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Abstract—This paper represents another step towards the
linguistic naturalness of synthetic Czech. Its main goal is to
eliminate undesirable occurrences of the so-called parasitic
speechsounds, specifically preglottalization, from synthesized
speech. After explaining the nature of parasitic speechsounds
in Czech, we present procedures for both automatic detec-
tion and segmentation of these sounds in the source speech
recordings. The main contribution of this paper consists in the
proposal and implementation of two ways of synthesizing speech
without preglottalization—cutting the parasitic sound from the
signal and penalizing preglottalization during unit selection.
Both these ways succeeded in suppressing the intrusiveness
of preglottalization, with the latter method being evaluated as
superior.

Index Terms—parasitic speech sound, preglottalization, lin-
guistic naturalness, speech synthesis, unit selection.

I. INTRODUCTION

CONCATENATIVE speech synthesis based on a unit-
selection framework still appears to be the most popular

approach to synthesize speech, at least as far as industrial
applications are concerned [1], despite the fact that statis-
tical parametric synthesis, especially based on the HMM
framework [2], [3], is becoming increasingly more popular in
the research domain. Contemporary unit-selection synthesis
techniques employ very large speech corpora (for a com-
prehensive overview see e.g. [1] or [4]). The principle of
unit-selection-based speech synthesis is to select the largest
suitable segment of natural speech of the source speaker ac-
cording to various phonetic, prosodic and positional criteria
[5], [6], [7], [8], in order to prevent potential discontinuities
in the synthesized speech; this aspect is what we may call the
technical naturalness of concatenative synthesis. The quality
of the synthesized outcome is therefore strongly dependent,
apart from speech segmentation of the corpus, on the source
speaker: his or her speaking style, as well as idiosyncratic
habits, including potential non-standard phenomena, will be
copied into the synthetic speech, and thus impair what we
may call the linguistic naturalness of the outcome.
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In any natural human activity, including speaking, we
may encounter different kinds of imperfections. In speech,
some “imperfections” may be perceived as neutral or even
natural—this may concern for instance a certain degree of
coarticulation [9] or of incomplete synchronization between
glottal and articulatory activities [10]. Some imperfections
may not be perceived at all, while others may not only be
audible, but may have an intrusive influence on the listener.

In our preliminary study [11], we have identified in the
recordings of the source speakers what we have called par-
asitic sounds, i.e., linguistically non-systematic sounds “at-
tached” to a given speechsound and modifying its canonical
realization in some way. Parasitic sounds arise in this sense
as a result of a non-standard and phonetically unjustified
coordination of glottal and articulatory gestures. It must be
emphasized that these sounds occur very rarely in ordinary
neutral Czech speech. When they do occur in normal con-
versation, they typically signal the speaker’s strong affective
state. Paradoxically, though, these parasitic phenomena have
become widespread in the speech of Czech TV and radio
broadcasters who—as professionals—tend to be used as
source speakers in corpus-oriented speech synthesis systems.
Let us clarify once more that these phenomena in Czech
have nothing in common with paralinguistic phenomena like
fillers, wrappers, backchannelling, hesitation sounds, dys-
fluencies, filled pauses, etc. Those phenomena, abundantly
manifested in spontaneous conversational speech [12], [13]
and researched in the context of expressive or spontaneous
speech synthesis (see e.g. [14], [15], [16]), are desirable in
synthetic speech so as to increase its naturalness. This is
not the case with our parasitic sounds—preglottalization,
postglottalization, and epenthetic schwa: they cannot be
considered to form a natural part of the Czech phonological
system and they are, on the contrary, highly unnatural.

In [17], the form of these parasitic phenomena is
thoroughly described and their classification is proposed.
Briefly, preglottalization may be regarded mostly—though
not exclusively—as a post-pausal phenomenon which in-
volves non-standard fortification of the given consonant in
the form of a glottal stop or, in the broader sense, glottaliza-
tion [18] (e.g., [?dobri:] good), possibly also accompanied by
a schwa-like vocalic element (e.g., [?@dobri:])1. Postglottal-
ization, on the other hand, tends to occur mainly in the final,
pre-pausal position; while glottalization is very frequent in

1Canonically, the glottal stop may occur only before word- or morpheme-
initial vowels in Czech.
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Fig. 1. Examples of parasitic sounds: preglottalization and postglottalization.

utterance-final positions [19], typically in the form of creaky
phonation, additional postglottalization (i.e., after articulation
has ceased) may sound unnatural in these positions when
the vocal folds are firmly and abruptly pressed together at
the end of a vowel, or when a vowel ends in a vocalic,
schwa-like element. Epenthetic schwa, then, involves—for
our purposes—the insertion of an unnaturally long vocalic
element between consonants, sometimes even leading to the
perception of an additional syllable (e.g., [pjet@ kluku:] five
boys). Examples of parasitic sounds are given in Figure 1.

Subsequent perceptually oriented studies investigated par-
asitic phenomena from the perspective of their perceptibility
[10] (i.e., whether listeners are, in fact, able to detect them in
an AXB listening test paradigm) and the degree of intrusive-
ness [20]. Preglottalization turned out to manifest the greatest
degree of intrusive effect. The presence of preglottalization in
synthesized speech therefore is likely to create an impression
of affectedness and to disturb the natural character of speech,
especially when they are cumulated. For an example of
preglottalization see Figure 1 or Figure 6a in Section V. The
appearance of epenthetic schwa was most disturbing between
voiceless consonants. Given the fact that postglottalization is
comparatively rarer in our speech corpora (cf. Section II), its
intrusiveness was not investigated in our studies.

It is obvious that, due to the enormous size of speech cor-
pora employed in contemporary unit-selection-based speech
synthesis (usually more than 10 hours of speech), manual an-
notation of parasitic sounds is almost impossible. Therefore,
the parasitic sounds are hidden in the corpora and, following
the principle of unit selection, they may unintentionally find
their way into the synthesized speech. This may lead to
two kinds of problems. First, as already mentioned, the
presence of parasitic sounds (especially preglottalization)
may disturb the natural character and fluency of speech.
Second, when such parasitic sounds are not detected in the
source recordings, speech contexts in which the parasitic
sounds could appear are to be synthesized with no a priori
information about the presence of such a sound. As a result,
it is possible that speech contexts both with and without the
described phenomena are concatenated, which would most
likely be perceived as discontinuity in the synthesized speech.

It follows that it would be beneficial to have at one’s

disposal information about the actual presence or absence of
a parasitic sound in a given context. With this information,
one can try to avoid using such speech contexts in unit-
selection synthesis—if the position of the parasitic sound
is known, it may be cut out of the speech signal, or the
particular speech unit containing the parasitic sound may
be penalized during the unit selection mechanism. In some
limited applications, for example when synthesizing highly
affective speech, a unit containing a parasitic sound may even
be used intentionally so as to increase the naturalness in that
particular situation.

Procedures for both the automatic detection of the pres-
ence of parasitic sounds and the automatic determination
of their boundaries in speech signals were designed in
[11] and [21], respectively, and they are briefly recalled
in Section II and III. In Section IV, we present the next
step in our attempt to synthesize linguistically more natural
speech as we describe two approaches to speech synthesis
without the intrusive preglottalization sounds. These attempts
are evaluated in Section V, and conclusions are drawn in
Section VI.

II. AUTOMATIC DETECTION OF PARASITIC PHENOMENA

For the purpose of this study, we utilized randomly
selected recordings of the source male speaker used as
the primary voice in the Czech TTS system ARTIC [6],
corresponding in total to approximately 14 minutes of read
speech. The recordings were manually searched for instances
of parasitic sounds. We identified 123 instances of preglot-
talization, 71 instances of epenthetic schwa, and 45 instances
of postglottalization (in our other source speaker, however,
postglottalization featured only four times). The boundaries
of all these phenomena were determined in source speech
signals (see [11], as well as [22] for a more detailed
description of segmentation criteria). The next aim was to
detect parasitic sounds automatically in the speech signals.
Two different kinds of classifiers were used to this end: an
HMM-based classifier and a BVM classifier. Both types of
classifiers were trained on the same training data set and
evaluated on the test data set as described in [11].

The HMM-based classifier follows the well-established
techniques known from the field of automatic speech recog-
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nition (ASR) and automatic phonetic segmentation (APS).
As this classifier was also utilized for the automatic seg-
mentation of preglottalization and postglottalization, it is
described here in more detail. In this framework, each
phone or speechsound is modelled by a hidden Markov
model (HMM)—firstly, the parameters of each HMM are
estimated; then, forced alignment based on Viterbi decoding
is performed to find the best alignment between the HMMs
and the corresponding speech data.

In our experiments, a set of single-speaker three-state left-
to-right context-independent multiple-mixture HMMs was
employed, corresponding to all standard Czech phones plus
the parasitic sounds. For the estimation of model parameters,
we employed isolated-unit training utilizing Baum-Welch
algorithm with model boundaries fixed to those labelled man-
ually. For each utterance from the test data (described by fea-
ture vectors of mel frequency cepstral coefficients, MFCCs,
extracted each 4 ms), the trained HMMs of all phones and
of the parasitic sounds were concatenated according to the
phonetic transcription of the utterance and aligned with the
speech signal by means of Viterbi decoding. In this way,
the best alignment between HMMs and the corresponding
speech data is found, producing a set of boundaries which
delimit the speechsounds belonging to each HMM. Thus,
the position of each phone-like unit—including the parasitic
phenomena—is identified in the stream of speech signal.
Within this process, the automatic detection of the presence
of each parasitic sound is carried out by creating multiple
phonetic transcripts per utterance with all combinations of
the presence/absence of the individual parasitic sounds in the
defined target contexts. Consequently, the transcript which
“best matches” the data is chosen as the maximum likelihood
estimation (MLE) of the utterance. Using this procedure, it
was possible to detect parasitic sounds in the given contexts
(see Figure 2 for a schematic view of the detection process).

Ball Vector Machines (BVM) is a simplified version of
Core Vector Machines (CVM) classification method from
the family of kernel methods. Unlike the computationally
demanding SVM, a CVM finds an approximative solution by
applying methods of computational geometry. The training
phase is formulated as finding an approximation of the
minimum enclosing ball (MEB), or specifically, its so called
(1+ε)-approximation. A BVM further simplifies the problem
by finding a (1 + ε)-approximation of enclosing ball (EB)
with a fixed radius instead of MEB (see [23] for more detail).
The reason why we have chosen a kernel-based classifier is
that it often outperforms the other types of classifiers [24].
We used the RBF (radial basis function) kernel in our BVM
classifier.

In order to obtain the input features for the classifier,
we employed the TRAPS parametrization technique in our
experiments. Such a technique enables the classifier to
take long-term temporal trajectories into account. We used
the setup similar to [25]. To ensure better granularity, the
parametrization was modified to obtain the feature vectors
each 4 ms. Using the same manually labelled time-aligned
data as for the HMM-based classifier, we identified positive
and negative examples for the BVM classifier. Eight feature
vectors closest to the centre of the given parasitic sound were
used as the positive examples, while as the negative examples
we used those eight feature vectors which lay closest to the

boundary where the given sound may occur but actually did
not. The parameters of the BVM classifier were determined
using the grid-search algorithm with 10-fold cross-validation.

The evaluation of the automatic classification was per-
formed in a “standard” way, i.e. using true positive rate
(TPR, i.e. hit rate), false positive rate (FPR, i.e. false alarm
rate) and detection accuracy

ACC =
P · TPR+N · (1− FPR)

P +N
, (1)

where P is the number of “positive examples” in the test
data (i.e. how many times the parasitic sound really occurred
in the given context) and N is the number of “negative
examples” in the test data (i.e. how many times the parasitic
sound could occur in the given context but actually did
not occur (N )). In order to take into account also the
classification “accuracy” which occurred by chance, Cohen’s
kappa κ is also indicated (generally, κ ≥ 0.70 is considered
satisfactory). The results of the detection are summarized in
Tables I-III and discussed in [11] in more detail. The slightly
different numbers N of negative examples are caused by
different pre-processing of the data for the two classifiers.

TABLE I
Results of the automatic detection of preglottalization.

Detection rates HMM BVM

P 50 50
N 56 59

TPR 0.92 0.92
FPR 0.11 0.02
ACC 0.91 0.95
chance level 0.50 0.51

κ 0.81 0.91

TABLE II
Results of the automatic detection of postglottalization.

Detection rates HMM BVM

P 26 26
N 106 132

TPR 0.77 0.96
FPR 0.02 0.00
ACC 0.94 0.99
chance level 0.70 0.73

κ 0.70 0.98

TABLE III
Results of the automatic detection of epenthetic schwa.

Detection rates HMM

P 17
N 36

TPR 0.29
FPR 0.11
ACC 0.70
chance level 0.62

κ 0.21

While glottalization is relatively well defined in terms
of the context of occurrence (pre-pausal and post-pausal),
epenthetic schwa may occur in various contexts whose
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Fig. 2. Simplified scheme of HMM-based automatic phonetic segmentation
including the detection of parasitic sounds.

delimitation is less straightforward. Our analyses indicate
that epenthetic schwa occurs most frequently in a) pre-
pausal sonorant consonants, b) between two speechsounds
of the same place of articulation, and c) after a non-syllabic
preposition; only these contexts were then taken into account
in our initial experiments with the automatic detection of
schwa. Since the BVM classifier could suffer from the
training set being heavily biased towards negative examples,
we only employed the HMM-based classifier for automatic
detection at this stage.

As the results presented in the tables indicate, automatic
detection of glottalization phenomena was quite successful
(cf. especially the values of Cohen’s kappa). The detection
of epenthetic schwa, on the other hand, was poorer. This
may have been caused partly by the fact that the context
in which epenthetic schwa may occur is considerably more
varied. Moreover, the acoustic contrast between schwa and
some of the possible co-occurring speechsounds is very low,
especially in the case of sonorant consonants.

For this reason, we will focus only on the glottalization
phenomena in the following sections. Since it appears that
it is especially preglottalization which may have an intru-
sive effect on listeners [20], we ran a separate automatic
detection on our entire speech corpus which includes the
total of 12,065 source recordings. Automatic detection of
preglottalization yielded 9,075 instances of preglottalization

TABLE IV
Results of the automatic segmentation of preglottalization and

postglottalization sounds.

MAE RMSE Tol10 Tol20
(ms) (ms) (%) (%)

PRG-* 7.50 10.56 83.33 90.48
*-POS 8.33 11.16 65.38 92.31
GST-* 7.00 9.39 73.08 96.15
*-* 6.45 11.66 82.40 94.65

in 6,819 recordings. This means, in other words, that more
than one half of the source recordings we have been using
lately for synthesizing Czech speech appear to include pre-
glottalization.

III. AUTOMATIC SEGMENTATION OF GLOTTALIZATION

Essentially, there were two options regarding the seg-
mentation of glottalization: it may be carried out within
the HMM-based detection process (respecting multiple pho-
netic transcriptions which distinguish between the pres-
ence/absence of a glottalization sound as described in Sec-
tion II), or after the HMM- or BVM-based detection only on
those speech contexts in which preglottalization had already
been detected. In our experiments, the segmentation was
performed within the HMM-based detection process [21].
Though the accuracy of the detection of the HMM-based
classifier was slightly worse when compared to the BVM
classifier (see Tables I and II), one of the advantages of the
HMM-based classifier is that, as boundaries between HMMs
are produced during the alignment, the position of each mod-
elled sound in the utterance could be located. A simplified
scheme of the automatic phonetic segmentation utilizing the
HMM-based classifier is shown in Figure 2. Optionally, it is
possible to subsequently refine the boundaries obtained by
the HMM-based classifier, as described e.g. in [26], [27].

The results of the automatic segmentation of preglottaliza-
tion (PRG) and postglottalization (POG) in terms of mean ab-
solute error (MAE), root mean square error (RMSE) and per-
centage of boundaries deviating less than the 10ms (Tol10) or
20ms (Tol20) tolerance region are shown in Table IV. Notice
that only the ending boundaries of preglottalization (PRG-*)
and the starting boundaries of postglottalization (*-POG)
are specified. The other types of boundaries (*-PRG and
POG-*) are located in pauses (see Figure 1), and, due to the
smooth concatenation of speech signals in silence, the precise
identification of these boundaries is of lower importance. So
as to allow for comparison, the segmentation accuracy of a
phonetically similar unit, the pre-vocalically occurring glottal
stop (GST-*) is also indicated in Table IV, as well as the
average segmentation accuracy of all other Czech phonetic
units (*-*) . The comparison of the segmentation accuracy
of all boundary types is shown in Figure 3.

Looking at the results of the automatic segmentation in
Table IV and in Figure 3, it can be shown that:

• For both speech corpora, the segmentation accuracy
of preglottalization (PRG-*) is comparable to the seg-
mentation accuracy of glottal stop (GST-*), a phonetic
unit similar to preglottalization, which has already been
used in synthesis of Czech speech (according to the
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Fig. 3. Comparison of the automatic segmentation accuracy of different boundaries types in terms of RMSE (PRG = preglottalization, POG =
postglottalization, VOW = vowels, FRI = fricatives, PLO = plosives, AFR = affricates, NAS = nasals, LIQ = liquids)

unpaired t–test the difference in MAE is not statistically
significant, two-tailed P -value = 0.8095).

• Comparing the segmentation accuracy of (PRG-*) to
the average segmentation accuracy of all other phonetic
boundaries (*-*), preglottalization tends to be worse
in terms of MAE but, on the other hand, it tends to be
better in terms of RMSE (with the difference in MAE
being not statistically significant, unpaired t–test, two-
tailed P -value = 0.4876).

• The segmentation of postglottalization (*-POG) is less
accurate than the segmentation of preglottalization (the
difference is statistically not significant, unpaired t–test,
two-tailed P -value = 0.6607).

• Segmentation results in Figure 3 confirm that the seg-
mentation of both preglottalization and postglottaliza-
tion sounds does not deviate from the segmentation of
all other phone sounds.

Moreover, the average segmentation accuracy of the auto-
matic phonetic segmentation (APS) system with the parasitic
sounds included (MAE = 6.45 ms, RMSE = 11.66 ms) is
better than the average segmentation accuracy of the standard
APS system with no parasitic sounds included (MAE =
6.71 ms, RMSE = 16.21 ms), which means that explicit
modelling of parasitic sounds does increase the accuracy of
the segmentation of other phones (although the difference
is statistically not significant, unpaired t–test, two-tailed P -
value = 0.5879).

To sum up, the results indicate that, based on the automatic
segmentation, it should be possible to remove preglottaliza-
tion from the speech signals and thus to prevent this parasitic
sound from being transferred into synthesized speech.

IV. SPEECH SYNTHESIS WITHOUT PREGLOTTALIZATION

In previous sections, we described procedures designed
to detect preglottalization phenomena in our speech corpus
and to find their boundaries in the signal. With this infor-
mation at our disposal, it was possible to consider ways in
which preglottalization could be eliminated from synthesized
speech, thus yielding a linguistically more natural outcome.
We proposed two scenarios, both based on the unit-selection
framework [28]. The first scenario employs the standard
unit-selection mechanism, with the resulting speech signal
subsequently being post-processed—preglottalization sounds
are physically removed, or cut out (see Section IV-A). The

second scenario employs a modified unit-selection mech-
anism in which the items containing preglottalization are
penalized during the selection process, so that they are
less likely to appear in the resulting speech signal (see
Section IV-B).

A. Cutting out preglottalization
In this first experiment, speech was synthesized with

standard settings of our unit-selection TTS system, as de-
scribed e.g. in [29], [30]. Figure 6a shows a specific example
illustrating the fact that undesirable parasitic preglottalization
phenomena may find their way into synthesized speech. In
order to obtain synthetic speech free of preglottalization,
it was necessary to employ post-processing consisting in
cutting the signal corresponding to preglottalization out of
the speech signal. To do that, an overlap-add-like procedure
was applied as illustrated in Figure 4.

From what we have said, it is obvious that this approach
requires not only the knowledge concerning the presence of
preglottalization in the synthesized contexts (see Section II),
but also concerning its precise location in the source speech
units (and, by extension, also in the synthesized speech
signal—see Section III). It should be pointed out at this
stage that the primary objective of this experiment was to
determine the true potential of the cutting out procedure.
Therefore, in order to avoid synthesis errors caused by
imperfect automatic segmentation of preglottalization, we
made use of manually performed segmentation from expert
phoneticians throughout this experiment.

The successfulness of this method in removing preglot-
talization from the resulting synthetic speech is evaluated
further in Section V. The advantage of this method is that
a standard, well-tuned unit selection mechanism can be
utilized. On the other hand, the need for (very precise)
automatic segmentation of the parasitic glottalization sounds
can be viewed as a clear disadvantage. It is also worth
mentioning that the decision to cut preglottalization on-line
was deliberately preferred to off-line cutting out, since the
latter option would require storing another large, modified
speech unit database.

B. Penalization of preglottalization
The idea behind this second experiment is the notion of

producing linguistically natural synthetic speech by gener-
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Fig. 4. An illustration of the cutting-out algorithm. The undesirable
preglottalization sound is cut out of the synthetic signal (the upper part
of figure), and the remaining parts of the signal are smoothly concatenated
within a smoothing region. The resulting signal is shown at the bottom of
the figure.

ating it from clear, unmarked, preglottalization-free speech
segments. This technique would thus not be affected by the
somewhat cumbersome and—due to automatic segmentation
possibly even imprecise—cutting-out process described in
the previous section. To this end, we proposed a modified unit
selection scheme which consisted in the addition of another
criterion into the unit-selection algorithm—the knowledge
of the presence/absence of preglottalization in each diphone
candidate (see Figure 5). In order to minimize the chance
of a diphone with preglottalization being selected, the unit-
selection algorithm was tuned to prefer a diphone candidate
free of preglottalization phenomena. Penalization of this
criterion was set as very high in comparison with other
criteria (phonetic and prosodic contexts). Therefore, diphone
candidates with the undesirable preglottalization should be
selected only when other criteria fail (actually, such a case
never occurred for our test utterances—see Section V).

Note that, unlike in the previous experiment, it is not
necessary to have information about the boundaries of pre-
glottalization in the source recordings, nor in the synthetic
speech. The only additional information which is required
as compared to the standard speech synthesis system is the
knowledge of the presence/absence of preglottalization in the
source diphone candidates; as described in Section II, that is
something that can be obtained automatically. Similarly—
as in Section IV-A—manual detection of preglottalization
was utilized throughout this experiment, so as to avoid errors
caused by automatic processes.

The comparison between both approaches to speech syn-
thesis is provided further in Section V. The advantage
of the approach described in this subsection is clear—the
location of the parasitic preglottalization phenomena is not
needed, and their automatic segmentation thus need not be
provided. On the other hand, it is necessary to modify the
well-established unit-selection algorithm (possibly with some
amount of experiments needed to fine-tune the modified
algorithm).

V. EVALUATION & DISCUSSION

To emphasize the need for special handling of the parasitic
preglottalization in Czech speech synthesis—in other words,

Fig. 5. An illustration of the modified unit-selection algorithm. In order
to obtain synthetic speech free of undesirable preglottalization, segments
containing preglottalization are penalized during unit selection.

to illustrate the point that we are not talking about a marginal,
negligible phenomenon in the speech corpus—approximately
965k unique sentences were synthesized using the original
version of our TTS system. Subsequently, statistics about the
usage of each diphone from the speech corpus were recorded.
In this way, 335k sentences were identified to contain at least
one half of any of the preglottalization items from the speech
corpus. This means that every third sentence synthesized by
our TTS system contained preglottalization.

To evaluate the impact of preglottalization on the quality of
the resulting synthetic speech, we selected 18 representative
sentences for further analysis. Each of these sentences was
then synthesized with the three versions of our speech
synthesis system—the original system (ORG), in which
preglottalization was not handled, and two versions in which
preglottalization was cut out (CUT, see Section IV-A) or
penalized during unit selection (PEN, see Section IV-B). An
example of these three synthetic versions of one sentence
is given in Figure 6. The resulting synthetic sentences were
analyzed by the two phoneticians in the author team, and
the perceptual effect stemming from the potential presence
of preglottalization was marked as not intrusive, slightly
intrusive or as very intrusive.

Table V shows that 11 of the 18 sentences contained
intrusive preglottalization when synthesized with the original,
unmodified speech synthesis system (ORG), and that five
of these eleven instances were perceived as very intru-
sive. It can also be seen that both the proposed methods
succeeded in suppressing the intrusiveness of the parasitic
preglottalization—only two sentences still contained audible
preglottalization after preglottalization sounds had been re-
moved from the corresponding synthetic speech signal using
the cutting out procedure (CUT), and no preglottalization at
all was audible when source units containing preglottalization

TABLE V
Comparison of synthetic speech of 18 test sentences with respect to the

intrusiveness of preglottalization.

Intrusiveness

Synthesis scenarios None Slightly Very

ORG 7 6 5
CUT 16 1 1
PEN 18 0 0
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Fig. 6. Examples of synthetic speech: a. using the original system with a preglottalization sound included (ORG); b. with the preglottalization sound
removed (CUT); c. with preglottalization diphones penalized during unit selection (PEN).

had been penalized during unit selection (PEN). The persist-
ing presence of preglottalization in the two units—even after
their removal using the cutting out procedure—may have two
causes. First, it is possible that, although segmentation of
preglottalization phenomena had been performed manually
by phoneticians in this experiment, the segmentation may
have been imperfect. Second, it is simply possible that
some sort of audible parasitic phenomenon arises in the
concatenation process although the signal corresponding to
preglottalization has been removed.

It is obvious—and it can also be seen in Figure 6—
that penalizing preglottalization in the unit-selection process
leads to the selection of different diphone segments. In
other words, the resulting synthesized versions, after the
application of the CUT and PEN procedures, sound differ-
ently. Although PEN outperforms CUT in the suppression
of the intrusive effect of preglottalization, the forced usage
of different—and from the standard viewpoint less ideal—
diphone candidates may degrade the overall quality of the
resulting speech. We regarded it therefore as necessary to
conduct another informal listening test, so as to compare the
overall quality of synthetic speech produced by both the PEN
and CUT synthesis scenarios. The results, shown in Figure 7,
indicate that PEN outperforms CUT also with respect to the

Fig. 7. Results of preference listening test comparing the overall quality
of synthesized speech produced by the PEN and CUT speech synthesis
scenarios.

overall quality: no PEN version has been assessed as being
worse in overall quality than CUT, while a PEN version
was preferred to the respective version in five cases. In the
remaining 13 cases, the two synthetic versions were judged
as equivalent in their overall quality.

It is worth pointing out that the procedure consisting in
penalizing units with preglottalization sounds is likely to
have even more of an edge over the cut-out algorithm in
real-life applications. Since we used manually determined
boundaries in our experiments—and their precise knowledge
is necessary only for the cut-out procedure—the performance
of the cut-out procedure is likely to drop further once
automatic segmentation of parasitic sounds is applied.

VI. CONCLUSION

This paper is part of a larger endeavour focused on
improving the linguistic naturalness of synthetic Czech.
Previous investigations [10], [20] have verified the perceptual
intrusiveness of what we have described as parasitic phe-
nomena, especially preglottalization and epenthetic schwa.
While essentially non-existent in neutral, unmarked speech
of ordinary speakers, these parasitic sounds have been shown
to be quite frequent in the speech of professionals from the
media who, in turn, are often recruited to record large corpora
for speech synthesis. It was therefore desirable to remove
the parasitic sounds from the synthetic speech. This paper
focused specifically on preglottalization; one reason for not
including epenthetic schwa was the fact that its automatic
detection was comparatively lower (see [11]), the second
reason is the higher degree of perceived intrusive effect of
preglottalization. Postglottalization was much less frequent
in our corpora, and our informal observations indicated a
lower degree of intrusive effect.
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The first step in our analysis consisted in the automatic
detection and segmentation of all three parasitic phenom-
ena. Given the lower detection rate of epenthetic schwa,
we subsequently focused on the segmentation of only the
two forms of glottalization. In the next stage, two speech
synthesis scenarios were proposed and employed to syn-
thesize speech without preglottalization, the most intrusive
of all the three parasitic speechsounds. The first scenario
was based on actually removing the signal corresponding
to preglottalization from the synthesized speech, the second
exploited penalizing speech units containing preglottalization
during selection. The results of our experiments with sample
sentences were encouraging in that the synthesized speech
was evaluated as linguistically more natural than the speech
produced by the original system. Comparing the two syn-
thesis scenarios, penalization of preglottalization during unit
selection appears to provide better results, at least for two
reasons. First of all, penalizing the target units outperformed
cutting preglottalization out of the synthetic speech, and
this concerns the ability to suppress the intrusive effect, as
well as the overall quality of the resulting synthetic speech.
Second, the procedure penalizing preglottalization does not
require the knowledge of the precise boundary of the parasitic
preglottalization sounds in the signal. On the other hand,
some fine-tuning of the unit-selection algorithm may be
necessary to find an optimal trade-off between the ability to
suppress preglottalization and the overall quality of synthetic
speech.

In our future work, we will also conduct experiments
with other source speakers used in our TTS system and,
most importantly, utilize the knowledge acquired in this
research in a real Czech TTS system. We will also investigate
the effect of automatic procedures for both the detection
and segmentation of preglottalization on the quality of the
resulting synthetic speech.
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[6] J. Matoušek, D. Tihelka, and J. Romportl, “Current state of Czech text-
to-speech system ARTIC,” in Text, Speech and Dialogue, ser. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2006, vol.
4188, pp. 439–446.
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[9] B. Kühnert and F. Nolan, “The origin of coarticulation.” Cambridge
University Press, 1999, pp. 7–30.
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