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ABSTRACT

We present a method for external camera calibration that is simple to use and offers generality in the
positioning of the cameras. This makes it very suitable for the calibration of mobile, synchronized camera
setups. We use a camera graph to perform global registration which helps lifting restrictions on the camera
setup imposed by other calibration methods. A further advantage is that all information is taken into
account simultaneously. The method is based on a virtual calibration object which is constructed over
time by tracking an easily identifiable object through three-dimensional space. This implies that no
calibration object must be visible simultaneously in all cameras.

Keywords

External Camera Calibration, Registration, Multi-Video System, Graphs

1 Introduction

We have built a mobile camera system to take
computer vision research to more general settings
than is possible with a fixed studio setup. This
added flexibility demands a simple to use camera
calibration technique that allows for convenient
calibration of the camera system.

Since camera calibration is such a crucial task
in computer vision, a lot of effort has been spent
on the subject. There exist a number of methods
in different flavors [Tsa87; HZ00]. Most of them
use carefully prepared calibration objects, while
others estimate camera parameters from general
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images or image sequences. These approaches are
called self-calibrating. A relatively new approach
is the use of a virtual calibration object. This
calibration object does not exist in a physical
meaning, but is instead constructed over time
(assuming a static camera setup and scene) by
tracking an easily identifiable object through the
3D scene. The point correspondences hereby
obtained are then used for calibration [AP95;
CDS00].

The advantages of using virtual calibration ob-
jects are the simple establishment of point corre-
spondences in difficult, wide baseline and encir-
cling camera setups as well as the possibility of
acquiring as many point measurements as neces-
sary, which is difficult in one image approaches.
Furthermore, there is no need for a carefully man-
ufactured calibration object, which can break dur-
ing transportation.

The paper is organized as follows. In Section 2
we discuss some previous work that is important
in this context. Section 3 gives an outline of
the method, Section 4 describes the establishment



of 2D correspondences for calibration purposes.
In Section 5 the computation of pairwise rela-
tionships between cameras is discussed. Section
6 describes the main contribution of this paper,
namely the usage of a graph structure for exter-
nal camera calibration. Section 7 presents exper-
iments with synthetic as well as with real data.
Finally, Section 8 concludes the paper and gives
some directions for future work.

2 Related Work

Earlier approaches to external calibration with
help of virtual calibration objects [AP95; CDS00]
use light emitting objects (i.e. flashlight, LED) in
dark rooms for tracking. In [AP95] the virtual cal-
ibration object is introduced to calibrate a pair of
stereo cameras. A synchronized pair of cameras is
used to track a flashlight, the path of which is used
for calibration. Chen et. al. extend this work by
applying the virtual calibration object approach
to unsynchronized multi-camera setups. The lack
of camera synchronization is treated with an Ex-
tended Kalman Filter (EKF) which estimates the
path of a marker object (LED). Pairwise relation-
ships between cameras are computed employing
a structure-from-motion algorithm. Global reg-
istration in a common coordinate system is then
done using a triangulation scheme iteratively, to
estimate the position of yet unregistered cam-
eras to two already registered cameras [CDS00].
This requires that any unregistered camera is con-
nected to at least two already registered cameras
by known pairwise relationships.

Our approach removes this restriction by ana-
lyzing a graph consisting of the cameras as ver-
tices and known pairwise position and orientation
as graph edges. An additional advantage is that
all information about the global position of a given
camera is imposed simultaneously.

3 Graph-based external multi-

camera calibration

To accommodate general camera setups, we use
an approach that does not require visibility of the
calibration object from all cameras. Instead, a
virtual calibration object that covers the work-
ing volume is constructed over time by tracking
an easily identifiable object [AP95; CDS00]. We
mainly follow the approach of [CDS00]. However,
we lift the constraints that the cameras must be
registered by triangulation from the base camera
pair and that the working volume must be dark
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Figure 1: An example for a graph with nonempty
sets S, Sk, S̄ (upper image) and a corresponding
scene where this situation could occur (lower im-
age).

during calibration.

Intrinsic calibration is done independently for
each camera using Tsai’s method [Tsa87]. This is
reasonable since our cameras do not allow for vary-
ing internal parameters. This requires us to record
an image of a checkerboard for each camera, from
which the internal parameters can be computed.
However, the checkerboard does not have to be
visible from all cameras simultaneously.

At the place of recording, we first obtain a num-
ber of 2D correspondences via tracking the marker
object depicted in Fig.2. The midpoints of the
marker object are determined and the correspon-
dences are used to robustly compute the relative
orientation of each camera pair [Zha96; Hor90].

Since the pairwise relative position of the cam-
eras can be found up to a scale factor only, a
global registration has to be performed to achieve
global calibration. This is done by construct-
ing a graph G = (V,E) that represents the re-
lationship between cameras, Fig. 1. The cameras
Ci ∈ V are the vertices, and known relative posi-
tion and orientation between any pair of cameras
(Ci, Cj) ∈ E are represented by the edges of the
graph. The graph is undirected, since known rel-
ative position and orientation (R, t) for a camera
pair (Ci, Cj) also defines the relative position and
orientation of (Cj , Ci) as (RT,−R

T
t).

Once the graph is set up, it is searched for cycli-
cally connected subsets Sk ⊆ S containing all



Figure 2: The marker object that is tracked
through the scene to establish 2D correspondences
between camera frames consists of a bright orange
ball on a stick.

cameras. The set S̄ := S \ (∪k Sk) consists of
all cameras not belonging to any cycle. If S = S̄,
no cycles exist and a special treatment is neces-
sary. Figure 1 illustrates a situation where all sets
are nonempty.

The unknown scale factors for the pairwise
translations are determined for each Sk indepen-
dently. This is done by solving an over-determined
linear system of equations. The equations corre-
spond to cycles in the graph and require that the
scaled translations along any closed path sum to
zero. That means the cycle represents a closed
curve in three-dimensional space. Since the es-
timation obtained this way is not connected to
the image measurements any longer, the repro-
jection error of this solution may not be optimal
yet. Nevertheless, the overall shape of the setup
is recovered quite well. Therefore, this estimate
is used as an initial estimate for bundle adjust-
ment [TMHF00; HZ00]. Using these partial reg-
istrations, parts of the virtual calibration object
(i.e. the path of the tracked marker object) are
reconstructed. The remaining step is to register
all subsets Sk and all Ci ∈ S̄ with each other to
form a globally consistent calibration.

In this framework the improvement of our
method can be stated like this: The restriction
of the vertices V being interconnected by three-
cycles in the graph G as required by the algorithm
of Chen et. al. [CDS00] is lifted, and arbitrary
connectivity of the graph G is allowed for as long
as the graph is not disconnected.

4 Obtaining image correspon-

dences

2D point correspondences between images, i.e.
projections of the same three-dimensional point
onto different camera planes, are the basis for
epipolar geometry estimation and therefore are
the first step in the recovery of the camera struc-
ture.

We obtain them by tracking a sphere over time,

establishing one correspondence for every frame
of the calibration video sequence. The sphere is a
suitable object because it has a unique midpoint,
the projections of which can be computed from
images alone. The sphere projects to a conic sec-
tion in the image plane as shown in Fig. 3. In any
real situation this conic will be an ellipse. If the
focal length of the cameras is not too small the
ellipse is nearly circular. This observation leads
to our sphere detection algorithm.

The sphere detection is run on every frame of
the video sequences separately. Our marker ob-
ject has a color which is not widely present in
the scene. Therefore we threshold the image with
a color band in Y/Cb/Cr space. We find con-
nected components in the resulting binary image
and threshold them according to their size to ex-
clude noise and small artifacts from further pro-
cessing. A circular Hough transform is performed
on every remaining connected component. This
yields a best circular fit for each of them.

To find the best fit for the image, the Hough
scores can not be compared directly as they de-
pend on the size of the object. Therefore, we
calculate the density of object pixels in the circle
candidates. A candidate from a round component
will typically fill the whole disk and gain a high
score. The highest scoring circle is picked as the
winner. Finally, the score is thresholded. If the
score is higher or equal to the threshold we have
found the sphere, otherwise we assume that the
calibration object is not visible in the image.

If the sphere was found, we refine the estimate
using orthogonal least squares ellipse fitting. For
this purpose we extract the edges of the original
image around the position found by the Hough
transform. The area for edge detection is limited
by the estimated radius plus some safety region.
The detected edge pixels are used to robustly fit an
ellipse using the RANSAC paradigm [FB81]. We
use the squared sum of orthogonal euclidean dis-
tances between the data points and the ellipse as
an error measure. This gives a sub-pixel estimate
of the ellipse midpoint and compensates for small
mislocalizations introduced by the Hough trans-
form. We use midpoints in corresponding frames
of the multi-video sequence as correspondences.

5 Computation of pairwise po-

sition and orientation

Having extracted a set of point correspondences,
we can proceed in computing the pairwise rela-
tive position and orientation (Rij, tij) of any cam-
era pair (Ci, Cj).
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Figure 3: Projection of spheres S1 and S2 onto the
image plane Π using the focal point p. S1 projects
to a circle, because the main axis of its cone of
projection is perpendicular to Π. S2 on the other
hand projects to an ellipse.

This is achieved by first undoing the effects
of the internal camera parameters on the mid-
points, followed by the computation of the essen-
tial matrix Eij. We use a variant of Zhang’s ap-
proach [Zha96] to compute the essential matrix.
The difference between Zhang’s algorithm and our
version is the initial guess of the fundamental ma-
trix Fij, which we obtain using RANSAC [FB81]
with the seven point algorithm for estimation of
the fundamental matrix [HZ00]. This estimate al-
ready fulfills the rank two constraint on the fun-
damental matrix Fij. The following nonlinear re-
finement step minimizes the symmetric epipolar
distance, i.e. the distance of the epipolar line in-
duced by a point to the corresponding point in
the other image, using the Nelder-Mead simplex
method [NM65]. Given the internal parameter
matrices Ki and Kj, an initial guess of the es-

sential matrix is computed Eij = Kj
T
FijKi. This

guess usually does not fulfill the additional con-
straint that the two nonzero singular values of Eij

are equal. The nearest essential matrix fulfilling
the constraints is obtained by setting the two un-
equal singular values to their mean value [FL01].
However if the two nonzero singular values dif-
fer widely, this is not a good guess for the es-
sential matrix minimizing the symmetric epipolar
distance. Therefore, an additional nonlinear mini-
mization with the simplex-algorithm is performed,
this time using only the five parameters of rota-
tion and translation direction to compute the final
guess for matrix Eij.

The essential matrix is of the form E = [t]×R,
and rotation as well as translation can be ex-
tracted from it [Hor90]. The decomposition of ma-
trix E yields four solutions for R and t. The solu-
tions arise because of the unknown scale of t which

can be either positive or negative. The rotations
are related by a rotation of 180◦ around the base-
line, connecting the two cameras. In most cases,
this ambiguity can be resolved by the demand
that reconstructed points are in front of both cam-
eras [HZ00; FL01]. Sometimes, in cases of a near-
180◦ angle between the principal axes of the two
cameras, it is only possible to resolve a twofold
ambiguity and two solutions remain. Since the
reprojection error of both solutions is the same,
there is no measure based on image distances that
can be chosen to decide the solution. Therefore,
we apply a heuristical measure: we choose the so-
lution whose reconstruction has a smaller convex
hull. Since we are dealing with euclidean recon-
structions this is a reasonable choice.

As a measure of quality, we compute a local
reconstruction for each camera pair (Ci, Cj) that
yields a solution (Rij, tij) and evaluate the repro-
jection error caused by that reconstruction. We
apply a threshold on that error to exclude unsta-
ble estimates.

6 Graph building and analysis

From the previously computed pairwise positions
and orientations, we build a graph that mirrors
the availability of rotation/translation informa-
tion for all camera pairs. The vertices of the graph
correspond to the cameras, and edges connecting
them indicate a stable solution to the relative posi-
tion and orientation problem for the cameras con-
nected by that edge. Looking at the problem from
a graph theoretical point of view has several ad-
vantages. There are standard solutions for prob-
lems occurring in general camera setups. It is for
example simple to check if a calibration contain-
ing all cameras is possible. It is sufficient to check
that the graph is connected. This can already be
done during data collection and the user can be
guided to create more correspondences for camera
pairs that have not sufficient data available yet.

If there are unconnected subsets of vertices in
the graph, no global calibration can be found, but
the subsets of cameras can be calibrated sepa-
rately. Cameras corresponding to isolated vertices
cannot be calibrated, because they do not share
any overlapping viewing space with the other cam-
eras.

6.1 Registration of cyclically con-

nected components

We proceed by registering all cameras Ck
i con-

tained in a cyclically connected component Gk of



the graph G with each other. This is done for all
k separately. For improved readability we skip the
subscript k in the further discussion.

Recall that all relative translations tij are de-
fined only up to a scale factor and reside in the
local coordinate system of camera Ci. The task
of the registration procedure is to find consistent
scale factors sij for the tij and their transforma-
tions to a global coordinate system shared by all
cameras.

The registration is based on cycles in the graph
G = (V,E). We denote a cycle as Z =
[z1 . . . zn], zi ∈ {C1 . . . Cm} and introduce t̃ij

as translation direction tij transformed to a com-
mon coordinate system. Then one condition on
the scale factors sij for one cycle can be written
as:

( n−1
∑

i=1

szi,zi+1
t̃zi,zi+1

)

− szn,z1
t̃zn,z1

= 0 (1)

(1) is valid for all cycles Zh, h ∈ {1 . . . l}. It de-
scribes the condition that every walk along a cycle
in the registered set of cameras returns to its ori-
gin, or all translations along a cycle sum up to
zero. Every cycle contributes three equations to
the system of equations in (1), one for each coor-
dinate. Overall, there are 3l equations that make
up a usually overdetermined linear system of equa-
tions T̃s = 0, which can be solved to obtain the
scale factors sij . Matrix T̃ and vector s contain
the tij and sij in appropriate positions, respec-
tively.

To apply this to the registration, a number of
preliminary steps are necessary which will be ex-
plained in more detail later:

1. find all cycles Zh in graph G = (V,E),

2. transform all tij into a common coordinate
system, i.e. compute t̃ij,

3. construct and solve the system of linear equa-
tions in equation (1),

4. use the computed scale factors sij to compute
a consistent calibration

1) An algorithm for computing all cycles in a
graph is presented in [KYD+03].

2) Without loss of generality, we choose one of
the cameras local coordinate systems as the com-
mon coordinate system. The corresponding cam-
era is referred to as base camera Cb. We use the
camera related to the vertex with the highest de-
gree for that purpose. This choice minimizes the
number of edges that have to be traversed to trans-
form the other cameras into the base camera’s co-
ordinate system.

For a given camera Ci we transform the trans-
lation directions tij, (Ci, Cj) ∈ E originating in Ci

into the common coordinate system, yielding t̃ij.
This is done using the quaternion weighted mean
rotation Rib between Ci and Cb: Rotation Rib is
computed by finding all paths between cameras
Ci and Cb, accumulating rotation matrices along
these paths and taking the weighted mean value
of their quaternion representations using iterative
spherical linear quaternion interpolation1.

3) The solution s of the linear system T̃s = 0

is defined up to a scale factor only. Therefore,
matrix T̃ is singular. This is because the overall
scale factor of the camera setup cannot be deter-
mined from image measurements alone. To solve
the linear system, we compute the basis vector
of the right null-space of T̃. Using the standard
approach to this problem, we compute the sin-
gular value decomposition (SVD) of matrix T̃:
T̃ = UDV

T and extract the column of V cor-
responding to the zero singular value.

4) To compute a consistent calibration, we mul-
tiply the transformed translations tij by their cor-
responding scale factors sij . If the solution was
perfect, the calibration would be readily available
since every path from Ci to Cb in the graph could
be taken to transform camera Ci into the base co-
ordinate system. But because s is a least-squares
solution this is generally not true. To get the
best estimate of the true translations, we com-
pute the weighted mean translation tib similarly
to the computation of Rib in step 2). The cali-
brated cameras Ci are now defined as having the
projection matrices

Pi = KiRib

(

1 |tib
)

(2)

with Rbb being the unit matrix and tbb the zero
translation for the base camera Cb.

6.2 Bundle adjustment

The calibration obtained so far captures the coarse
structure of the camera setup quite well, but since
it minimizes an algebraic error, namely the least-
squares error of equation (1) which has no phys-
ical meaning, the reprojection error of the points
reconstructed with this calibration is not opti-
mal yet. Nevertheless, it serves as a good ini-
tial guess for bundle adjustment [TMHF00]. We
implemented a reduced version which optimizes

1The weighted mean value x = 1
∑

n

i=1
wi

∑

n

i=1
wixi

can be computed in an iterative manner, where a linear
interpolation is performed in every iteration. Replacing the
xi by quaternions and using spherical linear interpolation
a weighted mean value of rotations can be computed.



standard

deviation

of uniform

Gaussian

noise in

pixels

mean repro-

jection error

left image in

pixels

mean repro-

jection error

right image

in pixels

0.1 0.0213 0.0200
0.3 0.0710 0.0677
0.5 0.1174 0.1131
0.7 0.1600 0.1512
0.9 0.2045 0.2151
1.1 0.2548 0.2425
1.3 0.2815 0.2718
1.5 0.3492 0.3262
1.7 0.3612 0.3452
1.9 0.4503 0.4263

Table 1: Mean reprojection error in the left and
right images for pairwise relationship computa-
tion (inliers only) for different noise levels (exper-
iment 1).

only rotation and translation parameters of the
final calibration using a nonlinear optimization
method. Usually, all parameters (internal, exter-
nal and reconstructed point positions) are opti-
mized which is a huge problem with hundreds of
variables and can only be handled by exploiting
the coarse structure of the problem [Pol99].

We parametrize the problem in a similar way as
in the essential matrix refinement step, but this
time for all cameras simultaneously. The rotation
is parametrized as the normalized rotation axis
scaled by the rotation angle. These values are ob-
tained from the quaternion representation of the
rotation. The translation values are used directly
for the parametrization. As the error measure that
is to be minimized, we adopt the sum of the mean
reprojection errors of the reconstructed points in
all cameras. This error measure is optimized using
the simplex algorithm and the previous calibration
as an initial guess.

7 Experiments

We performed three experiments to validate our
calibration method. The first two experiments use
synthetic data with different levels of additive uni-
form Gaussian noise to assess the robustness of our
method to noise. The first experiment shows the
accuracy of the pairwise position and orientation
computation (see Section 5) under noise. The sec-
ond experiment evaluates the same for the initial
calibration obtained by solving the linear system
of scale factors, Section 6.1 and the improvements

standard

deviation

of uniform

Gaussian

noise

mean re-

projection

error over

all camera

pairs

mean repro-

jection error

after bundle

adjustment

0.1 0.1474 0.1003
0.3 0.7382 0.3285
0.5 1.4748 0.5481
0.7 1.2274 0.7602
0.9 1.5640 1.0145
1.1 1.8092 1.2005
1.3 2.0367 1.4523
1.5 2.7336 1.6161
1.7 8.6253 2.1588
1.9 6.0498 2.1608

Table 2: Mean reprojection error of the recon-
struction from the linear solution to the calibra-
tion dependent on the noise level and after bundle
adjustment (experiment 2).

of bundle adjustment, Section 6.2. The third ex-
periment uses real data and is the calibration of
our in-house multi-video studio [TLMS03], which
is obtained using the full method. Errors are mean
reprojection errors in pixels if not indicated oth-
erwise.

7.1 Performance of the pairwise rela-

tionship estimation

For this experiment we use 100 synthetic 3D data
points. The data points are projected to 5 cam-
eras and disturbed by uniform Gaussian noise with
standard deviations ranging from 0.1 to 1.9 pix-
els. The dependency of the pairwise relationship
estimation on the noise level is shown in Table 1.
The threshold for the RANSAC method was set
to 1.0 pixels. The results show that the method is
robust against uniform Gaussian noise and the re-
projection error raises slower than the noise level.
Nevertheless, with higher noise levels less points
are detected as inliers and the computation time
becomes considerably longer.

7.2 Performance of the linear solution

to the calibration

The second experiment was performed to test the
performance of the linear calibration method of
Section 6.1. The estimated pairwise positions and
orientations from the previous experiment were
used to perform the linear calibration. After cal-
ibrating the synthetic cameras we reconstructed
the 3D points from the noisy image points and re-



projected them onto the camera planes. The mean
euclidean distance between the image points and
their reprojections, together with the improve-
ments achieved by using bundle adjustment are
shown in Table 2. It should be noted that the lin-
ear method produces high errors quite fast. Nev-
ertheless, it gets near the desired minimum of the
nonlinear cost function quite well and the bundle
adjustment can recover the correct calibration up
to the evaluated noise level.

7.3 Performance on real data

The third experiment uses real data extracted
from a video sequence of 480 frames, recorded at
15 fps. Our sphere detection algorithm is applied
to extract the midpoints of the sphere. These mid-
points are then used to perform the full calibra-
tion. For reconstruction we use all cameras that
observed a point. A visualization of the recon-
structed virtual calibration object, i.e. the path
of the marker object and the reconstructed cam-
era setup are shown in Fig. 4. For evaluation we
use the median reprojection error this time. This
is because the data includes outlier which disturb
the mean error computation. The results can be
seen in Table 3. Except for camera 7 which has a
very high error all cameras are calibrated reason-
ably well. As can be seen from experiment two,
bundle adjustment is able to recover the calibra-
tion up to the noise level which is present in the
data. This lets us conclude, that the remaining
error cannot be further improved on by changing
rotation and translation parameters. Instead this
error must be attributed to errors in the inter-
nal calibration and errors due to the fact that we
use the midpoints of the detected ellipses as corre-
spondences which do not generally correspond to
the projected midpoint of the sphere [HS97]. This
introduces some bias which we plan to remove in
the future.

8 Conclusions and Future Work

We have presented a flexible camera calibration
system that can be used even if the cameras have
no common field of view. It requires no especially
manufactured calibration object. The method is
robust against noise and lifts two restrictions im-
posed by earlier methods. These are:

• the scene does not have to be dark

• the cameras can be calibrated as long as their
camera graph is connected

camera number median reprojec-

tion error in pix-

els

1 1.8665
2 2.8460
3 1.6047
4 2.3499
5 1.7885
6 2.7048
7 5.1755
8 2.4068

Table 3: Median reprojection error of the recon-
struction from the linear solution to the calibra-
tion dependent on the noise level and after bundle
adjustment (experiment 3).

For the future we plan to include the computa-
tion of the real projected midpoints of the sphere
instead of using the midpoints of the detected el-
lipses as correspondences. Furthermore, the de-
tection of all cycles in the graph is computation-
ally expensive. Since the search for all cycles is a
breadth first search this search visits longer cycles
later. Therefore, the search can be stopped af-
ter sufficiently many cycles have been found. The
longer cycles are supposedly the less important
ones. Additionally non-uniform Gaussian noise
present in the midpoints can be taken into account
using covariance matrices throughout the estima-
tion. This becomes necessary if the cameras are
not perfectly synchronized. Due to the movement
of the ball, the projected midpoints are not the
projections of the same 3D-point any more. This
fact can be modeled as non-uniform noise with a
higher variance of the data in the direction of the
trajectory than in the direction normal to it.



Figure 4: A top view of the reconstructed virtual calibration object and the resulting camera calibration.
The lines show the path of the marker object, the pyramids depict the reconstructed camera positions.
This is a cross-eye image that can be fused to give a depth impression.

References

[AP95] Ali Azarbayejani and Alex Pentland. Cam-
era self-calibration from one point correspon-
dence. Technical Report 341, MIT Media Lab,
1995.

[CDS00] Xing Chen, James Davis, and Philipp
Slusallek. Wide Area Camera Calibration Using
Virtual Calibration Objects. In Proceedings of

CVPR, volume 2, pages 520–527, 2000.

[FB81] Martin A. Fischler and Robert C. Bolles.
Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Anal-
ysis and Automated Cartography. Communica-

tions of the ACM, 24(6), June 1981.

[FL01] Olivier Faugeras and Quang-Tuan Luong.
The Geometry of Multiple Images. The MIT
Press, 2001.

[Hor90] Berthold K.P. Horn. Recovering base-
line and orientation from essential matrix.
http://www.ai.mit.edu/people/bkph/papers/
essential.pdf, January 1990.

[HS97] J. Heikkila and O. Silven. A four-step camera
calibration procedure with implicit image cor-
rection. In CVPR 97, pages 1106–1112, 1997.

[HZ00] Richard Hartley and Andrew Zisserman.
Multiple View Geometry. Cambridge University
Press, 2000.

[KYD+03] Eun Jung Kim, Ki Hwan Yum, Chita R.
Das, Mazin Yousif, and Jose Duato. Per-
formance Enhancement Techniques for Infini-

Band Architecture. In HPCA-9, pages 253–262,
February 2003.

[NM65] J. A. Nelder and R. Mead. A simplex
method for function minimization. Computer

Journal, 7:308–313, 1965.

[Pol99] Marc Pollefeys. Self-calibration and metric

3D reconstruction from uncalibrated image se-

quences. PhD thesis, 1999.

[TLMS03] Christian Theobalt, Ming Li, Marcus
Magnor, and Hans-Peter Seidel. A flexible
and versatile studio for synchronized multi-view
video recording. Research Report MPI-I-2003-
4-002, Max-Planck-Institut für Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbrücken,
Germany, April 2003.

[TMHF00] Bill Triggs, Philip McLauchlan, Richard
Hartley, and Andrew Fitzgibbon. Bundle ad-
justment – A modern synthesis. In W. Triggs,
A. Zisserman, and R. Szeliski, editors, Vision

Algorithms: Theory and Practice, LNCS, pages
298–375. Springer Verlag, 2000.

[Tsa87] Roger Y. Tsai. A versatile camera calibra-
tion technique for high-accuracy 3d machine vi-
sion metrology using off-the-shelf tv cameras
and lenses. IEEE Journal of Robotics and Au-

tomation, RA-3(4), August 1987.

[Zha96] Zhengyou Zhang. A new multistage ap-
proach to motion and structure estimation:
From essential parameters to euclidean motion
via fundamental matrix. Technical Report RR-
2910, INRIA, June 1996.


