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ABSTRACT
Creating High Dynamic Range (HDR) images of static scenes by combining several Low Dynamic Range (LDR)
images is a common procedure nowadays. However, 3D HDR video acquisition hardware barely exist. Limitations
in acquisition, processing, and display make it an active, unsolved research topic. This work analyzes the latest
advances in 3D HDR imaging and proposes a method to build multiscopic HDR images from LDR multi-exposure
images. Our method is based on a patch match algorithm which has been adapted and improved to take advantage
of epipolar geometry constraints of stereo images. Up to our knowledge, it is the first time that an approach different
than traditional stereo matching is used to obtain accurate matching between the stereo images. Experimental
results show accurate registration and HDR generation for each LDR view.
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1 INTRODUCTION
High Dynamic Range (HDR) imaging is an increasing
area of interest at academic and industrial level, and one
of its crucial aspects is the reliable and easy content cre-
ation with existing digital camera hardware.
Digital cameras with the ability to capture extended dy-
namic range, are appearing into the consumer market.
They either use a sensor capable of capturing an inten-
sity range larger than the one captured by traditional
8-10 bit sensors, or integrate hardware and software
improvements to largely increase the acquired intensity
range. However, due to their high costs, their use is very
limited [BADC11].
Traditional low dynamic range (LDR) camera sensors
provide an auto-exposure feature that can be used to
increase the dynamic range of light captured from the
scene. The main idea is to capture the same scene at
different exposure levels, and then to combine them to
reconstruct the full dynamic range.
To achieve this, different approaches have been pre-
sented [MP95, DM97, RBS99, MN99, RBS03], but
they are not exempt of drawbacks. Ghosting effects
may appear in the reconstructed HDR image, when the
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pixels in the source images are not perfectly aligned
[TA+14]. This is due to two main reasons: either cam-
era movement or objects movement in the scene. Sev-
eral solutions for general image alignment exist [ZF03].
However, it is not straightforward to consider such
methods because exposures in the image sequence are
different, making alignment a difficult problem.

High Dynamic Range content creation is lately mov-
ing from the 2D to 3D imaging domain introducing a
series of open problems that need to be solved. 3D im-
ages are displayed in two main different ways: either
from two views for monoscopic displays with glasses
or from multiple views for auto-stereoscopic displays.
Most of current auto-stereoscopic displays accept from
five to nine different views [LLR13]. To our knowl-
edge, HDR auto-stereoscopic displays do not exist yet.
We can feed LDR auto-stereoscopic displays with tone-
mapped HDR, but we will need at least five different
views.

Some of the techniques used for 2D applications
have been recently extended for multiscopic images
[TKS06, LC09, SMW10, BRR11, BLV+12, OMLA13,
OMLA14, BRG+14, SDBRC14]. However, most of
these solutions suffer from a common limitation: they
need to rely on accurate dense stereo matching between
images which may fail in case of different brightness
between exposures [BVNL14]. Thus, more robust
and faster solutions for matching different exposure
images that allow an easy and reliable acquisition of
multiscopic HDR content are highly needed.
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(a) Non aligned (b) Bätz et al. [BRG+14] (c) Our Result
Figure 1: Set of LDR multiview images from the IIS Jumble data-set, courtesy of Bätz [BRG+14]. The top row shows five
multiview exposure images, one exposure per view. The bottom row shows HDR images obtained without alignment (a), using
Bätz’s method (b) and using our proposed patch-match method (c).

In response to this need, we propose in this paper a so-
lution to combine sets of multiscopic LDR images into
HDR content using image correspondences based on
the Patch Match algorithm [BSFG09]. This algorithm
has been used recently by Sen et al. [SKY+12] to build
HDR images that are free of ghosting effects. The need
of improving the coherence of neighbour patches was
already presented in [FP10].The results were promis-
ing for multi-exposure sequences where the reference
image is moderately under exposed or saturated but it
fails when the reference image has large under exposed
or saturated areas.

We propose to adapt this approach for multiscopic im-
age sequences (Figure 1), that answer to a simplified
epipolar geometry obtained by parallel optical axes (im-
ages not originally taken with this geometric configu-
ration can be later rectified). In particular, we reduce
the search space in the matching process and improv-
ing the incoherence problem of the patch-match. Each
image in the set of multi-exposed images is used as a
reference; we look for matches in all the remaining im-
ages. These accurate matches allow to synthesize im-
ages corresponding to each view which are merged into
one HDR image per view.

Our contributions into the field can be summarized as
follows:

• We provide an efficient solution to multiscopic HDR
image generation.

• Traditional stereo matching produce several artifacts
when directly applied on images with different ex-
posures. We introduce the use of an improved ver-
sion of patch-match to solve these drawbacks.

• Patch-match algorithm was adapted to take advan-
tage of the epipolar geometry reducing its computa-
tional costs while improves its matching coherence
drawbacks.

2 RELATED WORK
Two main areas were considered in this work. The
following section presents the main state of the art re-
lated to stereo HDR acquisition and multi-exposed im-
age alignment for HDR generation.

2.1 Stereo HDR Acquisition
Some prototypes have been proposed to acquire stereo
HDR content from multi-exposure views. Most ap-
proaches [TKS06, LC09, SMW10, Ruf11, BRG+14,
AKCG14] are based on a rig of two cameras placed like
a conventional stereo configuration that captures differ-
ently exposed images. Troccoli et al. [TKS06] propose
to use cross correlation stereo matching to get a primary
disparity match. The correspondences are used to cal-
culate the camera response function (CRF) to convert
pixel values to radiance space. Stereo matching is ex-
ecuted again but now in radiance space to extract the
depth maps.

Lin and Chang [LC09] use SIFT descriptors to find cor-
respondences. The best correspondences are selected
using epipolar constrains and used to calculate the CRF.
The stereo matching algorithm is based on belief prop-
agation to derive the disparity map. A ghost removal
technique is used to avoid artifacts due to noise or stereo
mismatches. Even though, disparity maps are not accu-
rate in large areas that are under exposed or saturated.

Rüfenacht[Ruf11] compares two different approaches
to obtain stereoscopic HDR video content: a temporal
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approach, where exposures are captured by temporally
changing the exposure time of two synchronized cam-
eras to get two frames of the same exposure per shot,
and a spatial approach, where cameras have different
exposure times for all shots so that two frames of the
same shot are exposed differently.
Bonnard et al. [BLV+12] propose a methodology
to create content that combines depth (3D) and HDR
video for auto-stereoscopic displays. They use recon-
structed depth information from epipolar geometry to
drive the pixel match procedure. The matching method
lacks of robustness especially on under exposed or sat-
urated areas. Akhavan et al. [AYG13, AKCG14] offer
a useful comparison of the difference between dispar-
ity maps obtained from HDR, LDR and tone-mapped
images.
Selmanovic et al. [SDBRC14] propose to generate
Stereo HDR video from a pair HDR-LDR, using an
HDR camera and a traditional digital camera. In this
case, one HDR view needs to be reconstructed. Three
methods are proposed to generate an HDR image: (1)
to warp the existing one using a disparity map, (2) to
increase the range of the LDR view using an expansion
operator and (3) an hybrid of the two methods which
provides the best results.
Bätz et al. [BRG+14] present a framework with two
LDR cameras, the input images are rectified before the
disparity estimation. Their stereo matcher is exposure
invariant and use Zero-Mean Normalized Cross Cor-
relation (ZNCC) as a matching cost. The matching is
performed on the gray-scale radiance space image fol-
lowed by local optimization and disparities refinement.
Some artifacts may persist in the saturated areas.

2.2 Multi-exposed Image Alignment
In the HDR context, most of methods on image
alignment focus on movement between images caused
by hand-held capture, small movement of tripods
or matching moving pixels from dynamic objects
in the scene. One of the main drawbacks for HDR
video acquisition is the lack of robust algorithms for
deghosting. Hadziabdic et al. [HTM13], Srikantha et
al. [SS12] and Tursun et al. [TA+14] provide good
reviews and comparisons between recent methods.
Kang et al. [KUWS03] proposed to capture video se-
quences alternating long and short exposure times. Ad-
jacent frames are warped and registered to finally gen-
erate an HDR frame. Sand and Teller [ST04] combine
feature matching and optical flow for spatio-temporal
alignment of different exposed videos. They search for
frames that best match with the reference frame using
locally weighted regression to interpolate and extrapo-
late image correspondences. This method is robust to
changes in exposure and lighting, but it is slow and ar-
tifacts may appear if there are objects moving at high
speed.

Mangiat and Gibson [MG10] propose to use a method
of block-based motion estimation and refine the mo-
tion vectors in saturated regions using color similarity
in the adjacent frames of an alternating multi-exposed
sequence.

Sun et al. [SMW10] assume that the disparity map be-
tween two rectified images can be modeled as a Markov
random field. The matching problem is then posed as a
Bayesian labeling problem in which the optimal values
are obtained minimizing an energy function. The en-
ergy function is composed of a pixel dissimilarity term
(using NCC as similarity measure) and a smoothness
term which corresponds respectively to the MRF likeli-
hood and the MRF prior.

Sen et al. [SKY+12] present a method based on a
patch-based energy-minimization formulation that in-
tegrates alignment and reconstruction in a joint opti-
mization. This allows to produce an HDR result that
is aligned to one of the exposures and contains infor-
mation from all the rest. Artifacts may appear when
there are large under exposed or saturated areas in the
reference image.

2.3 Discussion
Stereo matching is a mature research field; very accu-
rate algorithms are available for images taken under the
same lighting conditions and exposure. However, most
of such algorithms are not accurate for images with im-
portant lighting variations. We propose a novel frame-
work inspired by Barnes et al. [BSFG09] and Sen et
al. [SKY+12]. We adapt the matching process to the
multiscopic context resulting in a more robust solution.

3 PATCH-BASED MULTISCOPIC HDR
GENERATION

Our method takes as input a sequence of LDR images
(RAW or not). We transform the input images to ra-
diance space, all the rest of steps are performed using
radiance space values instead of RGB pixels. For 8-
bits LDR images a CRF per camera needs to be esti-
mated. An overview of our framework is shown in the
diagram of the Figure 2. The first step is to recover the
correspondences between the n images of the set. We
propose to use a nearest neighbor search algorithm (see
section 3.1) instead of a full stereo matching approach.
Each image acts like a reference for the matching pro-
cess. The output of this step is n-1 warped images for
each exposure. Which then are combined into an out-
put HDR image for each view through a second step
(see section 3.2).

3.1 Nearest Neighbor Search
For a pair of images Ir and Is, we compute a Near-
est Neighbor Field (NNF) from Ir to Is using an im-
proved version of the method presented by Barnes et
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Figure 2: Proposed framework for multiscopic HDR Generation. It is composed by three main steps: (1) radiance space
conversion, (2) patch match correspondences search and (3) HDR generation

al. [BSFG09]. NNF is defined over patches around ev-
ery pixel coordinate in image Ir for a cost function D
between two patches of images Ir and Is. Given a patch
coordinate r∈ Ir and its corresponding nearest neighbor
s ∈ Is, NNF(r) = s. The values of NNF for all coordi-
nates are stored in an array with the same dimensions
as Ir.

We start initializing the NNFs using random transfor-
mation values within a maximal disparity range on
the same epipolar line. Consequently the NNF is im-
proved by minimizing D until convergence or a max-
imum number of iterations is reached. Two candi-
date sets are used in the search phase as suggested by
[BSFG09]: .

(1) Propagation uses the known adjacent nearest neigh-
bor patches to improve NNF. It converges fast but it may
fall in a local minima.

(2) Random search introduces a second set of random
candidates that are used to avoid local minima. For each
patch centered in pixel v0, the candidates ui are sampled
at an exponentially decreasing distance from vi:

ui = v0 +wα
iRi (1)

where Ri is a uniform random value ∈ [-1,1], w is the
maximum value for disparity search and α is a fixed
ratio (1/2 is suggested).

Taking advantage of the epipolar geometry both
search accuracy and computational performances are
improved. Geometrically calibrated images allow to
reduce the search space from 2D to 1D domain, conse-
quently reducing the search domain. As an example,
using random search we only look for matches in the
range of maximal disparity in the same epipolar line
(1D domain), avoiding to search in 2D space. This
reduces significantly the number of samples to find a
valid match.

Typical drawback of the original NNFs approach
[BSFG09], used in the patch match algorithm, is the
non geometrically coherency of its search results. This
problem is illustrated in Figures 3 and 4. Two static
neighbor pixels, in the reference image, match two
separated pixels in the source image (Figure 3).

Figure 3: Patches from the reference image (Up) look for
their NN in the source image (Down). Even when destination
patches are similar in terms of color, matches may be wrong
because of geometric coherency problems.

To overcome this drawback we propose a new distance
cost function D by incorporating a coherence term to
penalize matches that are not coherent with the transfor-
mation of their neighbors. Both Barnes et al. [BSFG09]
and Sen et al. [SKY+12] use the Sum of Squared Dif-
ferences (SSD), described in equation 3 where T repre-
sents the transformation between patches of N pixels in
images Ir and Is. We propose to penalize matches with
transformations that differ significantly form it neigh-
bors by adding the coherence term C defined in equa-
tion 4. The variable dc represents the Euclidean dis-
tance to the closest neighbor’s match and Maxdisp is
the maximum disparity value. This new cost function
forces pixels to preserve coherent transformations with
their neighbors.

D = SSD(r,s)/C(r,s) (2)
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SSD =
N

∑
n=1

(Ir−T (Is))
2 (3)

C(r,s) = 1−dc(r,s)/Maxdisp (4)

(a) Src Image (b) Ref Image

(c) PM NNF (d) Ours NNF

(e) PM synthesized (f) Ours synthesized

(g) Details in (e) (h) Details in (f)

Figure 4: Matching results using original Patch Match
[BSFG09] (Left) and our implementation (right) for two iter-
ations using 7x7 patches. Images in the ’Art’ dataset courtesy
of [vis06]

Figures 4c and 4e show the influence of the coherence
problems described in Figure 3 in the matching results.
Figures 4d and 4f correspond to the results including
the improvements presented in this section. Figures 4c
and 4d show a color representation of the NNFs us-
ing HSV color space, magnitude of the transformation
vector is visualized in the saturation channel and the
angle in the hue channel. Areas represented with the

same color in the NNF color representation mean simi-
lar transformation. Objects in the same depth may have
similar transformation. Notice that the original Patch
Match [BSFG09] finds very different transformations
for neighbor pixels of the same objects and produces
artifacts in the synthesized image.

3.2 Warping Images and HDR Genera-
tion

The warping images are generated as an average of the
patches that contribute to a certain pixel. Direct warp-
ing from the NNFs is possible, but it may generate vis-
ible artifacts as shown in Figure 5. This is due mainly
to incoherent matches between the Ir and Is images.
To solve this problems we use Bidirectional Similarity
Measure (BDSM) (Equation 5), proposed by Simakov
et al. [SCSI08] and used by Barnes et al. [BSFG09],
which measure similarity between pairs of images. It is
defined for every patch Q ⊂ Ir and P ⊂ Is, and a num-
ber N of patches in each image respectively. It consists
of two terms: coherence that ensures that the output
is geometrically coherent with the reference and com-
pleteness that ensures that the output image maximizes
the amount of information from the source image:

d(Ir, Is) =

dcompleteness︷ ︸︸ ︷
1

NIr
∑

Q⊂Ir

min
P⊂Is

D(Q,P)+

dcoherence︷ ︸︸ ︷
1

NIs
∑

P⊂Is

min
Q⊂Ir

D(P,Q)

(5)

(a) Direct warping (b) Using BDSM

(c) Details in (c) (d) Details in (d)

Figure 5: Images 5a and 5b are both synthesized from the
pair in Figure 4. Image 5a was directly warped using val-
ues only from the NNF of Figure 4c, which corresponds to
matching 4a to 4b. Image 5b was warped using the BDSM of
Equation 5 which implies both NNFs of Figures 4c and 4d.

This allows to improve both coherence and consistency
by using bidirectional NNFs (from Ir to Is and back-
ward). It is more accurate to generate images using
three iterations in each direction than only six from Ir to
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Is. Using BDSM also prevents artifacts in the occluded
areas.

Since the matching is totally independent for pairs of
images, it was implemented in parallel. Each image
matches all other views. This produces n-1 NNFs for
each view. The NNFs are in fact the two components of
the BDSM of equation 5. The new image is the result of
accumulating pixel colors of each overlapping neighbor
patch and averaging them.

The final HDR image per view is generated using a
weighted average [MP95, DM97, MN99] as defined in
Equation 6 and the weighting function of Equation 7
proposed by Khan et al. [KAR06]:

E(i, j) =
∑

N
n=1 w(In(i, j))( f−1(In(i, j))

∆tn
)

∑
N
n=1 w(In(i, j))

(6)

w(In) = 1− (2
In

255
−1)12 (7)

where In represents each image in the sequence, w cor-
responds to the weight, f is the CRF, ∆tn is the exposure
time for the Ith image of the sequence.

4 EXPERIMENTAL RESULTS
Five data-sets were selected in order to demonstrate the
robustness of our results. For the set ’Octo-cam’ all
the objectives capture the scene at the same time and
synchronized shutter speed. For the rest of data-sets the
scenes are static. This avoids the ghosting problem due
to dynamic objects in the scene. In all figures of this
paper we use the different LDR exposures for display
purposes only, the actual matching is done in radiance
space.

The ’Octo-cam’ data-set are eight RAW images with
10-bit of color depth per channel. They were acquired
simultaneously using the Octo-cam [PCPD+10] with a
resolution of 748x422 pixels. The Octo-cam is a multi-
view camera prototype composed by eight objectives
horizontally disposed. All images are taken at the same
shutter speed (40 ms) but we use three pairs of neutral
density filters that reduce the exposure dividing by 2,
4 and 8 respectively. The exposure times for the input
sequence are equivalent to 5, 10, 20 and 40 ms respec-
tively [BLV+12]. The objectives are synchronized so
all images corresponds to the same time instant.

The sets ’Aloe’, ’Art’ and ’Dwarves’ are from the
Middlebury web site [vis06]. We selected images
that were acquired under fixed illumination conditions
with shutter speed values of 125, 500 and 2000 ms for
’Aloe’and ’Art’ and values of 250, 1000 and 4000 ms
for ’Dwarves’. They have a resolution of 1390 x 1110
pixels and were taken from three different views. Even
if we have only 3 different exposures we can use the
seven available views by alternating the exposures like
shown in Figure 9.

The last two data-sets were acquired from two of the
state of the art papers. Bätz et al. [BRG+14] shared
their image data set (IIS Jumble) at a resolution of
2560x1920 pixels. We selected five different views
from their images. They where acquired at shutter
speeds of 5, 30, 61, 122 and 280 ms respectively. Pairs
of HDR images like the one in Figure 6, both acquired
from a scene and synthetic examples come from Sel-
manovic et al. [SDBRC14]. For 8-bit LDR data sets,
the CRF is recovered using a set of multiple exposure
of a static scene. All LDR images are also transformed
to radiance space for fair comparison with other algo-
rithms.

4.1 Results and discussion

(a) Src Image (b) Ref Image

(c) PM NNF (d) Ours NNF

(e) PM synthesized (f) Ours synthesized

(g) Details in (e) (h) Details in (f)

Figure 6: Comparison between original Patch Match and
our implementation for two iterations using 7x7 patches. Im-
ages 6c and 6d show the improvement on the coherence of the
NNF using our method. Images cortesy of [SDBRC14]

Figure 6 shows a pair of images linearized from HDR
images courtesy of Selmanovic et al. [SDBRC14] and
the comparison between the original PM from Barnes et
al. [BSFG09] and our method including the coherence
term and epipolar constrains. The images in Figures
6c and 6d represent the NNF. They are codified into an
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(a) Reference

(b) Source

(c) 1 iteration ours

(d) 1 iteration PM

(e) 2 iteration ours

(f) 2 iteration PM

(g) 10 iteration ours

(h) 10 iteration PM
Figure 7: Two images from the ’Dwarves’ set of LDR multi-view images form Middlebury [vis06]. Our method
with only two iterations achieve very accurate matches. Notice that the original patch match requires more itera-
tions to achieve good results in fine details of the image.

image in HSV color space. Magnitude of the transfor-
mation vector is visualized in the saturation channel and
the angle in the hue channel. Notice that our result rep-
resent more homogeneous transformations, represented
in gray color. Images in Figure 6e and 6f are synthe-
sized result images for the Ref image obtained using
pixels only from the Src image. The results correspond
to the same number of iterations (2 in this case). Our
implementation converges faster producing accurate re-
sults in less iterations than the original method.

All the matching and synthesizing process are per-
formed in radiance space. They were converted to
LDR using the corresponding exposure times and the
CRF for display purposes only. The use of an image
synthesis method like the BDSM instead of traditional
stereo matching allows us to synthesize values for
occluded areas too.

Figure 7 shows the NNFs and the images synthesized
for different iterations of both our method and the orig-
inal patch match. Our method converges faster and pro-
duce more coherent results than [BSFG09]. In occluded
areas the matches may not be accurate in terms of ge-
ometry due to the lack of information. Even in such
cases, the result is accurate in terms of color. After

several tests, only two iterations of our method were
enough to get good results while five iterations were
recommended for previous approaches.

Figure 8 shows one example of the generated HDR cor-
responding to the lowest exposure LDR view in the IIS
Jumble data-set. It is the result of merging all syn-
thesized images obtained with the first view as refer-
ence. The darker image is also the one that contains
more noisy and under-exposed areas. HDR values were
recovered even for such areas and no visible artifacts
appears. On the contrary, the problem of recovering
HDR values for saturated areas in the reference im-
age remains unsolved. When the dynamic range dif-
ferences are extreme the algorithm does not provide
accurate results. Future work must provide new tech-
niques because the lack of information inside saturated
areas does not allow patches to find good matches. The
CRFs for the LDR images were calculated in a set of
aligned multi-exposed images using the software RAS-
CAL, provided by Mitsunaga and Nayar [MN99]. Fig-
ure 9 shows the result of our method for a whole set of
LDR multi-view and differently exposed images. All
obtained images are accurate in terms of contours, no
visible artifacts comparing to the LDR were obtained.
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(a) IIS Jumble data-set

(b) Lower exposure LDR (c) Tone-mapped HDR

(d) Details in (b) (e) Details in (c)
Figure 8: Details of the generated HDR image correspond-
ing to a dark exposure. Notice that under-exposed areas, tra-
ditionally difficult to recover, are successfully generated with-
out visible noise or misaligned artifacts.

Figures 10 show the result of the proposed method in
a scene with important lighting variances. The pres-
ence of the light spot introduce extreme lighting differ-
ences between the different exposures. For bigger ex-
posures the light glows from the spot and saturate pix-
els not only inside the spot but also around it. There
is not information in saturated areas and the matching
algorithm does not find good correspondences. The dy-
namic range is then compromised in such areas and they
remain saturated. Our method is not only accurate but
faster than previous solutions. [SKY+12] mention that
their method takes less than 3 minutes for a sequence of
7 images of 1350x900 pixels. The combination of a re-
duced search space and the coherence term effectively
implies a reduction of the processing time. In a Intel
Core i7-2620M 2,70 GHz with 8 GB of memory, our
method takes less than 2 minutes (103 ± 10 seconds)
for the Aloe data set with a resolution of 1282x1110
pixels.

5 CONCLUSIONS
This paper presented a framework for auto-stereoscopic
3D HDR content creation that combines sets of mul-
tiscopic LDR images into HDR content using image
dense correspondences. Methods that, when used for

2D domain cannot be used for 3D HDR content cre-
ation without introducing visible artifacts. Our novel
approach is extending the well known Patch Match al-
gorithm, introducing an improved random search func-
tion that takes advantage of the epipolar geometry. Also
a coherence term is used for improving the matching
process. These modifications allow to extend the orig-
inal approach to work for HDR stereo matching, while
improving its computational performances. We have
presented a series of experimental results showing the
robustness of our approach, in the matching process,
when compared with the original approach and its qual-
itative results.
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