi-
culties in training of RNN, the way could be in using Long Short Term Memory
(LSTM) neural network architecture.
In this work, we show an application of LSTM network with extensions on a
language modelling task with Czech spontaneous phone calls. Experiments show
considerable improvements in perplexity and WER on recognition system over
n-gram baseline.

Keywords: language modelling, recurrent neural networks, LSTM neural net-
works

1 Introduction

Statistical language models (LM) play an important role in the state-of-art large vocab-
ulary continuous speech recognition (LVCSR) systems. Statistically computed n-gram
models and class-based LMs are the main models used in LVCSR systems, however,
subsequent models are becoming more important supplement to existing techniques.

In recent years feed forward neural networks (FFNN) [12] attracted attention due
their ability to overcome biggest disadvantage of n-gram models: even when the n-
gram is not observed in training, FFNN estimates probabilities of the word based on the
full history [15]. That is in contrast to n-gram, where back-off model estimates unseen
n-grams with (n− 1)-gram.

To avoid handling with the parameter n (number of words in n-gram and in FNN
LM) we can use the recurrent neural network (RNN) architecture [2]. The RNN is going
further in model generalization: instead of considering only the several previous words
(parameter n) the recursive weights are assumed to represent short term memory. More
in general we could say that RNN sees text as a signal consisting of words.

Long Short-Term Memory (LSTM) neural network [8] is different type of RNN
structure. As was shown, this structure allows to discover both long and short patterns
in data and eliminates the problem of vanishing gradient by training RNN. LSTM ap-
proved themselves in various applications [8][1] and it seems to be very promising
course also for the field of language modelling [3].



2 Daniel Soutner, Luděk Müller

In this work we present an application of LSTM language model as an extension
to the basic n-gram model and the influence of this modification to the perplexity and
word error rate analysed on English and Czech corpora.

2 LSTM neural networks

The vanishing gradient seems to be problematic during the training of RNN as shown
in [8]. This led authors to re-design of the network unit, in LSTM called as a cell. Fig. 1
shows that every LSTM cell contains gates that determine when the input is significant
enough to remember, when it should continue to remember or forget the value, and
when it should output the value. So designed cells may be interpreted as a differentiable
memory.

Net Output

Forget Gate

Output Gate

1.0

Cell

Net Input ai

ao

bi

bo

bf

Input Gate

Fig. 1. LSTM memory cell with gates.

2.1 LSTM topology

Typical NN unit consists of the input activation which is transformed to output activa-
tion with activation function (usually sigmoidal).

The LSTM cell provides this more comprehensively: The three cell inputs called
gates determine when values are allowed to flow into or out of the block’s memory.
Firstly, the activation function is applied to all gates. When input gate outputs a value
close to zero, it zeros out the value from the net input, effectively blocking that value
from entering into the next layer. When forget gate outputs a value close to zero, the
block will effectively forget whatever value it was remembering. The output gate deter-
mines when the unit should output the value in its memory.



Application of LSTM Neural Networks in Language Modelling 3

Depends on type of LSTM, consecutions may slightly differ (some modifications
and enhancements were introduced), but the main principals are the same. The training
algorithm and complete equations of LSTM neural network could be found e.g. in [8]
[9].

Due this specific topology of LSTM, especially because of a constant error flow,
regular back-propagation could be effective at training an LSTM cell to remember val-
ues for very long durations. LSTM can be also trained by evolution strategies or genetic
algorithms in reinforcement learning applications [13].

2.2 LSTM language model

The LSTM NN was successfully introduced to the field of language modelling [3]. The
topology of our model (shown in Figure 2) is similar to common RNN language models
([2] [3]) and is based on these principals:

– The input vector is word encoded as 1-of-N coding.
– There is a softmax function used in output layer to produce normalized probabili-

ties.
– The cross entropy is used as training criterion.

Normalization of input vector which is generally advised for neural networks is not
needed due the 1-of-N input coding.

Input Layer Output Layer

Hidden Layer

0

0

1

p(w|h)

Fig. 2. Neural network LM architecture.

3 Input vector modifications

The standard input vector in various neural net language models is mostly 1-of-N. The
words on input are encoded by 1-of-N coding, where N is number of words in vocabu-
lary.



4 Daniel Soutner, Luděk Müller

We also intended and applied two extensions of the basic model - added Latent
Dirichlet Allocation [7] (LDA) for better modelling of longer context [16] and the class
extension for dealing with similar words in the same context. Both of these extensions
are described in sections bellow.

3.1 Latent Dirichlet Allocation extension

Language models with cache brings improvement in perplexity but not when measured
on WER in speech recognition. Thus, to exploit more information from the long span
context we decided to use the Latent Dirichlet Allocation (LDA) [7] in our experiments
as proposed by T. Mikolov and G. Zweig in [16], where this model is closely described.
The LDA process converts word representation of document to low-dimensional vector
which represents probability of to topic.

LDA represents documents as mixtures of topics that split out words with certain
probabilities. It assumes that documents are produced in the following fashion:

– Deciding on the number of words N the document will have by sampling from a
Poisson distribution.

– Choosing a topic mixture for the document (according to a Dirichlet distribution
over a fixed set of K topics).

– Generating each word wi in the document by:
• Picking a topic (according to the multinomial distribution that you sampled

above).
• Using the topic to generate the word itself (according to the topics multinomial

distribution).

Assuming this generative model for a collection of documents, LDA tries to backtrack
from the documents to find a set of topics that are most likely to generate the collection.

In our experiments we fixed the length of the word cache for computing topic dis-
tribution. For Czech training corpus every phone call is equal to one document, for
English Penn Treebank we divided text to documents of 10 non-overlapping sentences;
the input vector of NN is modified as original 1-of-N coding and proposed additional
LDA feature. The models were created with gensim tool [6]. We explored several con-
figurations of trained models with a different number of topics (from 20 to 70) and
cache length (50 and 100).

3.2 Class extension

In both - written and spoken language - we use different words for expressing a similar
topic or the same fact. There are many approaches in language modelling that are trying
to deal with this aspect of language i.e. the class-based models [10]. Assuming this, we
tried to investigate whether word classes are able to help us in LSTM LM.

The similar words could be split up to the classes with a lot of different ways,
we decided to use one based on inducing word classes from n-gram statistics. Word
classes induced from distributional statistics are produced so as to minimize perplexity
of a class-based n-gram model given the provided word n-gram counts. This means that



Application of LSTM Neural Networks in Language Modelling 5

words occurring in the similar context should be found in the same class. The classes
were prepared using the SRI toolkit [4].

We have modified input vector for our purposes analogously as in LDA extension:
we added to the standard input vector (1-of-N) a vector 1-of-C, where C is number of
classes. We trained models with various number of classes, from 100 to 2300.

4 Experimental results

4.1 Perplexity results

To maintain comparability with the other experiments, we chose well-known Penn Tree-
bank (PTB) [11] portion of the Wall Street Journal corpus for testing our models. Fol-
lowing preprocessing was applied to the corpora: the vocabulary was short-listed to
10k most frequent words, all numbers were unified into 〈N〉 tag and punctuation was
removed. The corpus was divided into 3 parts (training, development and test) with 42k,
3.3k and 3.7k tokens.

The second part of experiments was performed with Czech spontaneous phone calls
(BH). This corpus is further described in Section 4.2.

First, we trained LDA model, word classes and both extensions together on training
data and with these models we trained our LSTM neural networks on the same data. All
models were trained with 20 cells in hidden layer. Afterwards, we chose models with
the best parameters measured on development data. The final results for PTB achieved
on test data are shown in Table 1, models were combined with baseline model by linear
combination. The proposed extensions seem to be promising, they improve the perplex-
ity of the baseline model by ≈ 2− 12%.

The influence of word cache and number of topics (as parameters of LDA extension)
was tested on BH, the Table 2 shows the result, which suggests a cache of length 100
and 50 topics. The influence of the number of classes is shown in Fig. 3, for 500 classes
we obtained the best perplexity values.

model PPL
KN5 140
LSTM +KN5 120
LSTM LDA +KN5 117
LSTM CLASS +KN5 113
LSTM LDA & CLASS +KN5 105

Table 1. Perplexity results with PTB.

cache
#topics 50 100
20 154.1 163.9
30 164.4 117.2
40 128.5 109.5
50 110.4 103.7
70 110.2 107.6
100 109.6 125.6

Table 2. Perplexity results of LSTM with LDA
extension on phone calls (BH), different number
of topics (20-100) and word cache (50 and 100).



6 Daniel Soutner, Luděk Müller

0

85

90

95

100

105

110

115

500
classes

P
P
L

1000 1500 2000 2500

Fig. 3. Perplexity results of LSTM with class extension combined with KN5 model depending on
number of classes; measured on phone calls (BH) corpora.

4.2 Model evaluation

As a training and test data for models evaluation we used Czech spontaneous speech
which was recorded from phone calls. These calls were acquired as ”Free calls” where
people could phone for free while giving the permission to use anonymously their calls
for the speech recognition experiments. We had to deal with the task where recorded
data were very different from a common written Czech language. This is not a trivial
task, as shown in previous work [5], where the records with spontaneous speech were
also processed.

The data are specified by:

– a high inflection of Czech language (cases, various verb forms,...)
– word inflection is partially different from written Czech language
– unusual words used by speakers (slang, diminutives,...)
– only a small set of data available (about 2.8M words)
– the records contain a lot of non-speech events
– the sentences are relatively short
– the vocabulary is relatively small (about 120k words)

The statistics of the used corpus are shown in Table 3; the corpora was divided
into tree parts: training, development and test set. The characteristics of the test phone
records for models evaluation on speech recognition are shown in Table 4.

We took our state-of-the-art LVCSR system, as a language model we used 3-gram
Knesser-Ney back-off model and finally n-best hypothesis with n = 1000 from the
lattices were extracted. Hereafter, this n-best list will be the base for our experiments
with language models.

As the baseline model we used 5-gram Knesser-Ney statistical model (KN5) [14]
trained from the same corpus with a full vocabulary. The LSTM language models were



Application of LSTM Neural Networks in Language Modelling 7

Sentences Words OOVs
Train 400k 2.2M
Dev 3k 13k 350
Test 3k 14k 385

Table 3. BH text data.

Records
Length h:mm 2:16
Sentences 3582
Speakers 50

Table 4. BH test records.

trained from data with a limited vocabulary, where only 10k most frequent words were
used, and all were combined with KN5 model with linear interpolation. The width of
hidden layer was again fixed to 20 cells for all models. As described above, we chose
the parameters of models on development part of data, in terms of perplexity.

We advanced the KN5 baseline by ≈ 3.7% in relative, models with extended fea-
tures slightly overcome the basic LSTM model, according to perplexity results; the
improvement is statistically significant with p = 0.05. The complete results are shown
in Table 5. The theoretical maximum that we eventually could obtain while we are
rescoring this n-best list is 73.7% in accuracy.

model Acc in %
LSTM LDA&CLASS +KN5 52.25
LSTM CLASS +KN5 52.05
LSTM LDA +KN5 51.95
LSTM +KN5 51.54
KN5 baseline model 50.41

Table 5. Evaluating on speech recognition (1000-best list rescore).

5 Conclusions

We have applied the LSTM neural network language model to spontaneous Czech
speech. We explored several extensions to this approach: with LDA to explore long
span context in dialogue and with classes to find similarities in topics.

We gained some not breakthrough but significant improvements in comparison to
the basic model while applying these models in terms of perplexity and speech recog-
nition. For future work it seems interesting to further discover the influence of input
feature vectors and realize more experiments with another corpora.

Acknowledgements

This research was supported by the Ministry of Culture Czech Republic, project No.
DF12P01OVV022.



8 Daniel Soutner, Luděk Müller

References

1. Frinken, V.; Zamora-Martinez, F.; Espana-Boquera, S.; Castro-Bleda, M.J.; Fischer, A.;
Bunke, H., “Long-short term memory neural networks language modeling for handwrit-
ing recognition, Pattern Recognition,” 21st International Conference on Pattern Recognition
(ICPR), 2012, vol., no., pp.701,704, 11-15 Nov. 2012

2. Mikolov, T.; Kombrink, S.; Burget, L.; Cernocky, J.H.; Khudanpur, Sanjeev, “Extensions of
recurrent neural network language model,” 2011 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), vol., no., pp.5528,5531, 22-27 May 2011

3. Martin Sundermeyer, Ralf Schlüter, Hermann Ney; “LSTM Neural Networks for Language
Modeling,” INTERSPEECH 2012

4. A. Stolcke (2002), “SRILM – An Extensible Language Modeling Toolkit,” Proc. Intl. Conf.
on Spoken Language Processing, vol. 2, pp. 901-904, Denver.

5. Daniel Soutner, Zdeněk Loose, Ludek Müller, Ales Pražák: Neural Network Language
Model with Cache. TSD 2012:528-534

6. Řehůřek, R., Sojka, P.; “Software Framework for Topic Modelling with Large Corpora,”
In Proceedings of LREC 2010 workshop New Challenges for NLP Frameworks. Valletta,
Malta: University of Malta, 2010. p. 46–50, 5 pp. ISBN 2-9517408-6-7.

7. David M. Blei and Andrew Y. Ng and Michael I. Jordan and John Lafferty, “Latent dirichlet
allocation,” Journal of Machine Learning Research, 2003, vol.3.

8. Sepp Hochreiter and Jürgen Schmidhuber; “Long Short-term Memory,” Neural Computation
9(8), 1997, pp. 1735-1780.

9. Felix Gers (2001); “Long Short-Term Memory in Recurrent Neural Networks,” Ph.D. Thesis.
École Polytechnique Fédérale de Lausanne, Switzerland.

10. P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai and R. L. Mercer, “Class-Based
n-gram Models of Natural Language,” Computational Linguistics 18(4), 467-479, 1992.

11. Eugene Charniak, et al.; 2000, BLLIP 1987-89 WSJ Corpus Release 1, Linguistic Data Con-
sortium, Philadelphia.

12. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C., “A neural probabilistic language model,”
J.Mach. Learn. Res. 3, 1137-1155 (2003).

13. J. Schmidhuber, D. Wierstra, M. Gagliolo, F. Gomez., “Training Recurrent Networks by
Evolino,” Neural Computation, 19(3): 757-779, 2007. PDF (preprint).

14. Kneser, R.; Ney, H., “Improved backing-off for M-gram language modeling,” Acoustics,
Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on , vol.1,
no., pp.181,184 vol.1, 9-12 May 1995

15. Oparin, I., Sundermeyer, M., Ney, H., Gauvain, J., “Performance analysis of Neural Net-
works in combination with n-gram language models,” ;In ICASSP(2012)5005-5008

16. T. Mikolov and G. Zweig, “Context Dependent Recurrent Neural Network Language
Model,” Microsoft Research Technical Report MSR-TR-2012-92, 2012.


