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ABSTRACT

This paper introduces a new 3D skeleton-based gait recognition method for motion captured by a low-cost con-
sumer level camera, namely the Kinect. We propose a new representation of human gait signature based on the
spatio-temporal changes in relative angles among different skeletal joints with respect to a reference point. A se-
quence of joint relative angles (JRA) between two skeletal joints, computed over a complete gait cycle, comprises
an intuitive representation of the relative motion patterns of the involved joints. JRA sequences originated from
different joint pairs are then evaluated to find the most relevant JRAs for gait description. We also introduce a
new dynamic time warping (DTW)-based kernel that takes the collection of the most relevant JRA sequences from
the train and test samples and computes a dissimilarity measure. The use of DTW in the proposed kernel makes
it robust in respect to variable walking speed and thus eliminates the need of resampling to obtain equal-length
feature vectors. The performance of the proposed method was evaluated using a Kinect skeletal gait database.
Experimental results show that the proposed method can more effectively represent and recognize human gait, as
compared against some other Kinect-based gait recognition methods.
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1 INTRODUCTION

Over the past ten years, biometric recognition and au-
thentication has attracted a significant attention due to
its potential applicability in social security, surveillance
systems, forensics, law enforcement, and access con-
trol [1, 2]. A biometric system can be defined as a
pattern-recognition system that can recognize individ-
uals based on the characteristics of their physiology or
behavior [3, 4]. Gait is one of the very few biometrics
that can be recognized at a distance without any direct
participation or cooperation of the user. Gait recogni-
tion involves identifying a person by analyzing his/her
walking pattern. Since human locomotion is a com-
plex and dynamic process that comprises movements of
different body limbs and their interactions with the en-
vironment [5], disguising one’s gait or imitating some
other person’s gait is quite difficult. As a result, gait
recognition is particularly useful in crime scenes where
other biometric traits (such as face or fingerprint) might

be obscured intentionally [6]. The non-invasive nature
and the ability to recognize individuals at a distance
makes gait an attractive biometric modality in security
and surveillance systems [7, 8]. In addition, gait analy-
sis has many applications in virtual and augmented re-
ality, 3D human body modeling and animation [9, 10],
motion and video retrieval [11], health care [12]), etc.

In this paper, we present a new Kinect-based gait recog-
nition method that exploits the relative motion patterns
of different skeletal joints to represent the gait features.
The proposed method encodes the relative motion be-
tween two joints by computing the joint relative angles
(JRA) over a complete gait cycle. Here, JRA is defined
as the angles formed by the corresponding two joints
with respect to a reference point in a 3D space. Rele-
vance of a particular joint pair in gait feature represen-
tation is then evaluated based on an intuitive statistical
analysis that reflects the level of engagement of a par-
ticular joint pair in human walking. Finally, we intro-
duce a new dynamic time warping (DTW)-based ker-

nel, which is used to compute the dissimilarity between
the collection of JRA sequences obtained from two gait
samples. The performance of the proposed method is
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evaluated using a 20-person skeletal gait database cap-
tured using the Kinect v2 sensor. The experimental
analysis shows that the proposed method can represent
and recognize human gait in a more effective manner,
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as compared against some existing Kinect-based gait
recognition methods.

2 RELATED WORK

Different gait recognition methods found in literature
can be divided into two categories: i) model-based ap-
proaches and ii) model-free approaches [13]. In model-
based approaches, explicit models are used to represent
human body parts (legs, arms, etc.) [14]. Parameters
of these models are estimated in each frame and the
change of the parametric values over time is used to rep-
resent gait signature. However, the computational cost
involved with model construction, model fitting, and
estimating parameter values makes most of the model-
based approaches time-consuming and computationally
expensive [14]. As a result, they are unsuitable for a
wide range of real-world applications. One of the early
parametric gait recognition methods was proposed by
BenAbdelkader et al. [15], where they estimated two
spatiotemporal parameters of gait, namely stride length
and cadence as two distinctive biometric traits. Later,
Urtasun and Fua [16] proposed a gait analysis method
that relies on fitting 3-D temporal motion models to
synchronized video sequences. Recovered motion pa-
rameters from the models are then used to character-
ize individual gait signature. A similar approach pro-
posed by Yam et al. [17] models human leg structure
and motion in order to discriminate between gait signa-
tures obtained from walking and running. Although this
method presents an effective way to view and scale in-
dependent gait representation, it is computationally ex-
pensive and sensitive to the quality of the gait sequences
[18].

Instead of modeling individual body parts, the model-
free approaches utilize the silhouette as a whole in or-
der to construct a compact representation of walking
motion [14]. Gait energy image (GEI) [19] and mo-
tion energy image (MEI) [20] are two of the most well-
known model-free gait recognition methods. The ba-
sis of the MEI representation is a temporal vector im-
age. Here, each vector point holds a value, which is
a function of the motion properties at the correspond-
ing sequence image [20]. On the other hand, GEI ac-
cumulates all the silhouette motion sequences in a sin-
gle image, which preserves the temporal information as
well [19]. Many of the recent model-free gait recog-
nition methods extend GEI to a more robust represen-
tation. For example, Chen et al. [21] proposed frame
difference energy image (FDEI), which utilizes denois-
ing and clustering in order to suppress the influence
of silhouette incompleteness. Li and Chen [22] fused
foot energy image (FEI) and head energy image (HEI)
in order to construct a more informative energy im-
age representation. Although model-free approaches
are computationally inexpensive, they are sensitive to
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view and scale changes and therefore, not suitable in
uncontrolled environments.

While biometric gait recognition has been studied for
the past twenty years, the recent popularization and low
cost of Kinect has contributed to the spike in the in-
terest in gait recognition using Kinect data. Kinect is
a low-cost consumer-level device made up of an ar-
ray of sensors, which includes i) a color camera, ii) a
depth sensor, and iii) a multi-array microphone setup.
Figure 1 shows different data streams that can be ob-
tained from the Kinect. In addition, Kinect sensor can
track and construct a 3D virtual skeleton from human
body in real-time [23] (as shown in Figure 2), which
renders the time consuming video processing steps un-
necessary. All these functionalities of Kinect have led
to its application in different real-world problems, such
as home monitoring [24], health care [25], surveil-
lance [26], etc. The low computation real-time skeleton
tracking feature has encouraged some recent gait recog-
nition methods that extract features from the tracked
skeleton model. One of the pioneer studies conducted
by Ball et al. [7] used Kinect for unsupervised clus-
tering of gait samples. Features were extracted only
from the lower body part. Preis et al. [27] presented
a Kinect skeleton-based gait recognition method based
on 13 biometric features: height, the length of legs,
torso, both lower legs, both thighs, both upper arms,
both forearms, step-length, and speed. However, these
features are mostly static and represent individual body
structure, while gait is considered to be a behavioral
biometric, which is more related to the movement pat-
terns of body parts during locomotion. Gabel et al. [28]
used the difference in position of these skeleton points
between consecutive frames as their feature. However,
the proposed method was only evaluated for gait param-
eter extraction rather than person identification.

In this paper, we investigate Kinect-based gait recog-
nition by the means of a new feature, namely the joint
relative angle (JRA). The motivation is to capture the
relative motion patterns of different joint pairs by ex-
amining how the corresponding relative angle between
them varies over time. We also introduce an extension
of the dynamic time warping (DTW) method, namely
the DTW-based kernel that evaluates a collection of
JRA sequences for the recognition task.

3 PROPOSED METHOD

The proposed new gait recognition method utilizes the
3D skeleton data obtained from the Kinect v2 sensor.
Robustness to view and pose changes are the main ad-
vantages offered by the proposed method. Released in
mid-July 2014, Kinect v2 offers a greater overall pre-
cision, responsiveness, and intuitive capabilities than
the previous version [29]. The v2 sensor has a higher
depth fidelity that enables it to see smaller objects more
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Figure 1: Different data streams obtained from the Kinect v2 sensor.

clearly, which results in a more accurate 3D object con-
struction [29]. It can track a total of six people and 25
skeletal joints per person simultaneously [29]. In ad-
dition, while the skeleton tracking range is broader, the
tracked joints are more accurate and stable than the pre-
vious version of the Kinect [29].

There are several steps involved in the proposed gait
recognition method. The first step is to detect a com-
plete gait cycle from the video sequence captured using
the Kinect sensor. Since gait is a cyclic motion, detec-
tion of a complete gait cycle facilitates consistent fea-
ture extraction. Next, joint relative angle (JRA) features
for different joint-pairs are computed over the complete
gait cycle. One of the main advantages of using angle-
based feature representation is that it is scale and view
invariant. As a result, recognition is not constrained by
a fixed distance from the camera or individuals walking
only towards a specific direction in front of the cam-
era. In order to assess the relevance of a particular
JRA feature in gait representation, we employ a statis-
tical analysis that evaluates the corresponding joint pair
based on their involvement in gait movement. Only the
most relevant joint pairs are considered in the proposed
JRA-based gait feature representation. Once the feature
representation is obtained, the proposed dynamic time
warping (DTW)-based kernel is used for the classifi-
cation task. The proposed kernel takes a collection of
the most relevant JRA sequences from both the training
and test samples as parameters and computes a dissim-
ilarity measure between them. One particular advan-
tage of the proposed kernel is that, it can match vari-
able length JRA sequences originated due to variable
walking speed in different videos of the same person,
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1. Head 6. ElbowLeft 11. ThumbRight
2. Neck 7. ElbowRight 12. HandLeft

3. SpineShoulder 8. WristLeft 13. HandRight

4. ShoulderLeft 9. WristRight 14. HandTipLeft
5. ShoulderRight | 10. ThumbLeft 15. HandTipRight

16. SpineMid 21. KneeRight
17. SpineBase 22. AnkleLeft
18. HipLeft 23. AnkleRight
19. HipRight 24. FootLeft
20. KneelLeft 25. FootRight

Figure 2: 3D skeleton joints tracked by the Kinect v2
sensor.
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thus eliminating any need of pre-processing steps, such
as resampling. Figure 3 shows the overview of the pro-
posed gait recognition method.

3.1 Gait cycle detection

The first task of any gait recognition method is to iso-
late a complete gait cycle so that salient features can be
extracted from it. Regular human walking is considered
to be a cyclic motion, which repeats in a relatively sta-
ble frequency [14]. Therefore, features extracted from
a single gait cycle can represent the complete gait sig-
nature. A gait cycle is composed of a complete cycle
from rest (standing) position-to-right foot forward-to-
rest-to-left foot forward-to rest or vice versa (left food
forward followed by a right foot forward) [30]. In order
to identify gait cycles, the horizontal distance between
the AnkleLeft and AnkleRight joints was tracked over
time, as shown in Figure 4. A moving average filter was
used to smooth the distance vector. During the walking
motion, the distance between the two ankle joints will
be the maximum when the right and the left leg are far-
thest apart and will be the minimum when the legs are
in the rest (standing) position. Therefore, by detect-
ing three subsequent minima, it is possible to find the
three subsequent occurrences of the two legs in the rest
position, which corresponds to the beginning, middle,
and ending points of a complete gait cycle, respectively
[31].

3.2 Gait feature representation using
joint relative angle (JRA)

The skeleton constructed by the Kinect v2 sensor com-
prises a hierarchy of 25 skeletal joints, where a con-
nection between two joints forms a limb. Therefore,
the raw data provided by the Kinect for gait is time se-
ries of 3D positions of these joints. However, this data
lacks properties like invariance against view and scale
changes, which makes direct use of this data as features
infeasible. We present a new gait feature representation
that processes this raw data and extracts the joint rel-
ative angles (JRA) formed by different pairs of joints
with respect to a reference point. JRA between two
joints p; and p, can be defined as the angle formed by
p1 and p, with respect to a reference point r. Given the
coordinates of 3 points p;, p2, and r in a 3-D space,
the angle ®,, ,, formed by p; — r — p> using the right
hand rule from r can be calculated as:

ik "
[llizz1]

Here, pif = r — p1, 7p5 = p» — r, the dot(.) represents
dot product between two vectors, and ||pi#|| and ||7p3||
represent the length of pi# and 7p3, respectively. The
SPINE_BASE joint was selected as the reference point,
since it remains almost stationary during walking.

0p, p, = cos
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JRAs computed over time provide an intuitive represen-
tation of the relative movements of the joints involved.
The advantages of using joint relative angle features are
two-fold: firstly, the computed JRA features are view
and scale independent. This means that, the feature
values will not be affected by the variation of the dis-
tance of the subject from the camera or the direction
of the subject’s walking. Secondly, according to [7],
joint distance-based features proposed in recent works
[27], [28] are found to vary over time significantly. As
aresult, consistent feature extraction is difficult in some
cases. On the other hand, although the distances of the
joints vary over time, angles formed by the joints re-
main unaffected.

In this study, we consider JRAs originated from a par-
ticular joint-pair as a small fragment of a person’s gait
signature, where the full gait signature is defined as a
collection of JRA sequences originated from different
joint-pair combinations over a complete gait cycle. For
the 25 skeletal joints, there is a total of 300 possible
joint-pair combinations, which is a high-dimensional
feature space. In addition, not all joint-pair is relevant
in gait feature representation. For example, JRAs be-
tween the SpineShoulder and the SpineMid joints does
not represent any information related to human gait,
since both these joints remain almost stationary when a
person walks. Therefore, identifying the skeletal joint-
pairs that are relevant to human gait motion is impera-
tive for the proposed gait recognition method.

3.3 Selection of the most relevant JRA
sequences

Since not all skeletal joints engage during human lo-
comotion, not all JRA features are relevant in gait rep-
resentation. Relevance of a JRA sequence originated
from a particular joint pair can be evaluated intuitively
by analyzing human walking. In this paper, we present
a statistics-based relevant joint pair selection approach,
that utilizes histogram of JRA features to evaluate the
level of engagement of the corresponding joint pair.

For joint pairs that has high relative motion during gait,
the joint relative angles computed over the full gait cy-
cle should have high temporal changes. On the other
hand, joint pairs that remains stationary or moves lit-
tle during gait should have little variation of JRA over
the full gait cycle. This can also be represented us-
ing histogram of JRA values. For a particular joint
pair that has high relative motion during gait, the his-
togram should have a wide distribution. On the other
hand, for joint pairs that has little relative movement,
the JRA values will occupy only a few number of
bins in the histogram. Figure 5 shows histogram of
JRA values computed for different joint pair combi-
nations for 4 different participants. It can be observed
that, for some joint pairs ({ SpineShoulder, SpineMid},
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Figure 3: Overview of the proposed gait recognition method.
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Figure 4: Detection of a complete gait cycle by tracking the distance between the left and right ankle joints.

{ShoulderLeft, ShoulderRight}, {HipLeft, HipRight}),
the temporal change of JRA values over the complete
gait cycle is really small and therefore, the distribu-
tion of JRA values in the histogram is really narrow
(occupying only 2 or 3 bins). On the other hand, for
joint pairs like {AnkleLeft, AnkleRight}, {Shoulder-
Left, AnkleLeft}, and {ShoulderRight, AnkleRight},
the JRA values occupy a large number of bins in the
histogram. Based on this observation, we argue that,
the number of bins occupied in a JRA histogram of a
particular joint pair is an important measure to quantify
the level of engagement of the corresponding joint pair
in human gait. This, in turn, quantizes the relevance of
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the corresponding joint pair in the gait movement. In
this paper, we use the number of occupied bins in the
JRA histogram of a particular joint pair to represent the
relevance of that joint pair in gait feature representa-
tion. A high number of occupied bins represents a high
relevance, while a small number represents a low rele-
vance.

3.4 DTW-kernel for gait recognition

Joint relative angles (JRA) for different joint-pairs com-
puted over a full gait cycle essentially represent se-
quences of time-series data. Alignment of such tem-
poral gait data is a challenging task due to variation of
walking speed, which might result in variable length
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Figure 5: Histogram of JRA values for different joint pairs and persons. It can be observed that, some joint pairs
have a wide distribution of JRA values in the histogram, while some other joint pair JRA values occupy only a

small portion of the histogram bins.

JRA sequences for the same person. Therefore, ap-
plying traditional classifiers in this scenario requires
extra pre-processing steps, such as resampling to ob-
tain equal-length feature vectors. However, resampling
of time-sequence data involves deletion or adding new
data, which might affect the recognition performance.
On the other hand, non-linear time sequence alignment
techniques can effectively reduce the effect of variable
walking speed by warping the time axis. Dynamic time
warping (DTW) is a well-known non-linear sequence
alignment technique. Originally proposed for speech
signal alignment [32], recent DTW applications are
mostly verification-oriented, such as offline signature
verification [33]. In this paper, we propose to utilize
DTW to design a kernel for gait recognition that takes
a collection of JRA time series data originated from
different joint pairs as the parameter and outputs the
dissimilarity measure between two given gait samples.
Use of DTW allows the alignment of different length
JRA sequences, which enables to match gait samples
without any intermediate resampling stage.

Given the set of all joint relative angles JRA =
{61,6,,...,6,}, where each 6; represents JRAs for two
particular joints with respect to the reference point
computed over a full gait cycle, we first obtain a subset
of the most relevant JRA sequences:

0=1{6]i=1,2,...M where 6, JRA} (2)

Let, 6:4in and 6.5 are two JRA sequences from the
same joint-pair computed over a complete gait cycle,
where the length of 6,4, and 6.5 are represented as
|6;14in| and |By5 |, respectively.
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Here, a; and b, are the JRA values of 0,4, and 6.y
at time ¢, respectively. Given these two time series,
DTW constructs a warp path W = wy,wp,w3,...,wr,
where max(' etrainlz |9test |) <L< |9train‘ + |9test | Here,
L is the length of the warp path between the two JRA
sequences. Each element of the path can be repre-
sented as w; = (x,y), where x and y are two indices
from the 6,4, and 6., respectively. There are a num-
ber of constraints that DTW must satisfy. Firstly, the
warp path must start at w; = (1,1) and end at w, =
(16r4in|,|Brest|)- This in turn ensures that, every index
from the both time series is used in path construction.
Secondly, if an index i from 6;,,;, is matched with an in-
dex j from 0Oy, it is prohibited to match any index > i
with any index < j and vice-versa. This restricts the
path from going back in time. Given these restrictions,
the optimal warp path can be defined as the minimum
distance warp path dist,psimar (W ):

L
distoprimar(W) = min ) _{dist(w;;,w;;)} (5)
=1
Here, w;; and wy; are two indices from 6,4, and 6y,
respectively and dist(w;;, w; ;) is the Euclidean distance
between wy; and wy;.

We extend this basic DTW formulation to a kernel in
order to compute the dissimilarity between a training
and a testing gait sample, each of which is a collec-
tion of JRA sequences of different joint-pairs. The pro-
posed DTW-kernel aligns the training and testing JRA
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Figure 6: Proposed classification scheme based on the
DTW-Kernel and the collection of the most relevant
JRA sequences.

sequences of the same joint-pair with each other and
computes a match score between them. Summation of
all the match scores obtained from the different joint-
pair JRA sequences from the training and testing sam-
ples is treated as the final dissimilarity measure. For-
mally, the proposed DTW kernel A for JRA-based gait
representation can be defined as:

M L
A6,8") =Y {min Y {dist(Wpii,wmsj)}}  (6)
=1

m=1

Here, 6 = {61,6,,...6y} and 0’ = {6],65,...,6;,}
are collections of JRA sequences from M different
joint-pairs and minZlel{dist(me,-,me )} represents
the minimum warp path distance between the m-th
joint pair JRAs of 6 and 6’.

For the classification task, we first apply the DTW-
kernel to compute the dissimilarity score and rank the
candidates accordingly. We use this ranklist for a ma-
jority voting scheme where the top N+ 1 (N is the num-
ber of classes) candidates are considered. Figure 6 il-
lustrates the proposed method.

4 EXPERIMENTS AND RESULTS

4.1 Experimental setup and dataset de-
scription

The performance of the proposed method is evaluated

using a Kinect skeletal gait database, provided by

the SMART Technologies, Calgary, Canada. The
gait database comprises 20 participants (14 male, 6
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female), from around 20 to 35 years old. For each
person, a series of 3 videos was recorded in a meeting
room environment. The position of the Kinect was
fixed throughout the recording session. Each of
the video scenes contains a participant entering the
meeting room, walking toward a chair, and then sitting
on the chair. Figure 7 shows a frame of a sample
video from the gait database. We conducted a 3-fold
cross-validation in order to evaluate the effectiveness of
the proposed method. In a 3-fold cross-validation, the
whole dataset is randomly divided into 3 subsets, where
each subset contains an equal number of samples from
each category. The classifier is trained on 2 subsets,
while the remaining one is used for testing. The
average classification rate is calculated after repeating
the above process for 3 times. Since the database
comprises 3 videos per person, in each fold, two videos
were used for the training and the remaining one was
used for testing.

4.2 Results and Discussions

The first step in our experimental analysis is to detect
the most relevant joint pairs in order to represent the
gait. For this purpose, we use the methodology pro-
posed in section 3.3. For the 25 skeletal joints tracked
by the Kinect v2 sensor, we construct a 25 X 25 matrix
for each video sequence, where each cell corresponds
to the number of bins occupied in the histogram of JRA
values for a particular joint pair. Since our database
comprises 20 participants and 3 videos per participant,
we obtain a total of 60 matrices. For further analysis,
we compute the average matrix from the 60 matrices.
A heat map of the obtained 25 x 25 average matrix is
shown in Figure 8. The heat map is symmetric on the
both side of the diagonal, since the JRA values beween
joints {J1, J2} and {J2,J1} are same. This map pro-
vides a comprehensive representation of the relevance
of a particular joint pair in gait representation, where
high value corresponds to high relevance and low value
corresponds to a low relevance.

Based on this representation of joint pair relevance, we
select subsets of JRA sequences for different thresholds
and evaluate the recognition performance. For a thresh-
old value of ¢, only the joint pair combinations with at
least ¢ bins occupied in the JRA histogram were se-
lected for feature representation. Figure 9 shows the
recognition performance of the proposed method for
different subsets of JRA sequences selected for differ-
ent threshold values. It can be observed that, increasing
the number of bins excludes some of the less relevant
joint pairs in the classification task, thus increasing the
recognition performance. The highest recognition rate
of 93.3% is obtained for JRA sequences that occupy
more than or equal to 20 bins in the corresponding JRA
histogram. Increasing the number of selected bins fur-
ther results in a sharp decrease in the recognition perfor-
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Figure 7: Sample video frame from the gait database captured using Kinect v2 sensor.
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1. Head 6. ShoulderRight
2. Neck 7. ShoulderLeft
3. SpineShoulder 8. HipRight

4. SpineMid 9. HipLeft

5. SpineBase 10. ElbowRight

1. WristRight
12. HandRight
13. HandTipRight
14. ThumbRight
15. ElbowLeft

16. WristLeft
17. HandLeft
18. HandTipLeft
19. ThumbLeft
20. KneeRight

21. AnkleRight
22. FootRight
23. KneelLeft
24. AnkleLeft
25. FootLeft

Figure 8: Heat map of the 25 x 25 average matrix ob-
tained for the average number of bins occupied for dif-
ferent JRA histograms for all participants. Here, each
point (i, j) represents the average number of occupied
bins in the JRA histogram obtained for joint pair {7, j}.

mance. For the number of occupied bins > 20, Figure
10 shows a heat map representation of the selected joint
pairs. Here, the dark points correspond to the excluded
joints, while points with high heat corresponds to a rel-
evant joint pair. This map is also symmetric. Therefore,
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Figure 9: Performance of the most relevant JRA-based
gait recognition for different number of occupied bins.
The correct matching rate is obtained from 3-fold cross-
validation.

only considering upper left triangle or lower right trian-
gle formed by the diagonal (line from (1, 1) to (25, 25))
should be considered.

Finally, we compare the performance of the proposed
method against some recent Kinect skeleton-based gait
recognition methods. We have selected two studies and
tested their performance on our gait database. Details
of the selected two methods can be found in [7] and
[27]. Table 1 shows the recognition performance of
these methods. From the experimental results, it can
be said that, gait recognition based on the collection
of JRA sequences and DTW-kernel is more robust and
achieves higher recognition performance than some of
the existing gait recognition methods. The superiority
of the proposed method is due to the utilization of view
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Figure 10: Heat map for the most relevant joint pair
combinations found in our experiments. The dark re-
gion corresponds to the all joint pair combinations that
are excluded from the final feature representation.

and pose invariant relative angle features coupled with
arelevance evaluation and non-linear alignment of vari-
able length feature sequences using the DTW-kernel.

Method Recognition Rate
(%)

Collection of the most | 93.3

relevant JRA sequence +

DTW-Kernel

Ball et al. [7] 66.7

Preis et al. [27] 84.2

Table 1: Recognition rates of different methods for 3-
fold cross-validation.

5 CONCLUSION

This paper presented a new Kinect-based gait recogni-
tion method that utilizes the 3D skeleton data in order
to compute a robust representation of gait. We intro-
duced a new feature, namely the joint relative angle that
encodes the relative motion patterns of different skele-
tal joint pairs by computing the relative angles between
them with respect to a reference point. To evaluate the
relevance of a particular JRA sequence in gait feature
representation, we constructed histograms of JRA fea-
tures that can effectively be used to quantize the level of
engagement of different joint pairs in human walking.
Finally, we propose a dynamic time warping (DTW)-
based kernel that takes the collection of the most rele-
vant JRA sequences from both the train and test sam-
ples as parameters and computes a dissimilarity mea-
sure. Here, the use of DTW makes the proposed kernel
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robust against variable walking speed and thus elimi-
nates any need of extra pre-processing. Experiments
using a Kinect skeletal gait database showed excel-
lent recognition performance for the proposed method,
compared against some recent Kinect-based gait recog-
nition methods. In the future, we plan to extend the
proposed method for action recognition and motion re-
trieval.
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