

Abstract—In this paper, we describe an optimized version of a

Gaussian-mixture-based acoustic model likelihood evaluation

algorithm for graphical processing units (GPUs). The evaluation

of these likelihoods is one of the most computationally intensive

parts of automatic speech recognizers, but it can be parallelized

and offloaded to GPU devices. Our approach offers a significant

speed-up over the recently published approaches, because it

utilizes the GPU architecture in a more effective manner. All the

recent implementations have been intended only for NVIDIA

graphics processors, programmed either in CUDA or OpenCL

GPU programming frameworks. We present results for both

CUDA and OpenCL. Further, we have developed an OpenCL

implementation optimized for ATI/AMD GPUs. Results suggest

that even very large acoustic models can be used in real-time

speech recognition engines on computers equipped with a low-

end GPU or laptops. In addition, the completely asynchronous

GPU management provides additional CPU resources for the

decoder part of the LVCSR. The optimized implementation

enables us to apply fusion techniques together with evaluating

many (10 or even more) speaker-specific acoustic models. We

apply this technique to a real-time parliamentary speech

recognition system where the speaker changes frequently.

Index Terms—Automatic speech recognition, parallel

algorithms, parallel architectures, software performance.

I. INTRODUCTION

Large vocabulary continuous speech recognition (LVCSR)

is a highly computationally intensive task, with the acoustic

model likelihoods computation accounting for the largest

portion of the processing task. In a few recent studies [1], [2],

and [3], a GPU was employed as a coprocessor to compute

these likelihoods. A speed-up of 4× to 6× was achieved for the

full acoustic model evaluation itself. This led to a speed-up of

1.3× to 3× for the LVCSR system, depending on the

individual task and setup, while maintaining an untouched

accuracy. For real-time applications, CPU-only recognizer

implementations often have to employ simplified (i.e., small)

models, (acoustic model) pruning, computational

approximations, or combinations of these techniques to fit into

the real-time constraints. Thus, by using hybrid CPU-GPU

implementations, an increase in accuracy can be achieved

because even low-end GPUs are powerful enough to evaluate

significantly larger models in real-time, without the need for

any additional acceleration or complexity reduction

techniques.

 The goal of this work was to develop a fast GPU

implementation that fully exploits the computing power of the

GPUs of both main manufacturers: NVIDIA and ATI/AMD.

This opens the possibility of using real-time LVCSR systems

and other speech applications not only on laptops but also on

near-future hand-held devices [4]. Further, the GPU can be

shared between additional recognizers or other applications.

The proposed approach could also be used during the acoustic

model training phase. As expected, this reduces the training

time significantly, especially for frame-discriminative

methods [5].

 The parallelization of an entire LVCSR system, together

with its implementation on GPUs, was examined by Chong et

al. [6], [7]. The acoustic model evaluation phase represents

one half of the total computing time. With a significant speed-

up of this part, the freed resources can be reassigned to other

parts of the LVCSR engine: a more precise decoder, larger

dictionary, or more complex language model. Alternatively,

the same system can be run on a slow computer.

 In our department, we focus on real-time speech

applications (e.g., generation of automatic captions, dialog

systems). The well-utilized GPU power enables us to

simultaneously evaluate a set of speaker-specific (or speaker-

cluster-specific) acoustic models in real-time and then

combine the individual models’ likelihoods using a fast fusion

method [8]. In addition, a combination of full speaker-cluster-

specific models with speaker-specific feature-transformation

matrices is used to prepare several models, thus enabling the

recognizer to handle large inter- and intra-speaker variability.

Only a well-optimized GPU implementation has adequate

capacity to deal with such a large number of models in real-

time.

The outline of this article is as follows. In section II, a general

introduction into GPGPU domain is given, together with some

architecture details about NVIDIA and ATI cards. In

section III, a thorough review of the current state of research

in the discussed task (i.e. computation of acoustic likelihoods

using GMM), in section IV and V, the proposed

implementations for the NVIDIA architecture and ATI

architecture are introduced and discussed in detail. In

section VI, the results of the proposed methods are published

and comparison to the existing methods from section III is

made. Section VII concludes this article and suggests some

possible real-world scenarios enabled by the research

presented in this article.

Optimized Acoustic Likelihoods Computation

for NVIDIA and ATI/AMD Graphics Processors

Jan Vaněk, Jan Trmal, Josef V. Psutka, and Josef Psutka

vanekyj, jtrmal, psutka_j, psutka@kky.zcu.cz

University of West Bohemia, Department of Cybernetics, Univerzitni 22, 306 14 Plzen, Czech Republic

II. GENERAL PURPOSE COMPUTING ON GPU

Traditionally, GPUs were developed for performing the

primary task of graphics processing. With the increasing

demand for high quality 3D graphics processing, the GPU’s

performance and versatility started to grow rapidly. The

hunger for rich graphical experiences led GPU vendors and

graphical chips designers to implement general

programmability in several stages (e.g., vertex and

fragment/pixel shaders) of the 3D processing pipeline.

Historically, the vertex shader unit has been used for

manipulation using the vertices of objects in 3D scenes, while

fragment/pixel shader programs have been used to manipulate

the color of the rendered fragment or specific pixel. Both these

tasks are easily parallelized. Therefore, instead of the high-

speed serial processing commonly employed in the domain of

CPUs, GPUs were developed to support massively parallel

processing.

The increase in raw computational power triggered an

interest in whether GPUs could be used for more general

computing tasks than just 3D graphics and high fidelity

graphics effects.

The tasks suitable for processing on a GPU are

characterized by high parallelism, low dependency between

individual work elements, and a rather numerical character

with minimal branching. Such tasks are commonly known as

data-parallel algorithms.

Because they deal with the same task, the architectures of

the GPUs from both the vendors are remarkably similar. Their

characteristics are as follows:

 Support a very large number of threads with minimal

thread switching overhead;

 High speed main memory (approx. 100 GB/s, CPU

with about 8 GB/s): However, to achieve this high

speed, the memory accesses must follow specific

patterns and the accesses suffer from high latency;

 Low caching capability: The main memory is not

cached at all, but other specific kinds of memories

(constant memory and texture memory) are cached.

However, the control of these caching capabilities

from the viewpoint of programmer/compiler is

limited, if not non-existent, and the data elements

must be accessed in a predefined manner to achieve

the maximum cache-hit ratio;

 Limited Host (CPU)-to-Device (GPU) communication

support: The communication is usually established

through DMA transfers; The DMA transfer request

must be first configured and then submitted to DMA

controller. This brings an additional latency in

communication (hundreds of CPU cycles at

minimum [9]). Since the GPU is usually connected

via PCI-express bus, the theoretical bandwidth is

about 8 GB/s and the achievable bandwidth is about

4-6 GB/s. For small data transfers, the achievable

bandwidth is significantly smaller; for example for

1024 byte blocks, the achievable bandwidth is about

100 MB/s. Therefore, the computational task should

limit the host-device communication to minimum.

 Limited thread synchronization capabilities; global

synchronization across all the running threads is

problematical (because of the architectural

assumption of low dependence across work

elements). All the running threads are usually

synchronized only at the end of the computational

task, so the usual approach is to decompose the

computation into two or several computational tasks

and each task is executed individually.

 Limited branching capabilities as a result of the SIMD

(single instruction multiple data) character of the

processing units. In general, branching is supported,

but it has a significant influence on the

computational throughput.

Because GPU architectures have such distinct

characteristics, common CPU programming models (and

programming languages based on these programming models)

are not suitable for this task. In order to achieve a close-to-

peak performance, the programmer must consider many low-

level specifics of the given target architecture and, therefore,

the programming model as well as the programming language

must support an explicit expression of the programmer’s

intentions. During the last few years, several programming

concepts have been proposed and slowly abandoned.

NVIDIA’s CUDA (Compute Unified Device Architecture)

has gained a wide acceptance. However, the CUDA standard

is proprietary. Thus, intellectual property concerns led to the

development of the open standard OpenCL (Open Computing

language). The OpenCL standard was developed in

cooperation with teams from ATI/AMD, IBM, Intel, NVIDIA,

and others. Both these frameworks operate with similar

concepts, usually named in the same way, and migration

between them is quite straightforward. The OpenCL standard

[10] operates with the following models.

 The platform model postulates a host connected to one

or many OpenCL computing devices. Every OpenCL

device is divided into one or more processing

elements.

 The execution model postulates that execution of

an OpenCL program occurs in two parts: a host

program, which operates on the host, and one or more

kernels, which run on one or more OpenCL devices.

Each kernel, when dispatched to run, has a notion of

task geometry and is executed within a so-called

index space. This means that each instance of a

kernel is identified by coordinates in this index space,

which provides a global ID (gID) to each kernel

instance. The specific kernel instance identified by

this gID is called a work-item. Work-items are

organized into work-groups. The work-groups

provide a more coarse-grained decomposition of the

index space. A work-group is assigned a unique

work-group ID with the same dimensionality as the

index space used for the work-items. The work-items

in a given work-group execute concurrently on the

processing elements of a single compute unit.

 The memory model specifies that the running kernel

has access to four distinct types of memory:

o Global memory—a memory region that grants

access to read/write (R/W) operations by

any work-item within any work-group. The

memory address space is common to all

work-items. Depending on the device

capabilities, this memory may be cached. In

the scope of GPU, the global memory maps

to the off-chip main memory (see above).

o Constant memory—a segment of memory,

whose content was initialized by the

OpenCL host and which remains constant

during the execution of the kernel. In the

context of GPUs, the constant memory is

usually on-chip and cached automatically, so

that the access latency for consecutive

accesses is reduced.

o Local memory—a segment of memory local to

a work-group. In the context of GPUs, this is

an on-chip memory with low access latency.

The amount if this memory is significantly

limited (thousands of bytes)

o Private memory—a segment of memory local

to the individual work-item. The private

memory can be thought of as a set of

registers. The access to this memory is fast

and virtually without any additional latency,

however the memory volume is very limited

(hundreds of bytes).

Fig. 1 Memory organization for a conceptual OpenCL

device, from [10].

Since the publication of OpenCL v1.0 (June 2008), many

HW vendors and SW producers have announced support of

OpenCL in their products. Thus, there is a significant chance

that OpenCL will become a standard for heterogeneous

computing. Unfortunately, this wide acceptance does not

dislodge the burden of hand-tuning the computational kernels

for individual distinct HW architectures. All the major

OpenCL platform producers have released specific “Best

Practices Guides” [11], [12], which discuss the specific

considerations that should be accounted for when

programming for a given platform.

The CUDA standard is historically older and its application

is limited to NVIDIA devices. However, it postulates the same

models as the OpenCL. The platform and memory model are

basically the same, while the execution model differs only in

terminology. Because of this compatibility, we will use the

CUDA terminology mostly even when referring to ATI/AMD

implementation. The main terminology differences are

following: Work-item in OpenCL corresponds with thread in

CUDA. Work-group corresponds with thread-block (or block),

and finally, Local memory is called shared memory in CUDA.

A. NVIDIA GPU architecture

The NVIDIA GPU consists of many processing elements

(PEs) called multiprocessors. Older NVIDIA GPUs have 8

stream processors in each PE, together with a 16-kB on-chip

local memory (called shared memory). A single PE offers 8 k

or 16 k 32-bit registers, depending on the GPU series. The

Fermi-based PEs are larger and include 32 or 48 stream

processors. The 64-kB on-chip memory can be set to two

configurations: 16 kB L1 cache and 48 kB local memory or

vice versa.

The peak memory bandwidth from global memory can be

achieved only via coalesced access, where 16 consecutive

work-items (half-warp) read/write consecutive addresses (note

that full-warp is needed on Fermi-based cards). Another

example involves using local memory, where one should omit

bank-conflicts, which can significantly degrade the kernel

performance. These issues are discussed in more detail in [13]

and [14]. The second-mentioned is more focused on kernel

optimizations per-se.

B. ATI/AMD GPU architecture

The ATI/AMD GPU also consists of multiple PEs.

However, compared to NVIDIA PEs, the internal architecture

is different. Each PE contains 16 stream cores, each equipped

with five stream processors (four in Cayman based 69XX

GPUs). This is why ATI/AMD GPUs have a higher raw

computational performance than comparable NVIDIA GPUs.

In real life, however, it is difficult to supply the input data

sufficiently fast to keep these high-performance

multiprocessors fully utilized. Therefore, the maximal

performance cannot be achieved in some tasks or badly

optimized implementations. The older ATI cards (HD 4000

series and older) do not contain on-chip local memory but use

the slower global memory instead. Therefore, a programmer

should implement the algorithm in a fashion that does not use

the local memory on these cards. The HD 5000 and 6000

series have 32 kB of local memory, but it is not advisable to

directly use it extensively because the limited throughput is

insufficient to gain the maximum computational performance.

Instead of the local memory, a relatively large 256-kB register

file is preferred. A more detailed performance optimization

guide can be found in [11].

III. RECENT IMPLEMENTATIONS REVIEW

The first use of a GPU for acoustic model likelihoods

computation was briefly mentioned by Dixon et al. [15].

The following year, a more detailed paper was published by

Cardinal et al. [1]. Both approaches share a common ground:

the computation of likelihoods as dot products. The entire

acoustic model is represented as a matrix A, in which each

row is a log-weighted Gaussian component with a diagonal

covariance matrix. The i
th

 component of a J-dimensional

mixture model is represented as a vector according to

 , (1)

where K is

 . (2)

 The feature vector is then expanded to

 . (3)

 The score of every Gaussian can be found as the matrix-

vector multiplication y = Ax. The output vector y is a vector of

the log-weighted scores of every Gaussian component of the

mixture (given input vector x). An evaluation of the following

n feature vectors can be performed as a single matrix-matrix

multiplication, Y = AX, where each column of Y contains the

log-weighted scores for every Gaussian component of every

mixture model for the corresponding feature vector in X,

which is a matrix of n feature vectors

 . (4)

 The final mixture likelihoods are obtained by the sum of all

the belonging Gaussians. This sum is implemented in the log-

domain as a logarithmic addition, which is defined as

ln(e
x
+e

y
).

 The evaluation of the likelihoods can be implemented in

two ways: the first possibility is to create a single kernel that

computes the dot product, as well as the logarithmic addition.

This approach can decrease the required memory bandwidth

and reduce the overhead of running two separate kernels. On

the other hand, it is much more difficult to propose an optimal

block/grid architecture for both parts of the kernel. The second

way is to create a separate kernel for each part of the

algorithm. The dot product part implemented as a matrix-

matrix multiplication can be computed very efficiently [16].

The efficient implementation of sgemm is in the CUBLAS

library [17]. Thus, one does not need to create a new (probably

less efficient) kernel. The efficient logarithmic addition

implementation can be adopted from the parallel sum

algorithm [18]. The native log and exp functions should be

used to get the maximum performance. This two-kernel

approach is simple and can help realize a satisfactory

performance, especially if the overhead is marginalized by

computing a large block of feature vectors simultaneously

(i.e., large n).

A. Cardinal’s implementation

The implementation developed at CRIM and described in

[1] is a single-kernel approach. Each block computes the final

likelihood of one mixture of Gaussians. As a result, the

number of launched blocks is the number of distributions in

the acoustic model. Each block contains 256 threads. The

main computationally intensive part is the multiply-add

(MAD) operation in the dual while-loop. From the viewpoint

of performance tuning, it is crucial that, together with this

single instruction, many other operations need to be

performed: the while-loops’ stopping conditions need to be

evaluated, two operands need to be fetched from the global

memory, another additional operand needs to be loaded from

the shared memory and, finally, the result needs to be stored

back in the shared memory. In this case, the main bottleneck is

caused by the fetches from global memory. To perform a

single-clock instruction, two 32-bit floats (i.e., 8 bytes) need to

be fetched. This reduces the maximum performance of this

implementation to less than 1/15 of the peak FLOPS on all

current GPUs. In addition, the two tied loops and combined

read-store operation with shared memory affect the

performance, but they are not the main bottlenecks in this

case.

 The implementation on a GeForce 8800GTX card performs

5× faster than a CPU-only SSE-based vectorized

implementation. The tested acoustic model had 39 dimensions

and consisted of 4600 states with 32, 64, or 128 Gaussians.

The real-time factor (RTF) is estimated on the basis of 100

frames/s. The elapsed times per single feature vector, together

with floating-point operations per second (FLOPS), are

presented in Table 1. The RTF is the ratio between the

computing time and length of the processed speech signal.

Note that these numbers are only for acoustic model

evaluation, not for full speech decoding. The theoretical peak

performance of this card is 346 GFLOPS (for MAD

instructions only), and the real achieved performance on

matrix-matrix multiplication is about 200 GFLOPS [16]. The

main bottleneck of this implementation is described above. In

addition, the computation of a single feature vector suffers

from the high overhead of frequent CPU-GPU transfers.

Therefore, a larger window needs to be used for efficient GPU

utilization. A significant redesign of the HMM decoder may

be necessary to allow the blocked computation of AM

likelihoods.

B. Dixon’s implementation

In contrast, the implementation developed at the Tokyo

Institute of Technology and described in [2] and [19] uses a

two-kernel approach. The CUBLAS library is used for matrix-

matrix multiplication, and an extra kernel is used to perform

the final logarithmic addition. To achieve the maximum

performance for the entire decoder, the GPU part runs

completely asynchronously. Two buffers for page-locked

memory are used; the CPU decoder works with one, while the

GPU is preparing the other in parallel. This is a way to hide

the CPU-GPU transfer overhead as well as the GPU

processing time itself. The proper window length was

analyzed in that study, and a length higher than 10 was

recommended. Thus, window lengths of 8 or 16 should be

TABLE I
CARDINAL’S IMPLEMENTATION RESULTS.

Number of

Gaussians
TIME (MS) RTF GFLOPS

32 2.27 0.227 10.7

64 4.39 0.439

11.1

128 8.55 0.855 11.4

used for real-time decoders, and even larger windows can be

used for offline tasks. In [19], the use of 16-bit half floats was

also tested for storing model parameters. Only a negligible

change was reported in the recognition accuracy. The model

size in memory is not a significant issue if the GPU is used

only for acoustic model evaluation. However, in cases where

the GPU is shared between several tasks or is also used for a

decoder, model size reduction can be helpful.

 The implementation was tested for the recognition of

spontaneous Japanese speech on a GeForce 8800GTX GPU.

The feature-vector length was 38, and the acoustic model

contained 3000 states, with the Gaussian component counting

2, 4, ... , 512. The feature-vector window size was 32.

Performance results are presented for the acoustic model with

the decoder, not for the model alone. We put forth our best

effort to estimate the acoustic-only performance numbers from

the presented graphs. These estimated results are shown in

Table 2. This implementation is much faster than Cardinal’s

approach, as previously described, mainly because of the

optimized sgemm from the CUBLAS library and the large

feature-vector window. However, the performance is still far

from that of matrix-matrix multiplication alone. Using the

general sgemm is not an optimal solution for badly shaped

matrices and cannot harness all the optimization possibilities

of the likelihoods computation task (especially appropriate

data re-use). Moreover, storing all the results at the end of the

first kernel and re-reading them again during the start of the

second kernel is wasteful. A well-optimized single-kernel

approach should be able to achieve better performance.

C. Kveton’s implementation

In contrast with the previous implementations, an

implementation developed at IBM and described in [3] uses a

more general OpenCL programming tool than the NVIDIA-

specific CUDA tool. This implementation is based on the two-

kernel approach. The first dot-product kernel is implemented

as a matrix-matrix multiplication of a window of feature

vectors (length is 16). This full acoustic likelihood

computation is considered to be a baseline for further

describing a hierarchical approach. This approach is a

Gaussian selection method based on a hierarchical scheme of

clustered Gaussians. At run time, only the top scoring clusters

are evaluated. The authors used 1024 clusters, with the top ¼

evaluated. Thus, the theoretical speed-up is 4× as compared to

full computation. This technique is well suited for

implementation on a CPU. The GPU implementation is not

trivial and is described in detail in that paper. The actual

speed-up is about 2× in comparison to a full GPU approach.

The full and hierarchical approaches were tested on

GeForce GTS 250 and GTX 285 GPUs. Two acoustic models

with 40 dimensions were tested. The first small model had 2 k

states and 50 k Gaussians in total. The large one had 6 k states

and 150 k Gaussians. The number of Gaussians per state was

not fixed, but the approach does not support this kind of

model. Therefore, fake-Gaussians (about 30%) were added to

maintain uniform numbers. The results for only the acoustic

likelihoods are shown in Table 3. GFLOPS values for the

hierarchical approach were evaluated in the same manner as

that for full computation (pruned Gaussians are taken as

computed). The performance was better than Cardinal’s but

worse than Dixon’s, even if the used GPUs were faster (GTS

250 is about 1.35× faster than 8800GTX; GTX 285 is about

2× faster). Even the hierarchical approach did not outperform

its competitors, although paying more attention to the

optimization of this algorithm would certainly greatly improve

its performance. Some of the slowdown could have been

caused by the use of OpenCL. We have analyzed the

difference between the CUDA and OpenCL implementations

of a compatible method in the Results section of this paper.

D. Chong’s implementation

The implementation developed at the University of

California at Berkeley and described in [6], [7] is not for the

acoustic likelihood computation only but a whole GPU-

implemented LVCSR, as noted in the Introduction. The

classical Viterbi-based LVCSR and a weighted finite state

transducer based LVCSR were implemented. When the

acoustic likelihood computation is performed on a CPU, it

represents more than 80% of the total computation time. In the

GPU LVCSR, the authors reported an occupation of about

50%. This is caused by the better parallelization suitability of

the likelihood calculation. The authors used a two-kernel

approach to compute these likelihoods. Only the pruned list of

states was computed for each time step. It reduced the

computation time by 70%. The authors reported that they

achieved close-to-peak performance in this phase [7], but no

detailed description of the implementation was given. The

reported performances on a GeForce GTX 280 for the dot-

product and logarithmic addition kernel were 194 and 367

GFLOPS, respectively. The reported time needed for the

likelihood computation phase varied from 73 to 178 ms per

second of input speech (depending on the pruning settings).

However, on the basis of the reported GFLOPS, the likelihood

computation should take only about 30 ms per second of

speech without any pruning. These numbers do not add-up

TABLE II

DIXON’S IMPLEMENTATION RESULTS.

Number of

Gaussians
RTF GFLOPS

128 0.08 77

256 0.15

82

512 0.3 82

TABLE III
KVETON’S IMPLEMENTATION RESULTS.

GPU
Total # of

Gaussians
Approach RTF GFLOPS

GTS

250
50k

Full 0.05 17

Hierarchical

0.03 28

GTX

285
50k

Full 0.04 21

Hierarchical 0.02 42

GTS

250
150k

Full 0.15 17

Hierarchical

0.07 36

GTX

285
150k

Full 0.11 23

Hierarchical 0.05 51

together very well. Maybe the finding of unique labels and the

pruning management limit the high-performance core.

IV. NVIDIA OPTIMIZED IMPLEMENTATION

Our implementation evaluates the likelihoods for all the

states and for a window of feature-vectors in advance in

asynchronous way -even for states that are not needed by

decoder because of pruning. This approach is much more

suitable for GPU than an on-demand selection of computed

states and the overall performance of entire recognizer is

better.

The core of implementation is based on the single-kernel

approach to avoid storing and re-reading the intermediate data.

Each block manages all the Gaussians of 64 states, together

with 8 feature vectors. Therefore, the grid is 2D. Columns are

composed of stripes of 8 feature vectors and rows are stripes

of 64 states. The number of rows is given by the model states

number, and the number of columns depends on the feature-

vector window length, which can be controlled by the decoder

(according to the real-time/offline scenario). The number of

threads per block is equal to the number of evaluated states.

The optimal number is 64 in the most cases. To ensure

memory address alignment (required for coalesced memory

access) all the dimensions (model as well as feature vectors)

are padded to be multiples of 4. This padding also enables the

use of float4 textures, which are the fastest solution for read-

only memory. All the data are rearranged in advance to be in

the order they will be read. This step ensures the maximal

cache-hit ratio.

All the 8-feature-vector data are loaded into a shared

memory buffer in the beginning of the kernel, together with a

squares calculation, according to equation (3). This maximizes

data reuse. The shared memory buffer size is defined just

before the kernel is executed, according to the feature-vector

aligned dimension. During the computation, only the model

parameters are fetched through the texture cache.

A. Kernel pseudocode

Algorithm 1 shows the pseudocode of the kernel. The

kernel consists of an initialization part, where the feature

vectors are loaded and squares are calculated. In addition,

likelihood registers for all 8 feature vectors are defined and set

to “log-zero,” which means a predefined big-enough negative

value. Thereafter, a loop for all the Gaussians begins. First, a

set of 8 accumulators is defined and set to zero. Then, an

access address for the texture memory is computed using the

grid, block, and thread built-in variables. Pre-fetching the

model parameters is a good way to at least partially hide the

global memory latency. The memory latency is hidden not

only by the other running blocks but also by the current block.

The pre-fetching technique is favorable in the case where only

a few concurrent blocks are running (because of shared

memory or the register file limit). We use temporary float4

registers (_u4, _v4) to store the pre-fetched model values. u4

and__u4 contain four consecutive dimensions of
 . v4

and _v4 likewise contain
 .

The most computationally-intensive part of the kernel is the

body. The body is composed of an inner loop that iterates

through all the dimensions. This loop is unrolled by factor 4.

Unrolling improves the body’s algorithmic intensity and

works nicely with the used float4 texture data type. The body

of this loop begins with loading management. The pre-fetched

values are copied into another register (u4, v4) and the next

values are pre-fetched into the original variables. The texture

address shift is given by the number of threads in the block.

This is possible because of a careful reorganization of the

model parameter memory layout. The optimized memory

layout ensures good texture cache utilization and maximizes

the data throughput. We bind textures as a linear memory of

the float4 data type. The rest of the body of the inner loop

consists of 64 MAD instructions that accumulate four

dimensions from 8 feature vectors multiplied by the

appropriate model parameters u4 and v4. The creation of a

large block of computation-only instructions is a key approach

for achieving good performance. The large block also ensures

an efficient hiding of global memory latency. In our case, one

MAD operand is loaded from shared memory. The same 32-

bit word is loaded by all the threads. Therefore, no bank-

conflicts can arise. An instruction with shared-memory

operands is slower than a registers-only instruction. In our

ALGORITHM I

OPTIMIZED KERNEL PSEUDOCODE.

1: fetch all entire 8 feature-vectors to shared

memorybuffercompute squares to the second half of

the buffer

2: __syncthreads()

3: set 8 likelihood registers to “log-zero”

4: loop for all Gaussians

5: set 8 accumulators to zero

6: compute address into model texture memory

7: pre-fetch model parameters for the first 4

dimensions (_u4, _v4)

8: loop for all dimensions/4 – unrolled by factor 4

9: copy pre-fetched _u4 and _v4 to another registers

u4, v4

10: adjust address

11: pre-fetch next _u4, _v4

12: compute unrolled block of 64 MAD instructions

 8 vectors × 4 dimensions × 2 (u,v) = 64 MAD

instructions

 use #pragma unroll or manual unrolling

13: end of loop for dimensions

14: fetch K constants for actual Gaussians (a float per

thread)

15: finalize all 8 accumulators and do addLog()

16: end of loop for Gaussians

17: store final likelihoods

case, the MAD instruction takes 6 clocks instead of 4 clocks

for the registers-only variant. This reduces the maximal

throughput to 2/3 in the MAD part of the kernel, but there was

no other faster solution without using shared memory because

register space is a scarce resource. A similar architecture is

used in Volkov’s optimized matrix-matrix multiplication

algorithm [16].

After the inner loop, the accumulators for the actual

Gaussian are finalized with the addition of fetched constant K,

which is defined by equation (2) above. Then, the likelihoods

for all the feature vectors are updated using a logarithmic

addition function. We implemented the addLog function in the

following way:

mx = max(x1, x2);

y = mx + __logf(1.0f + __expf(min(x1, x2) – mx));

where max, mix, __logf, and __expf are fast GPU-native

functions. This addLog variant is accurate and fast enough.

Therefore, no approximation, which is often used in CPU

implementation, is needed. At the end of the kernel, the final

likelihoods are stored back into the global memory. The writes

should be coalesced, but the performance of this stage is

actually not very important.

 To achieve the maximum performance, the input model

parameters in the memory layout must match the fetching

order. The memory ordering is the same for the
 texture

(designated as u4 in kernel pseudocode) as for

(designated as v4). The order is schematically illustrated in

Fig. 1 via a bottom-up schema. The basic building block (Fig.

1A) consists of four 32-floats. It is a vector of four

consecutive dimensions. This vector is read by the single

thread as a float4 data type. The next upper block (Fig. 1B)

consists of 64 float4 vectors. They are read by all 64 threads

running in the actual block. These threads access consecutive

memory addresses; therefore, the memory access is coalesced.

These blocks are read in the inner loop sequentially for all the

dimensions; therefore, they must be stored in memory

consecutively according to the dimension (Fig. 1C). One block

contains a complete set of parameters of one 64-states

Gaussian. The next upper block consists of all the Gaussian

blocks according to the outer loop (Fig. 1D). The memory-

block is read by all the blocks belonging to the same row of

the grid. The entire texture memory is composed of all these

Gaussian memory-blocks for all the states of the acoustic

model (Fig. 1E).

B. Variable number of Gaussians per state

Our implementation can also easily support acoustic models

with a variable number of Gaussians per state. Only minor

changes are required. Because the 64-state blocks are

computed independently, a constant number of Gaussians per

state has to be ensured only within the individual blocks.

Therefore, the model states are sorted in advance according to

their Gaussians per state numbers and divided into 64-state

blocks. The state-blocks are padded, if necessary. The

parameter textures for both models are composed in the same

way as in Fig. 1. Only an additional memory-offset vector

needs to be passed into the kernel because the 64-state

Fig. 2 Model parameters texture memory arrangement

bottom-up schema. Upper memory blocks consist of

consecutively laid-down bottom blocks. This memory

arrangement fits the kernel read order and ensures

maximum memory reading performance.

memory-blocks (Fig. 1D) do not have a constant size.

Moreover, a vector with state-indexes can be passed into the

kernel, and then the final likelihoods can be stored in the

original order if necessary.

C. Final tuning

The number of threads in a block (number of evaluated

states) can be tuned. A low number of threads (one warp)

exhibits a low memory-latency hiding ability. In contrast, too

large a number of threads (128 and more) limits the number of

active blocks per multiprocessor because of the limited

number of registers. An overly large thread-block can increase

the number of evaluated virtual (padded) Gaussians and states,

especially for models with variable numbers of Gaussians per

state. Therefore, the state-block size should be tuned for the

individual acoustic model’s shape and hardware resources

because different GPU models vary greatly in their

architecture–they differ in register-file size as well as

computation/memory performance ratio, for example.

According to our experience, the 64-thread-block is optimal in

most cases.

Although the pre-fetching technique helps to better hide

memory latency in cases where very low number of blocks is

running, it consumes additional registers. From our

experience, Fermi-based cards obtain better results without the

pre-fetching technique.

Fermi-based cards also suffer from a lower memory

bandwidth to computing power ratio. This means the total

kernel performance is limited by the memory bandwidth, even

if the memory latency is well hidden. The limit can be

overpassed by higher data reuse. Therefore, we have also

implemented a 16-vector kernel version. This kernel computes

16 feature vectors simultaneously, where double model

parameter reuse is in place. The 16-vector kernel over-

performs the 8-vector version by 15–20% on Fermi-based

cards. On other cards, the performance does not improve.

D. Kernel asynchronous calls

Our kernel management is almost identical to Dixon’s,

which was described in a previous section. We also use two

page-locked host memory buffers. One is used for a decoder,

and the other is a destination for likelihoods of the next

feature-vector window. The complete GPU call is done in an

asynchronous fashion. Therefore, no CPU thread is blocked

during the GPU activity. The only exception is when a small

acoustic model is used. If a kernel call is very short, we found

that the asynchronous call management overhead can exceed

the positives and a synchronous approach is faster. This is the

case when the kernel processing time is shorter than about 4

ms. However, in this case, the acoustic model computation is

fast enough anyway.

V. ATI/AMD OPTIMIZED IMPLEMENTATION

Because OpenCL is an open standard supported by several

manufacturers, it theoretically enables the use of the same

code on ATI/AMD GPUs. However, because of the different

architecture, the performance of code optimized for one kind

of device or one manufacturer will generally be poor when

used on a different device. If support for both manufacturers is

necessary, it is possible to either use CUDA for NVIDIA

GPUs and OpenCL for ATI GPUs or to use the OpenCL

framework for both, together with kernels specifically

implemented and tuned for the given device architecture.

 The general structure of our ATI/AMD OpenCL kernel is

the same as the CUDA kernel structure (see Algorithm 1). It

consists of the same two loops. The outer goes through the

Gaussians, while the inner unrolled loop goes through the

feature-vector dimensions. The outer loop is also unrolled by

factor 4 to improve the algorithmic intensity of the kernel

core. Further, in contrast to the CUDA kernel, no local/shared

memory is used. All the needed data are loaded at the

beginning of the inner loop using 2D float4 textures. The

computing kernel body inside the inner loop simultaneously

processes 8 feature vectors, 4 consecutive dimensions, and 4

consecutive Gaussians of 64 states. The kernel body consists

of two blocks of 32 float4 MAD instructions. The first one

performs the calculations with
 model parameters.

Before the second, the squares of the feature-vector data are

calculated. Then, the other 32 float4 MAD instructions are

performed on the
 model parameters. This large block

of float4 instructions utilizes the entire multiprocessor well

and helps to hide the texture memory latency. In addition, the

packed-float4 instructions are used in the logarithmic addition

section of the kernel. The number of running threads per block

is 64, which is also the warp-size at the ATI/AMD GPUs.

VI. RESULTS

In addition to using the described implementations together

within the speech decoder, we prepared a stand-alone

application for benchmarking the AM likelihoods evaluation

only. It randomly generates the input data as well as the model

parameters, allowing the performance with various model

sizes and shapes to be easily evaluated. We use RTF and

FLOPS measures for a performance comparison. The elapsed

time is measured, including the host-device memory transfers.

We define the total number of float-operations needed to

correctly compute the FLOPS measure as the sum of the dot-

product part and logarithmic addition part. The number of

operations in the dot-product part is 4 per dimension per

Gaussian. The number of addLog() operations per Gaussian,

according to our implementation, is 9. The real number of

operations/clocks is implementation and hardware specific,

and the throughput of the log and exp functions is usually

much worse than multiplication or addition. The total number

of operations depends on the number of evaluated feature

vectors, the dimension, and the total number of Gaussians.

CUDA toolkit 3.2 and 263.06 drivers were used for the

NVIDIA cards. ATI Stream SDK v2.3 and an ATI Catalyst

10.12 driver were used for the ATI cards. All the tests were

run under Windows XP 32-bit.

A. Performance comparison of various GPUs

First, we tested a subset of the GPUs available to us using a

very large model, together with a large feature-vector window.

This setup suppressed the CPU-GPU communication overhead

and examined both the maximum GPU performance and

implementation performance/quality. We chose a 5000-state

model with 256 Gaussians per state and 36 dimensions. This

model had 1,280,000 Gaussians in total. The feature-vector

window length was 256, and the total number of 2560 vectors

was computed during the benchmark. RTFs were calculated

on a 100 vectors per second basis.

The results are shown in Fig. 2 and Fig. 3. The green bars

denote NVIDIA GPUs, where the CUDA implementation was

used. The red bars denote ATI GPUs, where OpenCL was

used. The performance scores in GFLOPS are shown in Fig. 2.

The real-time factors (RTFs) are shown in Fig. 3. The

measured performance is very close to well-optimized matrix-

matrix implementations. The remaining gap is mainly caused

by the lower throughput of the log and exp functions during

the logarithmic addition phase. The measured RTFs show that

even a laptop GPU is able to process this very large model in

less than half of the real-time. Desktop models are much faster

and achieve elapsed times that are 7 to 50 times shorter than

real-time. The ATI GPUs power is successfully utilized. Thus,

the ATI cards achieved much better results than the

comparable NVIDIA cards because of higher raw

computational throughput. The results indicate that practically

any GMM-based acoustic model can be used in real-time

applications, even with a low-end, mainstream, or even laptop

GPU. In addition, the offline recognizers can be significantly

speeded-up if the decoder part is powerful enough.

B. CUDA and OpenCL comparison

In this subsection, we compare the CUDA and OpenCL

implementations. We proposed two optimized OpenCL

implementation: one for NVIDIA GPUs and the other for

ATI/AMD GPUs. A cross-test was also performed. The results

are shown in Fig. 4 for the NVIDIA GT 240 and ATI HD

5670 cards. The test setup and model metrics are the same as

in the previous subsection. There is almost no difference

between the CUDA and equivalent OpenCL implementations.

The only difference is that 2D textures are used in the OpenCL

implementation because texture-cached linear memory is not

supported. The cross-test showed that the optimization

techniques are really architecture-specific and at least two

architecture-specific variants are necessary.

A comparison of the overheads for the implementations was

also very interesting. We compared the performances of the

CUDA and OpenCL implementations for various feature-

vector lengths. The results are shown in Fig. 5. Six window

sizes ranging from 8 to 256 were tested on a smaller acoustic

model with 16 Gaussians per state and 5000 states. The results

show that OpenCL is a little slower for longer window-sizes

but the overhead is significantly smaller, which causes lower

elapsed times for small window-sizes. The distinct part of the

overhead is not caused solely by the CPU-GPU memory

transfers. The kernel-only times are also significantly higher,

more than double in our 8-vectors case. In our case, the total

overhead varied from 0.3 to 1 millisecond per kernel run. In

the case of real-time speech recognition, the overhead is not a

major problem anyway because the decoder part is

significantly slower, and the overhead is therefore hidden with

a large margin.

The overhead size and composition depend on the

individual hardware, and probably even software, setup. Using

the GPU during computation as a system display for windows-

based operating systems can also play a role (the GPU in Fig.

5 was used as the display). The conclusions drawn from these

results lead us to recommend the use of kernels that are as

long as possible for maximum performance. On the other

hand, if the GPU is used as the system display, kernel

computations that are too long cause the display response to

“freeze.” The kernel computing time should vary between 10

and 50 ms to reduce the freezing as well as the overhead.

Fig. 4 Real-time factors (RTFs) of our optimized implementation

for various ATI (red/dark) and NVIDIA (green/light) GPUs.

Tested on model with 1,280k Gaussians in total. RTF calculation

is based on 100 vectors per second rate.

Fig. 3 Performance in GFLOPS of our optimized implementation

for various ATI (red/dark) and NVIDIA (green/light) GPUs.

Fig. 5 Performance in GFLOPS of various optimized

implementations for ATI HD 5670 (red/dark) and

NVIDIA GT 240 (green/light) GPUs.

C. Evaluation with recognizer

In this subsection, practical experiments with a real

recognizer are presented. The recognizer was designed for

both off-line and real-time applications. For the evaluation, we

used the same data, which was used for the automatic

captioning of parliamentary sessions [20]. The training data

for the acoustic model consisted of 200 hours of parliament

speech records. The digitization of an analogue signal was

carried out at a 44.1-kHz sample rate in a 16-bit resolution

format. We used PLP features with delta and delta-delta

coefficients. The feature vector had a total of 36 dimensions.

Feature vectors were computed at 10 ms intervals (100 vectors

per second). The acoustic model consisted of 5385 states, and

each state had 16 or 36 Gaussians. The total numbers of

Gaussians were 81 k and 194 k. When evaluated on a CPU,

the smaller model was the largest one that fit into the real-time

constraints with some margin if a Gaussian-pruning fast

evaluation algorithm was used. The large model was the best

performing model. A higher number of Gaussians did not

bring a significantly better recognition performance.

The test set consisted of an hour of parliament speech. A

trigram language model was trained using about 20 M tokens

of normalized Czech Parliament transcriptions. The dictionary

size was 186 k of words. The recognition accuracy and RTF

were evaluated for four different pruning settings of the

recognizer. The 8-feature-vector window was used. This

window size is commonly used for real-time applications.

In our experiment, we tested both acoustic models. Three

approaches were evaluated for the small model. Two were

computed with a CPU. The first reference approach computed

all the model Gaussians (referred to as 16G_CPUfull) on a

single CPU core. The second approach was based on Gaussian

pruning and referred to as 16G_CPUfast. The third approach

was the GPU-CUDA implementation described in this paper.

The GPU-only approach was used for both the small and large

models (referred to as 16G_GPU and 36G_GPU). The

experiments were performed on an Intel Core2 Quad 2.83

GHz CPU together with a GTX 260 GPU. The decoder part of

the recognizer used all four cores of the CPU. The results are

shown in Fig. 6. The CPUfull approach achieved good

accuracy but was a long way from real-time performance. In

contrast, the CPUfast algorithm was much faster and ensured

the real-time constraints with a margin, but at a price of about

a 1% drop in accuracy. The GPU-implementations had no

problem with speed, and the RTF difference between the small

(16G) and large (36G) models was not significant. The large

model also had a small improvement in accuracy. Therefore,

employing the GPU opens two sources of accuracy

improvement in real-time systems. The first source is the full

acoustic model processing without the need for any pruning or

approximations. The second source is the possibility of using

much larger models. In many speech recognition tasks, it is

now possible to process even bigger model in real-time with

the aid of the GPU than we are able to robustly train because

of the lack of data.

VII. CONCLUSION

In this paper, we have described our GPU implementation

of acoustic model likelihoods computation; it shows close to

the peak performance on many GPUs and is significantly

faster than the previously published implementations. We

presented and compared CUDA and OpenCL implementations

optimized for NVIDIA GPUs. In addition, the OpenCL

implementation optimized for ATI/AMD GPUs has been

described and the results are presented. The ATI GPUs

performed better than the comparable NVIDIA GPUs in this

task. The results of tests with a recognizer suggest that during

speech recognition, it is now possible to use any large acoustic

model that can be reliably trained. Moreover, fusion

techniques for the simultaneous evaluation of a large set of

models can now be applied to real-time recognition.

Fig. 6 Elapsed time per feature vector on GT 240 GPU for

various vector-window sizes. Both CUDA and OpenCL

implementations were tested and the total as well as kernel-only

elapsed times were measured.

Fig. 7 Parliament speech recognition experiment. Dependence

of the recognition accuracy on the recognizer speed for four

different decoder pruning settings and four acoustic model

evaluation variants.

ACKNOWLEDGMENT

The authors would like to thank their colleagues (Aleš

Pražák, Lukáš Machlica, Zbyněk Zajíc, and Marek Hrůz) for

testing the presented implementations on their hardware. The

authors would also like to thank members of the BOINC

distributed computing community - Czech National Team for

the testing performed on their hardware: Dušan Vykouřil

(forest), Miloslav Machát (Indy), Frenk, Martin Krahulík

(krahulik), and Jakub Sedláček.

This research was supported by the Grant Agency of the

Czech Republic, project No. GAČR P103/12/G084.

REFERENCES

[1] P. Cardinal, P. Dumouchel, G. Boulianne, and M. Comeau, “GPU

accelerated acoustic likelihood computations,” in Proc. of INTERSPEECH

2008, pp. 964-967. Brisbane, Australia, September 23-26, 2008.
[2] P. R. Dixon, T. Oonishi, S. Furui. “Harnessing graphics processors for the

fast computation of acoustic likelihoods in speech recognition,” Computer,

Speech and Language, pp. 510-526,
[3] P. Kveton and M. Novak, “Accelerating hierarchical acoustic likelihood

computation on graphics processors,” In Proc. of INTERSPEECH 2010, pp.

350-353. Makuhari, Japan, September 26-30, 2010.
[4] K. Gupta and J. D. Owens, “Three-layer optimizations for fast GMM

computations on GPU-like parallel processors,” in Proc. of IEEE ASRU, pp.

146-151, Merano, Italy, 2009.
[5] J. Vanek, “Discriminative training of acoustic models,” Ph.D. dissertation,

Dept. of Cybernetics, Univ. of West Bohemia, Pilsen, Czech Republic, 2009.

(in Czech)
[6] J. Chong, Y. Yi, A. Faria, N. Satish, and K. Keutzer, “Data-parallel large

vocabulary continuous speech recognition on graphic processors,” Tech. Rep.

UCB/EECS-2008-69, EECS Department, University of California, Berkeley,
2008.

[7] J. Chong, E. Gonina, Y. Yi, and K. Keutzer, “A fully data parallel WFST-

based large vocabulary continuous speech recognition on a graphics
processing unit,” In Proc. of INTERSPEECH 2009, pp. 1183-1186. Brighton,

United Kingdom, September 6-10, 2009.

[8] J. Vanek and J. V. Psutka, “Gender-dependent acoustic models fusion
developed for automatic subtitling of parliament meetings broadcasted by the

Czech TV,” Text, Speech and Dialogue, Lecture Notes in Computer Science,

Volume 6231/2010, 431-438. Springer, Berlin, 2010.
[9] S. Padalikar, G. Diamos, “Exploring The Latency and Bandwidth

Tolerance of CUDA Applications,” NFinTes Tech Report, December 2009.

[10] Khronos Group Std., “The OpenCL specification, version 1.1,”
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

[11] AMD Company, “AMD Accelerated Parallel Processing, OpenCL

Programming Guide,” http://developer.amd.com/gpu.
[12] NVIDIA Corporation, “The OpenCL best practices guide,”

http://developer.nvidia.com/object/cuda_3_2_downloads.html

[13] NVIDIA Corporation, “CUDA C Programming Guide 3.2,”

http://developer.nvidia.com/object/cuda_3_2_downloads.html

[14] NVIDIA Corporation, “CUDA C Best Practices Guide 3.2,”

http://developer.nvidia.com/object/cuda_3_2_downloads.html
[15] P. R. Dixon, D. A Caseiro, T. Oonishi, and S. Furui, “The titech large

vocabulary WFST speech recognition system,” in Proc. of IEEE ASRU, pp.

443-448, Dec, Kyoto, Japan, 2007.
[16] V. Volkov and J. W. Demel, “Benchmarking GPUs to tune dense linear

algebra,” in Proc. of ACM/IEEE Conference on Supercomputing (SC08),

Austin, Texas, 2008.
[17] NVIDIA Corporation, “CUBLAS user guide 3.2,”

http://developer.nvidia.com/object/cuda_3_2_downloads.html

[18] D. B. Kirk and W. W. Hwu, “Programming massively parallel
processors: A hands-on approach,” Morgan Kaufmann, San Francisco, 2010.

[19] P. R. Dixon, T. Oonishi, and S. Furui, “Fast acoustic computations
using graphics processors,” in Proc. of IEEE ICASSP, pp. 4321-4324, Apr,

Taipei, Taiwan, 2009.

[20] A. Prazak, J. Psutka, J. Hoidekr, J. Kanis, L. Muller, and J. Psutka,

“Automatic online subtitling of the Czech parliament meetings,” Text, Speech

and Dialogue, Lecture Notes in Artificial Intelligence, pp. 501-508, Springer,

Berlin, 2006.

Jan Vaněk received the M.Sc. degree equivalent in

cybernetics in 2003 and the Ph.D. degree in

cybernetics in 2010, both from the University of
West Bohemia, Plzeň, Czech Republic.

He is currently a Research Assistant at the

Department of Cybernetics, University of West
Bohemia, since 2010. He was working also at the

Institute of Physical Biology in Nové Hrady, since

2006 to 2011. His research interests include speech
and speaker recognition, acoustic modeling, signal

and image processing and GPGPU programming.

Jan Trmal has received the M.Sc. degree

equivalent from the University of West Bohemia,

Department of Cybernetics in the field of automatic
speech recognition.

He is currently pursuing his PhD at the same

department. His interests include GPGPU

programming, artificial neural networks and

development of captioning systems.

Josef V. Psutka received the M.Sc. degree
equivalents in cybernetics in 2001 and in

mathematics in 2005, and the Ph.D. degree in
cybernetics in 2007, all from the University of West

Bohemia, Plzeň, Czech Republic.

He was a Research Assistant in the Department
of Cybernetics, University of West Bohemia, from

2001. He is currently an Assistant Professor at the

same department. His research interests include
mainly speech signal parameterization and acoustic

modeling methods for automatic speech recognition.

Josef Psutka received the M.Sc. degree equivalent

in electrical engineering and the Ph.D. degree in

cybernetics from the Czech Technical University,
Prague, Czech Republic, in 1974 and 1980,

respectively.

He worked as an Assistant Professor in the
Technical Institute, Plzeň, Czech Republic, from

1978 to 1991. In 1991, he joined the Department of

Cybernetics, University of West Bohemia, Plzeň, as
an Associate Professor, and became a Full Professor

in 1997. His research interests include speech signal processing, acoustic

modeling, large-vocabulary ASR, speech synthesis, and pattern recognition.

