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ABSTRACT

This paper describes a fully interactive modelling system, which we have called ClayWorks, for defining the

implicit geometry of 3D objects using parametric base primitives and deformations. The goal of this system is to

provide a means for describing object data and its creation history by using a series of parametric steps that can

be modified post-creation in a non-linear manner. The advantages of this approach are that unlike other modelling

approaches, it enables compact object descriptions, an intuitive modelling process, a simple approach to multi-

resolution objects, real-time feedback during the modelling process and a render independent object representation.
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1 INTRODUCTION
The modelling and rendering of geometric models is a

fundamental element within a diversity of fields such

as architecture, CAD modelling, simulation and com-

puter games. Research and development of modelling

techniques have been broadly divided into real-time

systems that allow direct interaction with the object

usually using a triangular mesh or NURBs represen-

tation, and off-line systems which allow objects to be

modelled using a descriptive procedural language. In

either case the user will iterate through a process of ad-

justing object parameters, rendering and viewing the

object, and then deciding whether the object satisfies

the demanded requirements. In order to be success-

ful, modelling software should enable the iterative pro-

cess to occur as fast as possible – ideally the modelling

should take place in real-time rather than off-line. In

some cases real-time interaction is made possible by

trading visual quality vs. speed of rendering. This re-

sults in the object being rendered at a lower quality,

and therefore decisions on whether the object param-
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eters need adjustment may be predicated upon a poor

representation of the object.

The work presented herein attempts to bridge the di-

vide between the two approaches by providing the user

with a powerful and descriptive procedural modelling

language that is entirely generated through real-time

interaction with the geometric object via an intuitive

user interface. The main contributions of this work are

that it allows:

• procedural objects to be specified interactively;

• modelling to take place independent of rep-

resentation (meaning the modelling paradigm

has not been chosen for rendering convenience

rather than modelling convenience);

• non-destructive and coherent changes to the ob-

ject specification at any stage during the mod-

elling process in a real-time non-linear manner;

The approach separates rendering and modelling as far

as is feasibly possible. Although triangular meshes

are rendered, this is entirely to enable real-time per-

formance.

The rest of this document is divided up into sections

looking at some related work for modelling objects

procedurally (Section 2), introducing the proposed

method (Section 3) along with the various operations

enabled within the system, and in Section 4 demon-

strates a couple of modelling examples. Section 5

concludes the paper and offers suggestions for future

work.



2 RELATED WORK
The term non-linear modelling is defined here as the

ability to change any parameter of a modelling opera-

tion at any time. If n operations are used to create an

object, the user may edit parameters in step s, where

s ≤ n. There are several well known and widely used

modelling tools, such as 3D Studio Max, Maya, Auto-

CAD, etc. These tools are popular as they allow object

manipulation to take place in real-time, and in an in-

tuitive manner. The main drawback of these tools are

that they do not offer robust non-linear access to the

object specification. Although most store an object

history and allow reliable undos, changing a param-

eter for any previous operation will cause the object to

behave unpredictably.

In addition to these mainstream modelling tools, ob-

ject modelling research has considered procedural

modelling to be a useful alternative. Generative mod-

els, proposed by Snyder [SK92], allow models to

be created by specifying a parametric generator, and

allowing it to be transformed by various operations

to give the final object model using a C like inter-

preted language. A similar method, by Cutler et. al.

[CDM+02] also uses a C like language to specify

solid models. In this case distance fields are gener-

ated (based on a surface mesh) which also allow object

interiors to be specified at varying thicknesses. Vlib

[WC01, WC02], has features of both approaches. It

allows objects to be generated from parametric curves

(similar to Snyder’s approach), surfaces (similar to

Cutler et al.) and volumes. As a volumetric approach,

it allows object interiors to be specified in a controlled

manner. Vlib models itself on the OpenGL language,

and also uses distance fields (amongst other represen-

tations).

L-systems allow a procedural approach to modelling

of various geometric objects which exhibit self simi-

larity or limited instances of patterns that can be repli-

cated according to a grammar. Such an approach

has been used for plants [PL90], shells [FMP92], and

cities [PM01]. These methods are extremely power-

ful for creating complex objects with compact descrip-

tions, but lack fine control over the object itself.

Cellular texture [FLCB95] operates using a procedural

approach but is directed at providing fine surface detail

rather than allowing control over surface shape.

The BlobTree as proposed by Wyvill et. al [WGG99]

encompasses both CSG and implicit surface modelling

in one structure. Objects are modelled using surface

primitives which are constructed using boolean and

blend operators. Complex models (e.g. shells) can be

created with a compact description, but with a great

deal of trial and error, user experience and interac-

tion. The HyperFun project [ACF+99] is also devel-

oped along similar lines.

Procedural modelling techniques tend to be domain

specific (such as using L-systems for cityscapes), or

require intricate knowledge of the functional represen-

tation of the object in order to convert it into an ex-

pressive language. These systems are characterised by

being largely non-interactive (modelling takes place in

the off-line sense), and by not allowing direct user con-

trol over the surface (the user must alter parameters

within the descriptive language rather than interact di-

rectly with the geometric representation of the object).

Quite often modelling will require adjustments to the

scripting file, parsing of the file and rendering by an

external agent.

3 PROPOSED METHOD
The proposed method can be viewed as a system that

provides real-time interactive geometric object editing

in the same sense, and with all the same features, as

well known surface modelling packages such as Maya,

but takes advantage of the fact that the object and scene

are represented internally using a procedural descrip-

tion. The creation-history encodes the procedural de-

scription of the scene with nodes in the history repre-

senting geometry generators, selections, or modifiers

and edges representing data flow including geometry,

images (for textures, displacements etc.) and selec-

tions. Each node has associated with it the param-

eters for the base object or operation represented by

the node, which can be adjusted interactively and non-

linearly. Figures 1 and 2 show the key concepts.

Figure 1: An example creation-history generated

through the interactive manipulation of a geometric

object. Each node stores interaction by the user with

the object. Any node can be accessed non-linearly and

its parameters adjusted. This creation-history repre-

sents the plane model of Figure 8

The next few sections demonstrate how nodes in the

creation-history relate to interaction between the user

and the geometric object.



Figure 2: A sphere has been modified to create an en-

gine turbine for a plane. This demonstrates non-linear

editing by showing that the user has decided to go to

the first node in the history (a sphere geometry gener-

ator) and adjust the resolution of the tessellation of the

sphere. The left geometry has 1000 triangles, and the

right 2000 triangles. The model is stored using less

than 1500 bytes in both cases.

3.1 Geometry Generators

There are nine parameterised geometry generators cur-

rently implemented. These include the sphere, cylin-

der, toroid, super parabolic quadratic ellipsoid, cone,

cube, polygon, circle and grid (Figure 3). Further pla-

tonic solids are implemented, but as the faces are fixed,

these are not parameterised. The geometry generator

nodes contain the parameters necessary to create the

object and once the geometry is generated the node is

recorded in the creation-history. The parameters can

be altered at any stage of the object modelling process,

which results in new vertex, edge and polygon data be-

ing sent through the creation-history. All nodes newer

than the altered node are recomputed on the updated

data flowing through the history. Carrying out this op-

eration in current modelling packages (where allowed)

will usually destroy the model as a later modifer is de-

pendent upon a selection that is itself geometry depen-

dent.

The geometry created by generator nodes can be ma-

nipulated using selections and modifiers as discussed

in the next sections.

3.2 Selection Nodes

The concept of selection described herein, is that the

user is selecting a volume (subset of the model) rather

than specific topology on the model. It is this procedu-

ral aspect of selection that breaks the dependence upon

any low level geometric representation such as poly-

gons or patches, and this representation independent

selection allows robust non-linear editing of previous

Figure 3: This image shows a selection of base prim-

itives. The cube, cylinder and cone show the use of

smooth groups to create sharp edges. Smooth groups

can be automatically assigned based on the angle be-

tween faces.

parameters in creation-history nodes. The selction vol-

ume is stored as mentioned below in a persistent sense,

in that the selection is stored in its parametric form

within a creation-history node, and is accessible non-

linearly.

A selection geometry can be any procedurally defined

shape for which it is possible to do an inside/outside

test – i.e. any closed shape could be a candidate se-

lection geometry. The most commonly used geome-

tries are extrusions of shapes (rectangle, ellipse, lasso,

polyline) drawn in 2D onto the view plane of an edit-

ing window resulting in a fustrum, or truncated cone,

etc. Additional selections supported by ClayWorks are

the basic shapes that appear as geometry generators

(Section 3.1), and a convex hull of points. Figure 4(a)

shows a rectangular selection in the perspective win-

dow generating the shaded fustrum visible in the top,

left and front view windows. The parametric form of

the selection volume is stored in the selection node,

rather than the actual polygons selected (as most mod-

elling packages would store).

When making a selection the user may choose whether

this is a NEW selection; i.e. any previous selections

are ignored, or to OR, AND or XOR the new selection

with a previous selection, or to SUBTRACT the new se-

lection from a previous selection. Multiple selections

can be made on the object using these operations, all

of which are stored within the selection node (Figure

4(b)). This ability to add new selections to existing

selections using these operations allows users to mod-

ify the selected part of an object (e.g. extrude), and

then to use the same selection for another modifica-

tion, or perhaps select the remaining part of the object

(using XOR) to carry out a different modifier. Several

modifiers export a selection that will be useful to the



user. For instance the extrude modifier will alter the

selection so that the selection volume now includes the

whole of the extruded part of the object.

Figure 4: (a) The selection fustrum generated by a

rectangular selection in the perspective window. (b) A

selection made up from 3 ORs and one SUBTRACT.

Although this representation independent selction has

many benefits, in practical applications, it is often use-

ful to select an area on a per element (edge, polygon

or vertex) basis. Per-element selections are allowed

but in keeping with the representation independent se-

lection ideal, they are not stored as per-element refer-

ences. Rather, a convex hull (or series of convex hulls

depending on the connectivity of selected areas) are

stored that represent the selected area at the resolution

it was first defined in. If the resolution of the under-

lying mesh is altered, the selection will still define the

area that the user originally intended.

3.3 Modifiers

Modifiers are nodes that receive object data and alter

it in some way. All of the modifiers implemented in

the system make use of the selection channel which is

used to determine which areas of the object will be af-

fected by the modification. Different nodes will affect

different combinations of mesh data channels; some

will only alter the vertex colours, texture coordinates

or smooth groups, whilst others will alter the polygon

list of an object in some way, for example rebuild-

ing the whole object based on some procedural func-

tion. The term modifier is a term for nodes that have

in common the fact that they alter one or more of the

data channels within a mesh object and export these

changes to connected nodes in the creation-history. In

keeping with the procedural design philosophy of the

system, modifiers are able to reconstruct their output

data based on internal parameters no matter what the

input data and these internal parameters may be ad-

justed non-linearly. Modifiers are stored as nodes in

the creation-history. To allow real-time interaction the

object data is rendered as polygonal meshes, and mod-

ifiers execute on this mesh data by one of three cate-

gories. The first, and simplest, category involves mod-

ifiers that alter the values of per-vertex level elements

such as position, texture coordinates, colours, weights

or other coefficients. These modifiers do not require

any new elements to be added, or any re-indexing

of edges or polygons. The second category includes

modifiers such as extrude, triangulate and subdivide.

These modifiers do not remove any per-vertex level el-

ements but they do can add to the vertex level lists.

No re-indexing of edges or polygons which are unaf-

fected by the selection is required. Selected edges that

are affected by the selection need to be recreated using

newly created vertex level information as well as ref-

erences to the old vertices. The third category includes

modifiers such as delete and merge. These modifiers

are destructive in that they remove vertex level infor-

mation and require the polygon list to be re-indexed.

The current modifiers implemented in this system are

stretch, rotate, extrude, per-polygon extrude, smooth

groups, subdivide, triangulate, detatch, delete, align

vertices, material application, vertex merge, flip nor-

mals, plug holes, mesh expand, texture modifiers

(noise functions, UV mapping for textures etc.). Some

are depicted in Figure 5.

4 SAMPLE RESULTS AND

COMMENTS
In order to demonstrate the flexibility of this interac-

tive procedurally based approach to modelling, an ex-

ample creation of three models will be studied. The

first will examine the use of ClayWorks to create an



Figure 5: Some modifiers in action. From

top: extrude, per-polygon extrude (twice), ta-

per=extrude+stretch, detatch, polygon expand (dis-

tance field like modifier), twist=extrude+rotate.

aircraft, and will introduce the modelling process, dis-

cuss the creation-history, indicate how this may be

useful for creating multi-resolution objects and in-

clude metrics on the mesh size. The second will

demonstrate how effective use of the parameterisation

could lead to useful object animation. The final shows

a complex object being modelled, and gives another

example of object parameterisiation to give different

levels of detail.

The steps to create the aircraft are shown in Fig-

ure 6. A sphere is used as the base shape for the

plane. A selection of half the sphere is deformed into a

rounded conical shape, and the other half is extruded to

make the fuselage. A deformation creates the smaller

rounded nose. Part of the fuselage is selected ready

to extrude the wings (both are made at the same time

using a mirror operation), but the vertices are aligned

first (to create a flat edge for the wing tips). After the

extrude a deformation sweeps the wings back, creates

the taper effect and raises them off the horizontal plane

(this is controlled by adjusting the vertices of a bound-

ing box during the deform operation and is stored as

just one deform node in the creation-history). The

same steps are taken for the rear tail wings. Finally

a per-polygon extrude is made to create the cockpit

windows.

Figure 6: The stages required to model a plane. The

creation-history produced from this process is pictured

in Figure 1.

Altogether it takes about 2 minutes to create this model

using ClayWorks, and at all times the modelling takes

place in real-time on a modest PC – i.e. at least 50

frames per second on a 1.4GHz with GeForce 3 (when

designed by interacting with a few thousand poly-

gons). In order to achieve this real-time performance

special attention was paid to the tesselation algorithm

by keeping track of which parts of the object repre-

sentation need remeshing with information from the

creation-history. Z-buffer information is used to deter-

mine which parts of the scene need to be re-rendered.

This also demonstrates the advantage that models can

be built at lower resolution to enable real-time mod-

elling, and then can be generated at the desired res-

olution. It is a future goal of this system to include

adaptive tessellation.

Figure 7: ClayWorks in action. Notice the lower right

window allows access to the parameters of individual

nodes.

Figure 1 shows the creation-history generated by this



Figure 8: Multiresolution models can be achieved sim-

ply by adjusting parameters in the creation-history.

From the top down, each plane has 886, 1946 and 5074

vertices; 3576, 7816 and 20328 edges; 906, 1964 and

5092 planes. The model requires 1160 bytes of stor-

age.

modelling process with the extrudes renamed in or-

der to allow the reader to correlate the models and

creation-history. The creation-history representation

completely models the object in the sense that the ren-

dered model is generated as a visual and interactive

representation and is not required for storage. The

generator, each selection node and each modifer node

are completely parameterised thus allowing the user

to go back at any time and alter any of the values.

The creation-history offers an extremely compact rep-

resentation. In the case of the aircraft, only 1160 bytes

are required to store the object. At the moment no ef-

fort has been made to reduce the storage size, but sev-

eral improvements can be made to reduce the amount

of information stored at each node which will greatly

reduce the overall file size.

This storage size is independent of the mesh resolu-

tion as demonstrated in Figure 8, where the tessela-

tion parameters in the various extrude nodes have been

adjusted to increase the resolution of the mesh (an

adaptive tesselation function could work well with this

system). The plane can be stored at any of the cho-

sen resolutions at no extra cost. This leads to a sim-

ple approach to multiresolution object representation

[Hop96] where rather than a post-creation analysis to

create a multiresolution mesh, a controller node could

be introduced and related to the tesselation parameters

in each of the extrude nodes. Adjusting that one pa-

rameter could vary the resolution, and therefore model

quality, and thus give a coherent way to control level

of detail. The compact representation would also be of

use for transferring objects over the internet where the

client could decide upon which resolution level to use

based upon the graphics hardware available.

The second example (Figure 9) demonstrates how a

control node could feed values into a various modi-

fiers in order to create a simple approach to complex

object animation. The object used in this example is

chosen to have an organic feel, and perhaps could be

something that is to be animated as it flows within a

sea current. Firstly this object has been created from

the gear wheel shown in the upper right of Figure 5.

The per-polygon extrude length parameter has been

altered to create longer arms. These extrusions have

then been rotated about the centre of the object within

the plane of the wheel. This is a simple operation as

the extrusions are already selected, so it just involves

selecting the rotate modifier and indicating the point

and angle of rotation. Finally the extruded arms are

rotated about a second axis. It is this rotation that has

been parameterised for Figure 9, although in a final

implementation the control node could feed into sev-

eral different modifier nodes creating quite complex

object animation. One advantage of this approach is

that, once again, the storage size for this object is less

than 1000 bytes, which gives access to all of the dif-



ferent variations seen in Figure 9. Traditional non-

parameterised modelling would require many different

models, at perhaps 1000 polygons each, to be stored.

Figure 9: The rotation parameter has been controlled

parametrically to give the various models in this se-

quence.

Most modellers will work with a photograph of a

model they are trying to achieve, and so any mod-

elling application should enable the designer to create

a plausible replica of the original. The final example

demonstrates that ClayWorks, unlike previous proce-

dural modelling languages is domain independent and

enables this working practise. Figure 10 shows a pho-

tograph of the target model, whilst Figure 7 shows

ClayWorks in action. The final model is rendered in

Figure 11 with two different resolutions. The blade

rotation is parameterised, and so animation of the he-

licopter in motion could be achieved easily. The final

image (Figure 12) incorporates some other features of

ClayWorks such as bump mapping, texture mapping

and Perlin noise, and the file size for this whole pro-

cedural scene is 4300 bytes. An animated fly-past se-

quence would take no more than 5Kbytes once the an-

imate node has been implemented.

Figure 10: The target model.

5 CONCLUSIONS AND

FUTURE WORK
This paper has presented a geometric modelling sys-

tem that allows objects to be defined using a pro-

cedural approach. Unlike procedural modelling lan-

guages, the user may interact directly and in real-time

with the object, thus providing an intuitive and famil-

iar way for modelling objects. Unlike previous mod-

elling software, the models are stored procedurally and

are accessible in a non-linear manner. The system

records user interaction with the object in the form of

a creation-history in which the nodes are broadly di-

vided into geometry generators for the base geometry,

selections for selecting parts of an object, and modi-

fiers which enable the various geometry and property

altering operations to be carried out.

In addition to compact models, tests demonstrated the

applicability of the method for procedural animation

and level of detail models.

Future work will concentrate on including appropriate

control nodes to enable procedural animation to be de-

scribed within the creation-history and adaptive tessel-

lation. It is anticipated that this system is of direct rel-

evance to the areas of computer games and web graph-

ics as the advantages of low storage overhead, proce-

dural animation and automatic level of detail models

are particularly attractive to these applications.

Other areas open for research are to use the mesh

expand function to define objects with interior struc-

ture, to study rendering techniques to determine if



Figure 11: The final model rendered using 3,500 and

34,000 polygons.

costly rendering techniques, such as ray-tracing, can

be performed faster using the knowledge that many

objects are created from parametric transformations of

a known base shape – e.g. a sphere, and to determine

if collision detection may be carried out faster using

the base objects in the creation-history rather than the

object.

In summary, we believe that ClayWorks is a signifi-

cant step in the merging of off-line procedural mod-

elling techniques with real-time interactive geometric

modelling, offering the fundamental benefits of both

approaches.
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