
 

Abstract—In this paper, we describe an optimized version of a 

Gaussian-mixture-based acoustic model likelihood evaluation 

algorithm for graphical processing units (GPUs). The evaluation 

of these likelihoods is one of the most computationally intensive 

parts of automatic speech recognizers, but it can be parallelized 

and offloaded to GPU devices. Our approach offers a significant 

speed-up over the recently published approaches, because it 

utilizes the GPU architecture in a more effective manner. All the 

recent implementations have been intended only for NVIDIA 

graphics processors, programmed either in CUDA or OpenCL 

GPU programming frameworks. We present results for both 

CUDA and OpenCL. Further, we have developed an OpenCL 

implementation optimized for ATI/AMD GPUs. Results suggest 

that even very large acoustic models can be used in real-time 

speech recognition engines on computers equipped with a low-

end GPU or laptops. In addition, the completely asynchronous 

GPU management provides additional CPU resources for the 

decoder part of the LVCSR. The optimized implementation 

enables us to apply fusion techniques together with evaluating 

many (10 or even more) speaker-specific acoustic models. We 

apply this technique to a real-time parliamentary speech 

recognition system where the speaker changes frequently. 

Index Terms—Automatic speech recognition, parallel 

algorithms, parallel architectures, software performance. 

I. INTRODUCTION 

Large vocabulary continuous speech recognition (LVCSR) 

is a highly computationally intensive task, with the acoustic 

model likelihoods computation accounting for the largest 

portion of the processing task. In a few recent studies [1], [2], 

and [3], a GPU was employed as a coprocessor to compute 

these likelihoods. A speed-up of 4× to 6× was achieved for the 

full acoustic model evaluation itself. This led to a speed-up of 

1.3× to 3× for the LVCSR system, depending on the 

individual task and setup, while maintaining an untouched 

accuracy. For real-time applications, CPU-only recognizer 

implementations often have to employ simplified (i.e., small) 

models, (acoustic model) pruning, computational 

approximations, or combinations of these techniques to fit into 

the real-time constraints. Thus, by using hybrid CPU-GPU 

implementations, an increase in accuracy can be achieved 

because even low-end GPUs are powerful enough to evaluate 

significantly larger models in real-time, without the need for 

any additional acceleration or complexity reduction 

techniques. 

 The goal of this work was to develop a fast GPU 

implementation that fully exploits the computing power of the 

GPUs of both main manufacturers: NVIDIA and ATI/AMD. 

This opens the possibility of using real-time LVCSR systems 

and other speech applications not only on laptops but also on 

near-future hand-held devices [4]. Further, the GPU can be 

shared between additional recognizers or other applications. 

The proposed approach could also be used during the acoustic 

model training phase. As expected, this reduces the training 

time significantly, especially for frame-discriminative 

methods [5]. 

  The parallelization of an entire LVCSR system, together 

with its implementation on GPUs, was examined by Chong et 

al. [6], [7]. The acoustic model evaluation phase represents 

one half of the total computing time. With a significant speed-

up of this part, the freed resources can be reassigned to other 

parts of the LVCSR engine: a more precise decoder, larger 

dictionary, or more complex language model. Alternatively, 

the same system can be run on a slow computer. 

 In our department, we focus on real-time speech 

applications (e.g., generation of automatic captions, dialog 

systems). The well-utilized GPU power enables us to 

simultaneously evaluate a set of speaker-specific (or speaker-

cluster-specific) acoustic models in real-time and then 

combine the individual models’ likelihoods using a fast fusion 

method [8]. In addition, a combination of full speaker-cluster-

specific models with speaker-specific feature-transformation 

matrices is used to prepare several models, thus enabling the 

recognizer to handle large inter- and intra-speaker variability. 

Only a well-optimized GPU implementation has adequate 

capacity to deal with such a large number of models in real-

time. 

The outline of this article is as follows. In section II, a general 

introduction into GPGPU domain is given, together with some 

architecture details about NVIDIA and ATI cards. In 

section III, a thorough review of the current state of research 

in the discussed task (i.e. computation of acoustic likelihoods 

using GMM), in section IV and V, the proposed 

implementations for the NVIDIA architecture and ATI 

architecture are introduced and discussed in detail. In 

section VI, the results of the proposed methods are published 

and comparison to the existing methods from section III is 

made. Section VII concludes this article and suggests some 

possible real-world scenarios enabled by the research 

presented in this article. 
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II. GENERAL PURPOSE COMPUTING ON GPU 

Traditionally, GPUs were developed for performing the 

primary task of graphics processing. With the increasing 

demand for high quality 3D graphics processing, the GPU’s 

performance and versatility started to grow rapidly. The 

hunger for rich graphical experiences led GPU vendors and 

graphical chips designers to implement general 

programmability in several stages (e.g., vertex and 

fragment/pixel shaders) of the 3D processing pipeline. 

Historically, the vertex shader unit has been used for 

manipulation using the vertices of objects in 3D scenes, while 

fragment/pixel shader programs have been used to manipulate 

the color of the rendered fragment or specific pixel. Both these 

tasks are easily parallelized. Therefore, instead of the high-

speed serial processing commonly employed in the domain of 

CPUs, GPUs were developed to support massively parallel 

processing. 

The increase in raw computational power triggered an 

interest in whether GPUs could be used for more general 

computing tasks than just 3D graphics and high fidelity 

graphics effects.  

The tasks suitable for processing on a GPU are 

characterized by high parallelism, low dependency between 

individual work elements, and a rather numerical character 

with minimal branching. Such tasks are commonly known as 

data-parallel algorithms. 

Because they deal with the same task, the architectures of 

the GPUs from both the vendors are remarkably similar. Their 

characteristics are as follows: 

 Support a very large number of threads with minimal 

thread switching overhead; 

 High speed main memory (approx. 100 GB/s, CPU 

with about 8 GB/s): However, to achieve this high 

speed, the memory accesses must follow specific 

patterns and the accesses suffer from high latency; 

 Low caching capability: The main memory is not 

cached at all, but other specific kinds of memories 

(constant memory and texture memory) are cached. 

However, the control of these caching capabilities 

from the viewpoint of programmer/compiler is 

limited, if not non-existent, and the data elements 

must be accessed in a predefined manner to achieve 

the maximum cache-hit ratio;  

 Limited Host (CPU)-to-Device (GPU) communication 

support: The communication is usually established 

through DMA transfers; The DMA transfer request 

must be first configured and then submitted to DMA 

controller. This brings an additional latency in 

communication (hundreds of CPU cycles at 

minimum [9]). Since the GPU is usually connected 

via PCI-express bus, the theoretical bandwidth is 

about 8 GB/s and the achievable bandwidth is about 

4-6 GB/s. For small data transfers, the achievable 

bandwidth is significantly smaller; for example for 

1024 byte blocks, the achievable bandwidth is about 

100 MB/s. Therefore, the computational task should 

limit the host-device communication to minimum. 

 Limited thread synchronization capabilities; global 

synchronization across all the running threads is 

problematical (because of the architectural 

assumption of low dependence across work 

elements). All the running threads are usually 

synchronized only at the end of the computational 

task, so the usual approach is to decompose the 

computation into two or several computational tasks 

and each task is executed individually. 

 Limited branching capabilities as a result of the SIMD 

(single instruction multiple data) character of the 

processing units. In general, branching is supported, 

but it has a significant influence on the 

computational throughput. 

Because GPU architectures have such distinct 

characteristics, common CPU programming models (and 

programming languages based on these programming models) 

are not suitable for this task. In order to achieve a close-to-

peak performance, the programmer must consider many low-

level specifics of the given target architecture and, therefore, 

the programming model as well as the programming language 

must support an explicit expression of the programmer’s 

intentions. During the last few years, several programming 

concepts have been proposed and slowly abandoned.  

NVIDIA’s CUDA (Compute Unified Device Architecture) 

has gained a wide acceptance. However, the CUDA standard 

is proprietary. Thus, intellectual property concerns led to the 

development of the open standard OpenCL (Open Computing 

language). The OpenCL standard was developed in 

cooperation with teams from ATI/AMD, IBM, Intel, NVIDIA, 

and others. Both these frameworks operate with similar 

concepts, usually named in the same way, and migration 

between them is quite straightforward. The OpenCL standard 

[10] operates with the following models. 

 The platform model postulates a host connected to one 

or many OpenCL computing devices. Every OpenCL 

device is divided into one or more processing 

elements. 

 The execution model postulates that execution of 

an OpenCL program occurs in two parts: a host 

program, which operates on the host, and one or more 

kernels, which run on one or more OpenCL devices. 

Each kernel, when dispatched to run, has a notion of 

task geometry and is executed within a so-called 

index space. This means that each instance of a 

kernel is identified by coordinates in this index space, 

which provides a global ID (gID) to each kernel 

instance. The specific kernel instance identified by 

this gID is called a work-item. Work-items are 

organized into work-groups. The work-groups 

provide a more coarse-grained decomposition of the 

index space. A work-group is assigned a unique 

work-group ID with the same dimensionality as the 

index space used for the work-items. The work-items 

in a given work-group execute concurrently on the 

processing elements of a single compute unit.  

 The memory model specifies that the running kernel 

has access to four distinct types of memory: 

o Global memory—a memory region that grants 

access to read/write (R/W) operations by 

any work-item within any work-group. The 



memory address space is common to all 

work-items. Depending on the device 

capabilities, this memory may be cached. In 

the scope of GPU, the global memory maps 

to the off-chip main memory (see above). 

o Constant memory—a segment of memory, 

whose content was initialized by the 

OpenCL host and which remains constant 

during the execution of the kernel. In the 

context of GPUs, the constant memory is 

usually on-chip and cached automatically, so 

that the access latency for consecutive 

accesses is reduced. 

o Local memory—a segment of memory local to 

a work-group. In the context of GPUs, this is 

an on-chip memory with low access latency. 

The amount if this memory is significantly 

limited (thousands of bytes) 

o Private memory—a segment of memory local 

to the individual work-item. The private 

memory can be thought of as a set of 

registers. The access to this memory is fast 

and virtually without any additional latency, 

however the memory volume is very limited 

(hundreds of bytes). 

 

 
Fig. 1 Memory organization for a conceptual OpenCL 

device, from [10]. 

 

Since the publication of OpenCL v1.0 (June 2008), many 

HW vendors and SW producers have announced support of 

OpenCL in their products. Thus, there is a significant chance 

that OpenCL will become a standard for heterogeneous 

computing. Unfortunately, this wide acceptance does not 

dislodge the burden of hand-tuning the computational kernels 

for individual distinct HW architectures. All the major 

OpenCL platform producers have released specific “Best 

Practices Guides” [11], [12], which discuss the specific 

considerations that should be accounted for when 

programming for a given platform. 

The CUDA standard is historically older and its application 

is limited to NVIDIA devices. However, it postulates the same 

models as the OpenCL. The platform and memory model are 

basically the same, while the execution model differs only in 

terminology. Because of this compatibility, we will use the 

CUDA terminology mostly even when referring to ATI/AMD 

implementation. The main terminology differences are 

following: Work-item in OpenCL corresponds with thread in 

CUDA. Work-group corresponds with thread-block (or block), 

and finally, Local memory is called shared memory in CUDA.  

A. NVIDIA GPU architecture 

The NVIDIA GPU consists of many processing elements 

(PEs) called multiprocessors. Older NVIDIA GPUs have 8 

stream processors in each PE, together with a 16-kB on-chip 

local memory (called shared memory). A single PE offers 8 k 

or 16 k 32-bit registers, depending on the GPU series. The 

Fermi-based PEs are larger and include 32 or 48 stream 

processors. The 64-kB on-chip memory can be set to two 

configurations: 16 kB L1 cache and 48 kB local memory or 

vice versa.  

The peak memory bandwidth from global memory can be 

achieved only via coalesced access, where 16 consecutive 

work-items (half-warp) read/write consecutive addresses (note 

that full-warp is needed on Fermi-based cards). Another 

example involves using local memory, where one should omit 

bank-conflicts, which can significantly degrade the kernel 

performance. These issues are discussed in more detail in [13] 

and [14]. The second-mentioned is more focused on kernel 

optimizations per-se. 

B. ATI/AMD GPU architecture 

The ATI/AMD GPU also consists of multiple PEs. 

However, compared to NVIDIA PEs, the internal architecture 

is different. Each PE contains 16 stream cores, each equipped 

with five stream processors (four in Cayman based 69XX 

GPUs). This is why ATI/AMD GPUs have a higher raw 

computational performance than comparable NVIDIA GPUs. 

In real life, however, it is difficult to supply the input data 

sufficiently fast to keep these high-performance 

multiprocessors fully utilized. Therefore, the maximal 

performance cannot be achieved in some tasks or badly 

optimized implementations. The older ATI cards (HD 4000 

series and older) do not contain on-chip local memory but use 

the slower global memory instead. Therefore, a programmer 

should implement the algorithm in a fashion that does not use 

the local memory on these cards. The HD 5000 and 6000 

series have 32 kB of local memory, but it is not advisable to 

directly use it extensively because the limited throughput is 

insufficient to gain the maximum computational performance. 

Instead of the local memory, a relatively large 256-kB register 

file is preferred. A more detailed performance optimization 

guide can be found in [11]. 

III. RECENT IMPLEMENTATIONS REVIEW 

The first use of a GPU for acoustic model likelihoods 

computation was briefly mentioned by Dixon et al. [15]. 

The following year, a more detailed paper was published by 

Cardinal et al. [1]. Both approaches share a common ground: 

the computation of likelihoods as dot products. The entire 

acoustic model is represented as a matrix A, in which each 

row is a log-weighted Gaussian component with a diagonal 



covariance matrix. The i
th

 component of a J-dimensional 

mixture model is represented as a vector according to 
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 The feature vector is then expanded to 
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 The score of every Gaussian can be found as the matrix-

vector multiplication y = Ax. The output vector y is a vector of 

the log-weighted scores of every Gaussian component of the 

mixture (given input vector x). An evaluation of the following 

n feature vectors can be performed as a single matrix-matrix 

multiplication, Y = AX, where each column of Y contains the 

log-weighted scores for every Gaussian component of every 

mixture model for the corresponding feature vector in X, 

which is a matrix of n feature vectors 

 

               .                          (4) 

 

 The final mixture likelihoods are obtained by the sum of all 

the belonging Gaussians. This sum is implemented in the log-

domain as a logarithmic addition, which is defined as 

ln(e
x
+e

y
). 

 The evaluation of the likelihoods can be implemented in 

two ways: the first possibility is to create a single kernel that 

computes the dot product, as well as the logarithmic addition. 

This approach can decrease the required memory bandwidth 

and reduce the overhead of running two separate kernels. On 

the other hand, it is much more difficult to propose an optimal 

block/grid architecture for both parts of the kernel. The second 

way is to create a separate kernel for each part of the 

algorithm. The dot product part implemented as a matrix-

matrix multiplication can be computed very efficiently [16]. 

The efficient implementation of sgemm is in the CUBLAS 

library [17]. Thus, one does not need to create a new (probably 

less efficient) kernel. The efficient logarithmic addition 

implementation can be adopted from the parallel sum 

algorithm [18]. The native log and exp functions should be 

used to get the maximum performance. This two-kernel 

approach is simple and can help realize a satisfactory 

performance, especially if the overhead is marginalized by 

computing a large block of feature vectors simultaneously 

(i.e., large n). 

A. Cardinal’s implementation 

The implementation developed at CRIM and described in 

[1] is a single-kernel approach. Each block computes the final 

likelihood of one mixture of Gaussians. As a result, the 

number of launched blocks is the number of distributions in 

the acoustic model. Each block contains 256 threads. The 

main computationally intensive part is the multiply-add 

(MAD) operation in the dual while-loop. From the viewpoint 

of performance tuning, it is crucial that, together with this 

single instruction, many other operations need to be 

performed: the while-loops’ stopping conditions need to be 

evaluated, two operands need to be fetched from the global 

memory, another additional operand needs to be loaded from 

the shared memory and, finally, the result needs to be stored 

back in the shared memory. In this case, the main bottleneck is 

caused by the fetches from global memory. To perform a 

single-clock instruction, two 32-bit floats (i.e., 8 bytes) need to 

be fetched. This reduces the maximum performance of this 

implementation to less than 1/15 of the peak FLOPS on all 

current GPUs. In addition, the two tied loops and combined 

read-store operation with shared memory affect the 

performance, but they are not the main bottlenecks in this 

case. 

 The implementation on a GeForce 8800GTX card performs 

5× faster than a CPU-only SSE-based vectorized 

implementation. The tested acoustic model had 39 dimensions 

and consisted of 4600 states with 32, 64, or 128 Gaussians. 

The real-time factor (RTF) is estimated on the basis of 100 

frames/s. The elapsed times per single feature vector, together 

with floating-point operations per second (FLOPS), are 

presented in Table 1. The RTF is the ratio between the 

computing time and length of the processed speech signal. 

Note that these numbers are only for acoustic model 

evaluation, not for full speech decoding. The theoretical peak 

performance of this card is 346 GFLOPS (for MAD 

instructions only), and the real achieved performance on 

matrix-matrix multiplication is about 200 GFLOPS [16]. The 

main bottleneck of this implementation is described above. In 

addition, the computation of a single feature vector suffers 

from the high overhead of frequent CPU-GPU transfers. 

Therefore, a larger window needs to be used for efficient GPU 

utilization. A significant redesign of the HMM decoder may 

be necessary to allow the blocked computation of AM 

likelihoods. 

 

B. Dixon’s implementation 

In contrast, the implementation developed at the Tokyo 

Institute of Technology and described in [2] and [19] uses a 

two-kernel approach. The CUBLAS library is used for matrix-

matrix multiplication, and an extra kernel is used to perform 

the final logarithmic addition. To achieve the maximum 

performance for the entire decoder, the GPU part runs 

completely asynchronously. Two buffers for page-locked 

memory are used; the CPU decoder works with one, while the 

GPU is preparing the other in parallel. This is a way to hide 

the CPU-GPU transfer overhead as well as the GPU 

processing time itself. The proper window length was 

analyzed in that study, and a length higher than 10 was 

recommended. Thus, window lengths of 8 or 16 should be 

TABLE I 
CARDINAL’S IMPLEMENTATION RESULTS. 

Number of 

Gaussians 
TIME (MS) RTF GFLOPS 

32 2.27 0.227 10.7 

64 4.39 0.439
 

11.1 

128 8.55 0.855 11.4 

 
 

  

    

    

    

 



used for real-time decoders, and even larger windows can be 

used for offline tasks. In [19], the use of 16-bit half floats was 

also tested for storing model parameters. Only a negligible 

change was reported in the recognition accuracy. The model 

size in memory is not a significant issue if the GPU is used 

only for acoustic model evaluation. However, in cases where 

the GPU is shared between several tasks or is also used for a 

decoder, model size reduction can be helpful.  

 The implementation was tested for the recognition of 

spontaneous Japanese speech on a GeForce 8800GTX GPU. 

The feature-vector length was 38, and the acoustic model 

contained 3000 states, with the Gaussian component counting 

2, 4, ... , 512. The feature-vector window size was 32. 

Performance results are presented for the acoustic model with 

the decoder, not for the model alone. We put forth our best 

effort to estimate the acoustic-only performance numbers from 

the presented graphs. These estimated results are shown in 

Table 2. This implementation is much faster than Cardinal’s 

approach, as previously described, mainly because of the 

optimized sgemm from the CUBLAS library and the large 

feature-vector window. However, the performance is still far 

from that of matrix-matrix multiplication alone. Using the 

general sgemm is not an optimal solution for badly shaped 

matrices and cannot harness all the optimization possibilities 

of the likelihoods computation task (especially appropriate 

data re-use). Moreover, storing all the results at the end of the 

first kernel and re-reading them again during the start of the 

second kernel is wasteful. A well-optimized single-kernel 

approach should be able to achieve better performance.  

C. Kveton’s implementation 

In contrast with the previous implementations, an 

implementation developed at IBM and described in [3] uses a 

more general OpenCL programming tool than the NVIDIA-

specific CUDA tool. This implementation is based on the two-

kernel approach. The first dot-product kernel is implemented 

as a matrix-matrix multiplication of a window of feature 

vectors (length is 16). This full acoustic likelihood 

computation is considered to be a baseline for further 

describing a hierarchical approach. This approach is a 

Gaussian selection method based on a hierarchical scheme of 

clustered Gaussians. At run time, only the top scoring clusters 

are evaluated. The authors used 1024 clusters, with the top ¼ 

evaluated. Thus, the theoretical speed-up is 4× as compared to 

full computation. This technique is well suited for 

implementation on a CPU. The GPU implementation is not 

trivial and is described in detail in that paper. The actual 

speed-up is about 2× in comparison to a full GPU approach. 

The full and hierarchical approaches were tested on 

GeForce GTS 250 and GTX 285 GPUs. Two acoustic models 

with 40 dimensions were tested. The first small model had 2 k 

states and 50 k Gaussians in total. The large one had 6 k states 

and 150 k Gaussians. The number of Gaussians per state was 

not fixed, but the approach does not support this kind of 

model. Therefore, fake-Gaussians (about 30%) were added to 

maintain uniform numbers. The results for only the acoustic 

likelihoods are shown in Table 3. GFLOPS values for the 

hierarchical approach were evaluated in the same manner as 

that for full computation (pruned Gaussians are taken as 

computed). The performance was better than Cardinal’s but 

worse than Dixon’s, even if the used GPUs were faster (GTS 

250 is about 1.35× faster than 8800GTX; GTX 285 is about 

2× faster). Even the hierarchical approach did not outperform 

its competitors, although paying more attention to the 

optimization of this algorithm would certainly greatly improve 

its performance. Some of the slowdown could have been 

caused by the use of OpenCL. We have analyzed the 

difference between the CUDA and OpenCL implementations 

of a compatible method in the Results section of this paper.  

D. Chong’s implementation 

The implementation developed at the University of 

California at Berkeley and described in [6], [7] is not for the 

acoustic likelihood computation only but a whole GPU-

implemented LVCSR, as noted in the Introduction. The 

classical Viterbi-based LVCSR and a weighted finite state 

transducer based LVCSR were implemented. When the 

acoustic likelihood computation is performed on a CPU, it 

represents more than 80% of the total computation time. In the 

GPU LVCSR, the authors reported an occupation of about 

50%. This is caused by the better parallelization suitability of 

the likelihood calculation. The authors used a two-kernel 

approach to compute these likelihoods. Only the pruned list of 

states was computed for each time step. It reduced the 

computation time by 70%. The authors reported that they 

achieved close-to-peak performance in this phase [7], but no 

detailed description of the implementation was given. The 

reported performances on a GeForce GTX 280 for the dot-

product and logarithmic addition kernel were 194 and 367 

GFLOPS, respectively. The reported time needed for the 

likelihood computation phase varied from 73 to 178 ms per 

second of input speech (depending on the pruning settings). 

However, on the basis of the reported GFLOPS, the likelihood 

computation should take only about 30 ms per second of 

speech without any pruning. These numbers do not add-up 

TABLE II 

DIXON’S IMPLEMENTATION RESULTS. 

Number of 

Gaussians 
RTF GFLOPS 

128 0.08 77 

256 0.15
 

82 

512 0.3 82 

   

   

   

   

 

TABLE III 
KVETON’S IMPLEMENTATION RESULTS. 

GPU 
Total # of 

Gaussians 
Approach RTF GFLOPS 

GTS 

250 
50k 

Full 0.05 17 

Hierarchical
 

0.03 28 

GTX 

285 
50k 

Full 0.04 21 

Hierarchical 0.02 42 

GTS 

250 
150k 

Full 0.15 17 

Hierarchical
 

0.07 36 

GTX 

285 
150k 

Full 0.11 23 

Hierarchical 0.05 51 

 



together very well. Maybe the finding of unique labels and the 

pruning management limit the high-performance core.  

IV. NVIDIA OPTIMIZED IMPLEMENTATION 

Our implementation evaluates the likelihoods for all the 

states and for a window of feature-vectors in advance in 

asynchronous way -even for states that are not needed by 

decoder because of pruning. This approach is much more 

suitable for GPU than an on-demand selection of computed 

states and the overall performance of entire recognizer is 

better.  

The core of implementation is based on the single-kernel 

approach to avoid storing and re-reading the intermediate data. 

Each block manages all the Gaussians of 64 states, together 

with 8 feature vectors. Therefore, the grid is 2D. Columns are 

composed of stripes of 8 feature vectors and rows are stripes 

of 64 states. The number of rows is given by the model states 

number, and the number of columns depends on the feature-

vector window length, which can be controlled by the decoder 

(according to the real-time/offline scenario). The number of 

threads per block is equal to the number of evaluated states. 

The optimal number is 64 in the most cases. To ensure 

memory address alignment (required for coalesced memory 

access) all the dimensions (model as well as feature vectors) 

are padded to be multiples of 4. This padding also enables the 

use of float4 textures, which are the fastest solution for read-

only memory. All the data are rearranged in advance to be in 

the order they will be read. This step ensures the maximal 

cache-hit ratio.  

All the 8-feature-vector data are loaded into a shared 

memory buffer in the beginning of the kernel, together with a 

squares calculation, according to equation (3). This maximizes 

data reuse. The shared memory buffer size is defined just 

before the kernel is executed, according to the feature-vector 

aligned dimension. During the computation, only the model 

parameters are fetched through the texture cache. 

A. Kernel pseudocode 

Algorithm 1 shows the pseudocode of the kernel. The 

kernel consists of an initialization part, where the feature 

vectors are loaded and squares are calculated. In addition, 

likelihood registers for all 8 feature vectors are defined and set 

to “log-zero,” which means a predefined big-enough negative 

value. Thereafter, a loop for all the Gaussians begins. First, a 

set of 8 accumulators is defined and set to zero. Then, an 

access address for the texture memory is computed using the 

grid, block, and thread built-in variables. Pre-fetching the 

model parameters is a good way to at least partially hide the 

global memory latency. The memory latency is hidden not 

only by the other running blocks but also by the current block. 

The pre-fetching technique is favorable in the case where only 

a few concurrent blocks are running (because of shared 

memory or the register file limit). We use temporary float4 

registers (_u4, _v4) to store the pre-fetched model values. u4 

and__u4 contain four consecutive dimensions of       
  . v4 

and _v4 likewise contain       
  . 

The most computationally-intensive part of the kernel is the 

body. The body is composed of an inner loop that iterates 

through all the dimensions. This loop is unrolled by factor 4. 

Unrolling improves the body’s algorithmic intensity and 

works nicely with the used float4 texture data type. The body 

of this loop begins with loading management. The pre-fetched 

values are copied into another register (u4, v4) and the next 

values are pre-fetched into the original variables. The texture 

address shift is given by the number of threads in the block. 

This is possible because of a careful reorganization of the 

model parameter memory layout. The optimized memory 

layout ensures good texture cache utilization and maximizes 

the data throughput. We bind textures as a linear memory of 

the float4 data type. The rest of the body of the inner loop 

consists of 64 MAD instructions that accumulate four 

dimensions from 8 feature vectors multiplied by the 

appropriate model parameters u4 and v4. The creation of a 

large block of computation-only instructions is a key approach 

for achieving good performance. The large block also ensures 

an efficient hiding of global memory latency. In our case, one 

MAD operand is loaded from shared memory. The same 32-

bit word is loaded by all the threads. Therefore, no bank-

conflicts can arise. An instruction with shared-memory 

operands is slower than a registers-only instruction. In our 

ALGORITHM I 

OPTIMIZED KERNEL PSEUDOCODE. 

  

1: fetch all entire 8 feature-vectors to shared 

memorybuffercompute squares to the second half of 

the buffer 

2: __syncthreads() 

3: set 8 likelihood registers to “log-zero” 

  

4: loop for all Gaussians 

  

5:     set 8 accumulators to zero 

6:     compute address into model texture memory 

7:     pre-fetch model parameters for the first 4 

dimensions (_u4, _v4) 

  

8:     loop for all dimensions/4 – unrolled by factor 4 

  

9:         copy pre-fetched _u4 and _v4 to another registers 

u4, v4 

10:         adjust address 

11:         pre-fetch next _u4, _v4 

  

12:         compute unrolled block of 64 MAD instructions 

             8 vectors × 4 dimensions × 2 (u,v) = 64 MAD 

instructions 

            use #pragma unroll or manual unrolling 

  

13:     end of loop for dimensions 

  

14:     fetch K constants for actual Gaussians (a float per 

thread) 

15:     finalize all 8 accumulators and do addLog() 

  

16: end of loop for Gaussians 

  

17: store final likelihoods 

  

  

  

  

  

 



case, the MAD instruction takes 6 clocks instead of 4 clocks 

for the registers-only variant. This reduces the maximal 

throughput to 2/3 in the MAD part of the kernel, but there was 

no other faster solution without using shared memory because 

register space is a scarce resource. A similar architecture is 

used in Volkov’s optimized matrix-matrix multiplication 

algorithm [16]. 

After the inner loop, the accumulators for the actual 

Gaussian are finalized with the addition of fetched constant K, 

which is defined by equation (2) above. Then, the likelihoods 

for all the feature vectors are updated using a logarithmic 

addition function. We implemented the addLog function in the 

following way: 

 

mx = max(x1, x2); 

y = mx + __logf(1.0f + __expf(min(x1, x2) – mx)); 

 

where max, mix, __logf, and __expf are fast GPU-native 

functions. This addLog variant is accurate and fast enough. 

Therefore, no approximation, which is often used in CPU 

implementation, is needed. At the end of the kernel, the final 

likelihoods are stored back into the global memory. The writes 

should be coalesced, but the performance of this stage is 

actually not very important. 

 To achieve the maximum performance, the input model 

parameters in the memory layout must match the fetching 

order. The memory ordering is the same for the       
   texture 

(designated as u4 in kernel pseudocode) as for       
   

(designated as v4). The order is schematically illustrated in 

Fig. 1 via a bottom-up schema. The basic building block (Fig. 

1A) consists of four 32-floats. It is a vector of four 

consecutive dimensions. This vector is read by the single 

thread as a float4 data type. The next upper block (Fig. 1B) 

consists of 64 float4 vectors. They are read by all 64 threads 

running in the actual block. These threads access consecutive 

memory addresses; therefore, the memory access is coalesced. 

These blocks are read in the inner loop sequentially for all the 

dimensions; therefore, they must be stored in memory 

consecutively according to the dimension (Fig. 1C). One block 

contains a complete set of parameters of one 64-states 

Gaussian. The next upper block consists of all the Gaussian 

blocks according to the outer loop (Fig. 1D). The memory-

block is read by all the blocks belonging to the same row of 

the grid. The entire texture memory is composed of all these 

Gaussian memory-blocks for all the states of the acoustic 

model (Fig. 1E). 

B. Variable number of Gaussians per state 

Our implementation can also easily support acoustic models 

with a variable number of Gaussians per state. Only minor 

changes are required. Because the 64-state blocks are 

computed independently, a constant number of Gaussians per 

state has to be ensured only within the individual blocks. 

Therefore, the model states are sorted in advance according to 

their Gaussians per state numbers and divided into 64-state 

blocks. The state-blocks are padded, if necessary. The 

parameter textures for both models are composed in the same 

way as in Fig. 1. Only an additional memory-offset vector 

needs to be passed into the kernel because the 64-state 

Fig. 2 Model parameters texture memory arrangement 

bottom-up schema. Upper memory blocks consist of 

consecutively laid-down bottom blocks. This memory 

arrangement fits the kernel read order and ensures 

maximum memory reading performance.  

 



memory-blocks (Fig. 1D) do not have a constant size. 

Moreover, a vector with state-indexes can be passed into the 

kernel, and then the final likelihoods can be stored in the 

original order if necessary. 

C. Final tuning 

The number of threads in a block (number of evaluated 

states) can be tuned. A low number of threads (one warp) 

exhibits a low memory-latency hiding ability. In contrast, too 

large a number of threads (128 and more) limits the number of 

active blocks per multiprocessor because of the limited 

number of registers. An overly large thread-block can increase 

the number of evaluated virtual (padded) Gaussians and states, 

especially for models with variable numbers of Gaussians per 

state. Therefore, the state-block size should be tuned for the 

individual acoustic model’s shape and hardware resources 

because different GPU models vary greatly in their 

architecture–they differ in register-file size as well as 

computation/memory performance ratio, for example. 

According to our experience, the 64-thread-block is optimal in 

most cases. 

Although the pre-fetching technique helps to better hide 

memory latency in cases where very low number of blocks is 

running, it consumes additional registers. From our 

experience, Fermi-based cards obtain better results without the 

pre-fetching technique.  

Fermi-based cards also suffer from a lower memory 

bandwidth to computing power ratio. This means the total 

kernel performance is limited by the memory bandwidth, even 

if the memory latency is well hidden. The limit can be 

overpassed by higher data reuse. Therefore, we have also 

implemented a 16-vector kernel version. This kernel computes 

16 feature vectors simultaneously, where double model 

parameter reuse is in place. The 16-vector kernel over-

performs the 8-vector version by 15–20% on Fermi-based 

cards. On other cards, the performance does not improve. 

D. Kernel asynchronous calls 

Our kernel management is almost identical to Dixon’s, 

which was described in a previous section. We also use two 

page-locked host memory buffers. One is used for a decoder, 

and the other is a destination for likelihoods of the next 

feature-vector window. The complete GPU call is done in an 

asynchronous fashion. Therefore, no CPU thread is blocked 

during the GPU activity. The only exception is when a small 

acoustic model is used. If a kernel call is very short, we found 

that the asynchronous call management overhead can exceed 

the positives and a synchronous approach is faster. This is the 

case when the kernel processing time is shorter than about 4 

ms. However, in this case, the acoustic model computation is 

fast enough anyway. 

V. ATI/AMD OPTIMIZED IMPLEMENTATION 

Because OpenCL is an open standard supported by several 

manufacturers, it theoretically enables the use of the same 

code on ATI/AMD GPUs. However, because of the different 

architecture, the performance of code optimized for one kind 

of device or one manufacturer will generally be poor when 

used on a different device. If support for both manufacturers is 

necessary, it is possible to either use CUDA for NVIDIA 

GPUs and OpenCL for ATI GPUs or to use the OpenCL 

framework for both, together with kernels specifically 

implemented and tuned for the given device architecture. 

 The general structure of our ATI/AMD OpenCL kernel is 

the same as the CUDA kernel structure (see Algorithm 1). It 

consists of the same two loops. The outer goes through the 

Gaussians, while the inner unrolled loop goes through the 

feature-vector dimensions. The outer loop is also unrolled by 

factor 4 to improve the algorithmic intensity of the kernel 

core. Further, in contrast to the CUDA kernel, no local/shared 

memory is used. All the needed data are loaded at the 

beginning of the inner loop using 2D float4 textures. The 

computing kernel body inside the inner loop simultaneously 

processes 8 feature vectors, 4 consecutive dimensions, and 4 

consecutive Gaussians of 64 states. The kernel body consists 

of two blocks of 32 float4 MAD instructions. The first one 

performs the calculations with       
   model parameters. 

Before the second, the squares of the feature-vector data are 

calculated. Then, the other 32 float4 MAD instructions are 

performed on the       
   model parameters. This large block 

of float4 instructions utilizes the entire multiprocessor well 

and helps to hide the texture memory latency. In addition, the 

packed-float4 instructions are used in the logarithmic addition 

section of the kernel. The number of running threads per block 

is 64, which is also the warp-size at the ATI/AMD GPUs. 

VI. RESULTS 

In addition to using the described implementations together 

within the speech decoder, we prepared a stand-alone 

application for benchmarking the AM likelihoods evaluation 

only. It randomly generates the input data as well as the model 

parameters, allowing the performance with various model 

sizes and shapes to be easily evaluated. We use RTF and 

FLOPS measures for a performance comparison. The elapsed 

time is measured, including the host-device memory transfers. 

We define the total number of float-operations needed to 

correctly compute the FLOPS measure as the sum of the dot-

product part and logarithmic addition part. The number of 

operations in the dot-product part is 4 per dimension per 

Gaussian. The number of addLog() operations per Gaussian, 

according to our implementation, is 9. The real number of 

operations/clocks is implementation and hardware specific, 

and the throughput of the log and exp functions is usually 

much worse than multiplication or addition. The total number 

of operations depends on the number of evaluated feature 

vectors, the dimension, and the total number of Gaussians. 

CUDA toolkit 3.2 and 263.06 drivers were used for the 

NVIDIA cards. ATI Stream SDK v2.3 and an ATI Catalyst 

10.12 driver were used for the ATI cards. All the tests were 

run under Windows XP 32-bit. 

A. Performance comparison of various GPUs  

First, we tested a subset of the GPUs available to us using a 

very large model, together with a large feature-vector window. 

This setup suppressed the CPU-GPU communication overhead 

and examined both the maximum GPU performance and 

implementation performance/quality. We chose a 5000-state 

model with 256 Gaussians per state and 36 dimensions. This 

model had 1,280,000 Gaussians in total. The feature-vector 



window length was 256, and the total number of 2560 vectors 

was computed during the benchmark. RTFs were calculated 

on a 100 vectors per second basis. 

The results are shown in Fig. 2 and Fig. 3. The green bars 

denote NVIDIA GPUs, where the CUDA implementation was 

used. The red bars denote ATI GPUs, where OpenCL was 

used. The performance scores in GFLOPS are shown in Fig. 2. 

The real-time factors (RTFs) are shown in Fig. 3. The 

measured performance is very close to well-optimized matrix-

matrix implementations. The remaining gap is mainly caused 

by the lower throughput of the log and exp functions during 

the logarithmic addition phase. The measured RTFs show that 

even a laptop GPU is able to process this very large model in 

less than half of the real-time. Desktop models are much faster 

and achieve elapsed times that are 7 to 50 times shorter than 

real-time. The ATI GPUs power is successfully utilized. Thus, 

the ATI cards achieved much better results than the 

comparable NVIDIA cards because of higher raw 

computational throughput. The results indicate that practically 

any GMM-based acoustic model can be used in real-time 

applications, even with a low-end, mainstream, or even laptop 

GPU. In addition, the offline recognizers can be significantly 

speeded-up if the decoder part is powerful enough. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. CUDA and OpenCL comparison 

In this subsection, we compare the CUDA and OpenCL 

implementations. We proposed two optimized OpenCL 

implementation: one for NVIDIA GPUs and the other for 

ATI/AMD GPUs. A cross-test was also performed. The results 

are shown in Fig. 4 for the NVIDIA GT 240 and ATI HD 

5670 cards. The test setup and model metrics are the same as 

in the previous subsection. There is almost no difference 

between the CUDA and equivalent OpenCL implementations. 

The only difference is that 2D textures are used in the OpenCL 

implementation because texture-cached linear memory is not 

supported. The cross-test showed that the optimization 

techniques are really architecture-specific and at least two 

architecture-specific variants are necessary. 

A comparison of the overheads for the implementations was 

also very interesting. We compared the performances of the 

CUDA and OpenCL implementations for various feature-

vector lengths. The results are shown in Fig. 5. Six window 

sizes ranging from 8 to 256 were tested on a smaller acoustic 

model with 16 Gaussians per state and 5000 states. The results 

show that OpenCL is a little slower for longer window-sizes 

but the overhead is significantly smaller, which causes lower 

elapsed times for small window-sizes. The distinct part of the 

overhead is not caused solely by the CPU-GPU memory 

transfers. The kernel-only times are also significantly higher, 

more than double in our 8-vectors case. In our case, the total 

overhead varied from 0.3 to 1 millisecond per kernel run. In 

the case of real-time speech recognition, the overhead is not a 

major problem anyway because the decoder part is 

significantly slower, and the overhead is therefore hidden with 

a large margin. 

The overhead size and composition depend on the 

individual hardware, and probably even software, setup. Using 

the GPU during computation as a system display for windows-

based operating systems can also play a role (the GPU in Fig. 

5 was used as the display). The conclusions drawn from these 

results lead us to recommend the use of kernels that are as 

long as possible for maximum performance. On the other 

hand, if the GPU is used as the system display, kernel 

computations that are too long cause the display response to 

“freeze.” The kernel computing time should vary between 10 

and 50 ms to reduce the freezing as well as the overhead.  

 

Fig. 4 Real-time factors (RTFs) of our optimized implementation 

for various ATI (red/dark) and NVIDIA (green/light) GPUs. 

Tested on model with 1,280k Gaussians in total. RTF calculation 

is based on 100 vectors per second rate. 

Fig. 3 Performance in GFLOPS of our optimized implementation 

for various ATI (red/dark) and NVIDIA (green/light) GPUs. 

Fig. 5 Performance in GFLOPS of various optimized 

implementations for ATI HD 5670 (red/dark) and 

NVIDIA GT 240 (green/light) GPUs. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Evaluation with recognizer 

In this subsection, practical experiments with a real 

recognizer are presented. The recognizer was designed for 

both off-line and real-time applications. For the evaluation, we 

used the same data, which was used for the automatic 

captioning of parliamentary sessions [20]. The training data 

for the acoustic model consisted of 200 hours of parliament 

speech records. The digitization of an analogue signal was 

carried out at a 44.1-kHz sample rate in a 16-bit resolution 

format. We used PLP features with delta and delta-delta 

coefficients. The feature vector had a total of 36 dimensions. 

Feature vectors were computed at 10 ms intervals (100 vectors 

per second). The acoustic model consisted of 5385 states, and 

each state had 16 or 36 Gaussians. The total numbers of 

Gaussians were 81 k and 194 k. When evaluated on a CPU, 

the smaller model was the largest one that fit into the real-time 

constraints with some margin if a Gaussian-pruning fast 

evaluation algorithm was used. The large model was the best 

performing model. A higher number of Gaussians did not 

bring a significantly better recognition performance. 

The test set consisted of an hour of parliament speech. A 

trigram language model was trained using about 20 M tokens 

of normalized Czech Parliament transcriptions. The dictionary 

size was 186 k of words. The recognition accuracy and RTF 

were evaluated for four different pruning settings of the 

recognizer. The 8-feature-vector window was used. This 

window size is commonly used for real-time applications. 

In our experiment, we tested both acoustic models. Three 

approaches were evaluated for the small model. Two were 

computed with a CPU. The first reference approach computed 

all the model Gaussians (referred to as 16G_CPUfull) on a 

single CPU core. The second approach was based on Gaussian 

pruning and referred to as 16G_CPUfast. The third approach 

was the GPU-CUDA implementation described in this paper. 

The GPU-only approach was used for both the small and large 

models (referred to as 16G_GPU and 36G_GPU). The 

experiments were performed on an Intel Core2 Quad 2.83 

GHz CPU together with a GTX 260 GPU. The decoder part of 

the recognizer used all four cores of the CPU. The results are 

shown in Fig. 6. The CPUfull approach achieved good 

accuracy but was a long way from real-time performance. In 

contrast, the CPUfast algorithm was much faster and ensured 

the real-time constraints with a margin, but at a price of about 

a 1% drop in accuracy. The GPU-implementations had no 

problem with speed, and the RTF difference between the small 

(16G) and large (36G) models was not significant. The large 

model also had a small improvement in accuracy. Therefore, 

employing the GPU opens two sources of accuracy 

improvement in real-time systems. The first source is the full 

acoustic model processing without the need for any pruning or 

approximations. The second source is the possibility of using 

much larger models. In many speech recognition tasks, it is 

now possible to process even bigger model in real-time with 

the aid of the GPU than we are able to robustly train because 

of the lack of data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII. CONCLUSION 

In this paper, we have described our GPU implementation 

of acoustic model likelihoods computation; it shows close to 

the peak performance on many GPUs and is significantly 

faster than the previously published implementations. We 

presented and compared CUDA and OpenCL implementations 

optimized for NVIDIA GPUs. In addition, the OpenCL 

implementation optimized for ATI/AMD GPUs has been 

described and the results are presented. The ATI GPUs 

performed better than the comparable NVIDIA GPUs in this 

task. The results of tests with a recognizer suggest that during 

speech recognition, it is now possible to use any large acoustic 

model that can be reliably trained. Moreover, fusion 

techniques for the simultaneous evaluation of a large set of 

models can now be applied to real-time recognition. 

Fig. 6 Elapsed time per feature vector on GT 240 GPU for 

various vector-window sizes. Both CUDA and OpenCL 

implementations were tested and the total as well as kernel-only 

elapsed times were measured. 

Fig. 7 Parliament speech recognition experiment. Dependence 

of the recognition accuracy on the recognizer speed for four 

different decoder pruning settings and four acoustic model 

evaluation variants.  



ACKNOWLEDGMENT 

The authors would like to thank their colleagues (Aleš 

Pražák, Lukáš Machlica, Zbyněk Zajíc, and Marek Hrůz) for 

testing the presented implementations on their hardware. The 

authors would also like to thank members of the BOINC 

distributed computing community - Czech National Team for 

the testing performed on their hardware: Dušan Vykouřil 

(forest), Miloslav Machát (Indy), Frenk, Martin Krahulík 

(krahulik), and Jakub Sedláček. 

This research was supported by the Grant Agency of the 

Czech Republic, project No. GAČR P103/12/G084. 

REFERENCES 

[1] P. Cardinal, P. Dumouchel, G. Boulianne, and M. Comeau, “GPU 

accelerated acoustic likelihood computations,”  in Proc. of INTERSPEECH 

2008, pp. 964-967. Brisbane, Australia, September 23-26, 2008.  
[2] P. R. Dixon, T. Oonishi, S. Furui. “Harnessing graphics processors for the 

fast computation of acoustic likelihoods in speech recognition,” Computer, 

Speech and Language, pp. 510-526, 
[3] P. Kveton and M. Novak, “Accelerating hierarchical acoustic likelihood 

computation on graphics processors,” In Proc. of INTERSPEECH 2010, pp. 

350-353. Makuhari, Japan, September 26-30, 2010. 
[4] K. Gupta and J. D. Owens, “Three-layer optimizations for fast GMM 

computations on GPU-like parallel processors,” in Proc. of IEEE ASRU, pp. 

146-151, Merano, Italy, 2009. 
[5] J. Vanek, “Discriminative training of acoustic models,” Ph.D. dissertation, 

Dept. of Cybernetics, Univ. of West Bohemia, Pilsen, Czech Republic, 2009. 

(in Czech) 
[6] J. Chong, Y. Yi, A. Faria, N. Satish, and K. Keutzer, “Data-parallel large 

vocabulary continuous speech recognition on graphic processors,” Tech. Rep. 

UCB/EECS-2008-69, EECS Department, University of California, Berkeley, 
2008. 

[7] J. Chong, E. Gonina, Y. Yi, and K. Keutzer, “A fully data parallel WFST-

based large vocabulary continuous speech recognition on a graphics 
processing unit,” In Proc. of INTERSPEECH 2009, pp. 1183-1186. Brighton, 

United Kingdom, September 6-10, 2009. 

[8] J. Vanek and J. V. Psutka, “Gender-dependent acoustic models fusion 
developed for automatic subtitling of parliament meetings broadcasted by the 

Czech TV,” Text, Speech and Dialogue, Lecture Notes in Computer Science, 

Volume 6231/2010, 431-438. Springer, Berlin, 2010. 
[9] S. Padalikar, G. Diamos, “Exploring The Latency and Bandwidth 

Tolerance of CUDA Applications,” NFinTes Tech Report, December 2009. 

[10] Khronos Group Std., “The OpenCL specification, version 1.1,” 
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf 

[11] AMD Company, “AMD Accelerated Parallel Processing, OpenCL 

Programming Guide,” http://developer.amd.com/gpu. 
[12] NVIDIA Corporation, “The OpenCL best practices guide,” 

http://developer.nvidia.com/object/cuda_3_2_downloads.html 

[13] NVIDIA Corporation, “CUDA C Programming Guide 3.2,” 

http://developer.nvidia.com/object/cuda_3_2_downloads.html 

[14] NVIDIA Corporation, “CUDA C Best Practices Guide 3.2,” 

http://developer.nvidia.com/object/cuda_3_2_downloads.html 
[15] P. R. Dixon, D. A Caseiro, T. Oonishi, and S. Furui, “The titech large 

vocabulary WFST speech recognition system,” in Proc. of IEEE ASRU, pp. 

443-448, Dec, Kyoto, Japan, 2007. 
[16] V. Volkov and J. W. Demel, “Benchmarking GPUs to tune dense linear 

algebra,” in Proc. of ACM/IEEE Conference on Supercomputing (SC08), 

Austin, Texas, 2008. 
[17] NVIDIA Corporation, “CUBLAS user guide 3.2,” 

http://developer.nvidia.com/object/cuda_3_2_downloads.html 

[18] D. B. Kirk and W. W. Hwu, “Programming massively parallel 
processors: A hands-on approach,” Morgan Kaufmann, San Francisco, 2010. 

[19] P. R. Dixon, T. Oonishi, and S. Furui, “Fast acoustic computations 
using graphics processors,” in Proc. of IEEE ICASSP, pp. 4321-4324, Apr, 

Taipei, Taiwan, 2009. 

[20] A. Prazak, J. Psutka, J. Hoidekr, J. Kanis, L. Muller, and J. Psutka, 

“Automatic online subtitling of the Czech parliament meetings,” Text, Speech 

and Dialogue, Lecture Notes in Artificial Intelligence, pp. 501-508, Springer, 

Berlin, 2006. 
 

 

 
Jan Vaněk received the M.Sc. degree equivalent in 

cybernetics in 2003 and the Ph.D. degree in 

cybernetics in 2010, both from the University of 
West Bohemia, Plzeň, Czech Republic. 

He is currently a Research Assistant at the 

Department of Cybernetics, University of West 
Bohemia, since 2010. He was working also at the 

Institute of Physical Biology in Nové Hrady, since 

2006 to 2011. His research interests include speech 
and speaker recognition, acoustic modeling, signal 

and image processing and GPGPU programming. 

 
Jan Trmal has received the M.Sc. degree 

equivalent from the University of West Bohemia, 

Department of Cybernetics in the field of automatic 
speech recognition. 

He is currently pursuing his PhD at the same 

department. His interests include GPGPU 

programming, artificial neural networks and 

development of captioning systems.  

 
 

 

Josef V. Psutka received the M.Sc. degree 
equivalents in cybernetics in 2001 and in 

mathematics in 2005, and the Ph.D. degree in 
cybernetics in 2007, all from the University of West 

Bohemia, Plzeň, Czech Republic. 

He was a Research Assistant in the Department 
of Cybernetics, University of West Bohemia, from 

2001. He is currently an Assistant Professor at the 

same department. His research interests include 
mainly speech signal parameterization and acoustic 

modeling methods for automatic speech recognition. 

 

Josef Psutka received the M.Sc. degree equivalent 

in electrical engineering and the Ph.D. degree in 

cybernetics from the Czech Technical University, 
Prague, Czech Republic, in 1974 and 1980, 

respectively. 

He worked as an Assistant Professor in the 
Technical Institute, Plzeň, Czech Republic, from 

1978 to 1991. In 1991, he joined the Department of 

Cybernetics, University of West Bohemia, Plzeň, as 
an Associate Professor, and became a Full Professor 

in 1997. His research interests include speech signal processing, acoustic 

modeling, large-vocabulary ASR, speech synthesis, and pattern recognition.  


