
Using a classification tree to speed up rendering of 

hybrid surface and volume models 
 

Maria Ferre 
URV Computer Science and Math. 

Dept. 
Av. Països Catalans, 20  
 43007 Tarragona, Spain 

mferre@etse.urv.es 

Anna Puig 
CREB Center of Biomedical 

Engineering Research, 
ETSEIB, UPC 

08028 Barcelona, Spain 

anna@maia.ub.es 

Dani Tost 
CREB Center of Biomedical 

Engineering Research, 
ETSEIB, UPC 

08028 Barcelona, Spain 

dani@lsi.upc.es 

 

ABSTRACT 

Hybrid rendering   of   volume and polygonal  model   is  an interesting feature of visualization systems, since  it 

helps users to better understand the relationships between internal structures of the volume and fitted surfaces as 

well as  external surfaces.  Most of the existing bibliography focuses at  the problem of correctly integrating in 

depth both types of information.   The rendering method proposed in this paper is built on these previous results.  

It is aimed at solving a different problem: how to efficiently access to selected information of   a hybrid model.    

We propose to construct  a  decision tree (the Rendering Decision Tree), which  together with an auxiliary run-

length representation of the  model  avoids visiting unselected  surfaces and internal regions during a traversal of 

the model. 

Keywords 

Volume Rendering, Hybrid Rendering, Decission Tree, Run-length encoding. 

 

1. INTRODUCTION 
There are two main approaches of the visualization of 

voxel models: rendering the volume as a whole and 

rendering isosurfaces. The former approach is 

achieved by Direct Volume Rendering (DVR), which 

computes the contribution of all the voxels to the 

image. Indirect Volume Rendering (IVR) can 

perform the latter approach. Isosurfaces are first 

extracted from the volume data with the popular 

Marching Cubes algorithm [Loc87], or by contouring 

and slicing [Mey92]. Then, they are rendered with the 

standard hardware-assisted polygon-rendering 

pipeline. Alternatively, Direct Volume Rendering 

(DVR) [Lev90] can also render surfaces, by 

computing the contribution to the image of the 

volume cells that contain the isosurfaces, and 

applying a surface shading without need of 

intermediate representations. The major advantage of 

IVR to visualize surfaces is that, once the polygonal 

model is extracted, its rendering is generally faster 

than DVR, even if its number of faces is large. In 

addition, any level of zoom can be applied during 

IVR rendering, whereas the lack of an actual 

polygonal model in DVR reduces its suitability when 

the surface is very near the observer. However, DVR 

does not require any preprocessing step and, thus, it 

provides more flexibility to visualize different 

isosurfaces. 

Combining the two approaches, i.e. mixing surface 

and volume rendering is an interesting feature of 

volume visualization. It conveys more information 

than only surfaces but in a neater way than volume 

only. Therefore, it provides a better perception of the 

relationships between the different regions of the 

data. Mixing surfaces and volumes can also be used 

to show the interaction of external synthetic surfaces 

with a volume, as for example CAD models of a 

scalpel, bone prosthesis or a radiation beam with MR 

data or CT data.  

DVR provides a natural way to mix surface and 

volume rendering by applying different shading 

models to the cells depending if they belong to the 

boundary of a feature or to its interior. In this paper, 

we call hybrid shading this rendering modality. 

Moreover, hybrid shading can be extend to external 

surfaces by voxelizing them in a pre-process 

Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted without 

fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this 

notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute 

to lists, requires prior specific permission and/or a fee.  
 

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972 

WSCG’2004, February 2-6, 2004, Plzen, Czech Republic. 

Copyright UNION Agency – Science Press 



[Kau87]. A similar approach has been used for 

realistic rendering of complex scenes with a huge 

number of faces and repetitive patterns such as 

forests, in which trees and leaves can be represented 

with geometrical models if they are near or as a 

voxelization storing BRDF's if they are far [Nom95] 

[Ney98]. However, this type of rendering requires a 

low ratio image pixel per voxel, because it does not 

have a polygonal model of the surfaces.  

An alternative to the voxelization is to keep separate 

representations of the volume and the surfaces (fitted 

as well as external) or a hybrid model representing 

both types of data, and to mix them during rendering. 

We will call hybrid rendering this approach to 

distinguish it from hybrid shading. Existing methods 

following this approach are based on ray casting 

[Lev90] [Fru91] [Miy92] [Sob94], Z-Buffer and 

Back-to-Front traversal [Goa89] [Kau90] [Eck99] 

[Tos93] and 3D texture-mapping [Kre99] [Boa03]. 

They are reviewed in the next section. 

Most of the existing hybrid rendering methods focus 

mainly at solving the problem of correctly depth 

sorting the volume samples and the polygons. They 

assume that all the volume and the surfaces must be 

rendered and thus, they essentially visit all the data. 

This is inefficient when not all the volume and not all 

the surfaces must be rendered, which is often the case 

in the exploration of a dataset. In fact, a desirable 

feature of hybrid rendering is the flexibility to render 

specific regions of the data, either their surface, their 

internal volume or both, while hiding others. 

Trying to restrict the traversal of a volume data set to 

the relevant cells is a general problem in volume 

visualization. It has been addressed for the 

acceleration of isosurfacing (octrees [Wil92], span 

space [Liv96]) as well as for speeding up volume 

rendering (kd-trees [Sub90], octrees [Wil94], run-

length encoding [Lac94]). However, as mentioned 

above, this problem has been little addressed in 

hybrid rendering [Lev90]. 

This paper addresses the problem of the fast 

exploration of hybrid models. Our primary goal is 

provide means of performing efficiently various 

visualizations of the models, changing the selection 

of the features to be rendered. We assume that the 

original model has been classified. Therefore, our 

method is not suitable for a first exploration of a 

dataset, but rather to efficiently manipulate it once its 

internal structure is known. The main application of 

our method is teaching by rendering atlas or case 

study models. It is suitable for hybrid shading with 

low ratio pixel/voxel as well as for hybrid rendering 

when zooming on the surfaces is required. 

In the next section, we review the previous work on 

hybrid rendering. Next, we describe the proposed 

model and the traversal algorithm associated to it. 

Finally, we show the results of the simulations and 

the conclusions.  

2. PREVIOUS WORK 
Ray casting can handle simultaneously different 

models by tracing the ray against each of them and 

merging their contribution along the ray. Based on 

this strategy, the hybrid ray tracer proposed by Levoy 

[Lev90] reduces the aliasing problems near the 

surfaces by performing an adaptive sampling of the 

volume. Miyazawa and Koyamada [Miy92] improved 

the antialiasing by first classifying the surface inside 

the volume. For each voxel, they compute a list of 

intersecting polygons. Therefore, the voxels with a 

non-empty list of polygons can be over sampled when 

rays are cast. Fruhauf [Fru91] also proposes the use 

of ray casting for volume, combined with any 

rendering algorithm for the geometric primitives 

capable of outputting an image space sorted list of 

elements that can be merged along the rays. 

Sobierajski and Kaufman [Sob94] designed a general 

ray tracer capable of handling various surfaces and 

volume models. They propose a classification of the 

intersection types that, together with the use of 

bounding boxes for the objects, avoid useless 

intersection tests and volume sampling of occluded 

regions.  

Z-Buffer has also been extended to mixed surfaces 

[Goa89], [Kau90]: two independent Z-buffer 

processes are realized and then, the image buffers are 

combined according to their associated depths. A 

similar idea is used in Volumizer [Eck99]. The 

disadvantage of these approaches is that they cannot 

handle correctly semi-transparent volumes and 

transparent surfaces simultaneously. In a different 

approach [Tos93], the synthetic surface is converted 

into a face-octree representation according to the 

orientation and resolution of the voxel model. The 

face-octree is traversed back-to-front simultaneously 

with the voxel model preserving the correct depth 

order and thus allowing transparency of both the 

volume and the surface. 

More recently, a 3D texture-map-based volume 

rendering approach has been proposed, able to render 

opaque and translucent polygons together with semi-

transparent volume at interactive rates [Kre99]. The 

volume is processed in a slice-by-slice basis. The 

volume slices and the translucent polygons clipped at 

the boundary of the slabs defined by two consecutive 

slices are rendered alternatively, preserving a correct 

depth composition. In order to avoid costly clipping 

operations of the polygons against the slices, the 



authors propose to use a bucket sort of the translucent 

polygons according to the slabs that they traverse. 

This strategy has also been used [Boa03] in order to 

render a hybrid octree which encodes the volume as 

well as the surface. The major advantage of the 

hybrid octree is that the texture associated to the 

volume can be generated at different levels of 

resolution depending on the variation of the scalar 

field in the node or its relative importance to the 

visualization. This characteristic simplifies the 

sorting of the surface polygons between slices, and it 

can be used to obtain multiresolution hybrid 

visualizations. 

Levoy addresses the problem of avoiding irrelevant 

data during hybrid rendering in the paper mentioned 

above [Lev90]. Levoy proposes to use an octree 

representation of the volume to efficiently skip over 

empty regions. However, as the surface model is kept 

separately from the volume, this method does not 

provide a fast way of accessing directly to voxels 

traversed by an external surface or containing a given 

isosurface. The face octree proposed in [Tos93] 

grants a fast access to the codified surface voxels but 

it is restricted to the codification of only one external 

surface and it does not classify the volume into 

regions. The hybrid octree described by Boada at al. 

[Boa03] provides also a fast access to surface nodes. 

In addition, similarly to the BON structure [Wil92], it 

stores the maximum and minimum values of each 

node and thus, it provides means of skipping over 

non-relevant nodes of the volume. However, it is 

restricted to one fitted surface. Finally, sorting 

intersection elements as proposed by Sobierajski at 

al. [Sob94] can avoid traversing occluded voxels or 

computing unnecessary intersections ray surfaces but 

it does not eliminate unwanted traversals.  

3. THE PROPOSED METHOD 

The Rendering Decision Tree (RDT) 
Our work is inspired on the Decision Trees, well 

known in the Information Theory field [Goo88] and 

used in decision analysis. Decision trees are boolean 

functions that classify variables of a multidimensional 

feature space into classes. They are such that each 

internal node of a tree tests a feature, each leaf node 

assigns a class or category and the arcs out of a node 

are labeled with the possible values of the features of 

this node. When rendering a scene, in general as well 

in volume and hybrid rendering, users must select and 

specify properties of the objects (or voxels) that 

should actually be visualized. This selection can be 

viewed as feature vector of a multidimensional 

feature space, in which the objects of a scene (voxels 

in a volume model) can be classified into semantic 

regions. Rendering queries are hardly arbitrary but 

rather follow the semantic structure of the scene. If 

this structure is known, it can be used to construct a 

decision tree, the Rendering Decision Tree(RDT) that 

will allow us to quickly determine the set of selected 

objects or voxels.  

In the initial exploration of a voxel model, users 

select relevant ranges of values by conveniently 

specifying transfer functions [Kni01] that set to zero 

the opacity of the other value ranges. Thus, in the 

rendering, although all the volume is traversed, non-

relevant regions are hidden. Let n be the number of 

voxels of a volume model. In order to render the 

model, only a subset of k voxels actually contribute to 

the image: those that fulfill the rendering 

specifications, i.e. those that belong to the selected 

class. Once the model has been classified, successive 

visualizations will drive to the selection of subsets 

within this classification. Traversing all the volume 

when these classes have already been characterized 

results in unnecessary visits to n-k remaining voxels. 

The aim of the RDT is provide a direct access to the 

selected subsets corresponding to the different 

classes. 

 

Figure 1 shows an example of a RDT for a model of 

the brain. It classifies the brain into three regions: the 

right and left hemispheres cortex and the cerebellum. 

Each of these regions is subdivided into two 

categories: boundary and interior. The internal 

regions of the hemispheres are in turn classified into 

other structures, which again separate the boundary 

from the interior. If, as an example, the user wants to 

render the surface of the cerebellum of the right 

hemisphere together with the volume of the left 

hemisphere, the tree is traversed and voxels that 

belong to these classes are selected for rendering. In 

the next section we discuss how to associate to each 

node of such a tree the corresponding information of 

the model.  

The run-length encoding 
Our method is suitable for hybrid shading as well as 

hybrid rendering. In both cases, we take as input the 

Figure 1. RDT Example for a model of the 

brain. Selected areas to be rendered are colored 

in blue. 



original voxel model. We use the classification step 

to construct an RDT that classifies the voxels into 

regions and into internal and boundary voxels. For 

hybrid shading, we first extract the relevant 

isosurfaces from the voxel model by applying a 

Marching Cubes algorithm. Each boundary voxel 

points to as many lists of polygons as extracted 

isosurfaces cross it. Furthermore, if a synthetic 

surface must be mixed with the volume, we classify 

and clip it with the volume cells as if it is a fitted 

surface. 

A naive approach in order to associate to the RDT 

nodes the set of corresponding voxels is to keep a 

simple list of voxels per node. This approach presents 

serious drawbacks. First, being each list independent 

from the order, this model would not preserve the 

spatial ordering inherent to the voxel model between 

the different classes. Moreover, this structure would 

have huge memory occupancy, as it would require for 

each non-empty voxel one pointer per region to 

which it belongs. 

We propose to construct an auxiliary voxel model 

that labels each voxel according to the leave of the 

RDT to which it belongs. We use a Run-Length (RL) 

codification of this model. Each leave of the RDT 

stores the label of its associated class in the RL 

model. Therefore, when a rendering selection is done, 

the RDT is traversed in order to compute the labels of 

the selected classes. If a terminal node matches the 

rendering criterion, its associated class is selected for 

rendering. If it is a non-terminal node that matches 

the rendering criterion, all its descendent classes are 

selected. The RL model is then traversed skipping 

over non-selected classes and accessing to the actual 

scalar or surface values of the voxels belonging to the 

selected classes only. 

 
 

 

Figure 2 illustrates this process with a color 

codification. The voxel model has been classified 

according to the RDT tree shown at the right of the 

figure. The RL is depicted together with the classified 

voxel model. It should be observed that, for clarity, 

the voxel model depicted is the classified one, 

although in the voxel array, we actually keep the 

original gray values of the data. The traversal of the 

RDT selects the blue and red voxels. The run-length 

traversal skips over the other colors, and accesses to 

the actual scalar and surface values of only the blue 

and red voxels.  

The traversal of the RL preserves the order of the 

voxel model, so it can be used for BTF and FTB 

traversals of the model, for splatting, shear-warp, or 

in order to compute 3D-texture maps of the model. 

However, it is not convenient for ray casting, as it 

does not provide a direct access to the voxels 

individually. As its primary goal is to speed up 

rendering, and being ray casting a slow method, this 

is not a major drawback. It should be observed that, if 

the camera rotates around the model, three run-length 

codifications must be computed corresponding to the 

three axes order permutations. 

It should be observed that, if a unique run-length 

model is constructed, each voxel must belong to only 

one leave of the RDT. This means that the 

classification process must partition the data into 

disjoint regions or into regions enclosed one into 

each other following the hierarchy of the RDT. This 

cannot be guaranteed if the classification criterion 

separates the boundary voxels of each surface into 

different classes, since boundary voxels may be 

crossed by more than one isosurface. However, this 

problem can be avoided if the RDT classifies voxels 

into different groups according to the combination of 

surfaces that cross them. As a consequence, nodes of 

a tree can share descendents. Specifically, nodes 

representing adjacent semantic regions can share a 

descendent node representing the voxels crossed by 

the boundaries of these regions. 

 

 

 

Figure 2. RL model based on the RDT labeling. 

At right, the RDT is depicted labeling the 

internal nodes with a letter and the leaves with a 

color. At bottom left, the classified voxel model 

is shown, and at top left top, its RL codification. 
Figure 3. Example of an RDT labeling with 

multiple surfaces crossing voxels. The RDT tree 

is depicted at the left; the regions in the voxel 

model at the middle and the labeling of the 

voxels in the RL at the right. 



Figure 3 illustrates such a structure. The RDT 

classifies the voxels into 9 regions: interior voxels 

(I1, I2, I3), voxels crossed by only one surface (B1, 

B2, B3) and voxels crossed by more than one surface 

(B1/B2, B1/B2/B3). The drawback of this solution is 

that it increases the number of classes and, therefore 

it may result in a higher fragmentation of the RL and 

thus, higher memory requirements. In order to solve 

this problem, instead of one RL model, several RL 

could be created, associated to the intermediate nodes 

of the RDT and traversed simultaneously. We are 

currently working on these types of structure, but the 

results shown in the next section correspond only to 

the former one.  

Rendering 
As mentioned above, our model is suitable for sorted 

traversals of the data. In our simulations, we have 

used it to render the model using the splatting 

strategy. The traversal of the run-length models 

accesses to the selected voxels, which can fall into 

three categories, depending on the visualization 

query: interior voxels, surface voxels and hybrid 

voxels. The former ones are purely volumetric. They 

are splatted according to their emission and 

absorption. When a surface voxel is reached, the 

polygons inside it are projected. It should be noted 

that if more than one surface crosses the voxel and 

the surfaces are translucide, the order of the 

projection of the polygons is relevant. We use the 

approach proposed by Kreeger and Kaufman [Kre99] 

to solve this problem, using the GL z-tests. Finally, 

for the third type of voxels, we first project the 

surface and next splatt the interior. As in other 

previous approaches, this actually composes 

erroneously the surface and the volume. Removing 

this error would require knowledge of the 

decomposition of the voxel into subvolumes 

according to the surfaces that cross it. We do not 

address this problem in this paper. 

4. RESULTS 
All the simulations have been carried out on a Sun 

Ultra 60 360MHz using our multimodal rendering 

software platform Hipo [Pui02]. For all the 

simulations, we have first executed a non-optimized 

version of the traversal algorithm using the original 

voxel model without RDT and RL. This rendering 

serves us as the unit of CPU cost. All the CPU costs 

shown in the tables are relative to this unit cost in 

order to effectively measure the improvements 

provided by the proposed method. 

Two datasets have been used: a 32x32x32, one byte 

intensity phantom model and a real dataset composed 

of 190x220x178 MR (Magnetic Resonance) data of 

the brain. The phantom model is composed of two 

disjoint voxelized spheres. The surfaces of these 

spheres have been extracted using a Marching Cubes 

algorithm. The RDT subdivides the volume into these 

two regions at the first level of the tree, and into 

interior and boundary regions at the second level.  

  

(a) (b) 

 

 

 

(c) (d) 

Figure 4 shows several rendered images of this 

model, selecting either the two surfaces, the two 

internal regions or mixing surfaces and volume. 

Table 1 gives information on the size of the model, 

its internal regions and the number of triangles of the 

surfaces.  

 
Subtree 

Sphere 1 

Subtree 

Sphere 2 

Global 

Model 

Interior 

voxels 
2.705 437 3.142 

Boundary 

voxels 
1.440 464 1.904 

Empty 

voxels 
  27.722 

Surface 

triangles 
3.704 1.352 5.056 

Table 1. Description of the Phantom hybrid 

model. 

Figure 4. Different images of the phantom 

model: (a) Triangle meshes of the extracted 

fitted surfaces, (b) Volume rendering, (c) 

Hybrid rendering of the volume of two regions 

and the wireframe surface of one region, (d) 

Hybrid rendering of one region of the volume 

and the shaded surface of the other region 

framed into the voxel model. 



Table 2 shows the cost of different traversals of the 

proposed model in comparison to full traversals of 

the structure. The simulations correspond to the 

images shown in Figure 4.  

Sub1 Sub2 kvol ksur khyb 
Oc. 

rat 

ren 

rat 

Surface Surface 0 1904 0 0.058 0.283 

Volum Volum 5046 0 0 0.095 0.359 

Volum Both 437 1440 464 0.071 0.325 

Surface Volum 4145 464 0 0.140 0.362 

Table 2. Simulation results on the Phantom model. 

The first two columns indicate the branch of each 

subtree that has been visualized (volume, surface 

or both). The next three columns indicate the 

number of selected voxels for each category: 

volume voxels (kvol), surface voxels (ksur) and 

hybrid voxels (khyb). Column 6 indicates the 

relative occupancy of the selected features, i.e. 

kvol+ksur+khyb divided by the total occupancy of 

the model 32768. Column 7 shows the relative cost 

of the rendering in relation to the cost of the same 

rendering without using the proposed structure. 

 

Similar simulations have been performed on the MR 

model of a human head as shown in Figure 5, 6 and 

7. In some figures, we have rendered the regions with 

a constant color, and in some others we have used the 

gray value of the model. In the former case, it is only 

necessary to traverse the RL model, since it is not 

required to access to the actual voxel array.  

  

(a) (b) 

 

However, in order to have comparable results in the 

simulations, we have performed this access for all 

selected voxels. The RDT is composed of two main 

branches: the brain, which is subdivided into regions 

as depicted in the RDT of Figure 1 and the rest of the 

head. The fitted surfaces correspond to the regions 

labeled as: right cerebral cortex, right cerebral white 

matter, left and right caudate, left cerebral cortex and 

left and right cerebellum cortex. Table 3 shows the 

occupancy of these regions in terms of number of 

voxels and surface triangles. The simulation results 

are listed in Table 4. 

  

(a) (b) 

 

  

(a) (b) 

 

 

 

 

Figure 5. Rendered images of the brain model. 

(a) volume of the left caudate, volume of the 

right cerebral cortex and the right cerebral 

white matter and surface of the left cerebellum 

cortex, (b) surfaces of the left and right cerebral 

cortex and of the left and right caudate. 

 

Figure 7. Rendered images of the brain model. 

(a) volume of the right cerebral cortex and the 

right cerebellum cortex and surface and volume 

of the left cerebral cortex and the left 

cerebellum cortex,  (b) volume of the non-brain 

voxels of the head and of the right cerebral 

cortex, volume of the left caudate and surface of 

the left cerebral cortex. 

 

Figure 6. Rendered images of the brain model. 

(a) same surfaces as Figure 5b plus surface and 

volume of the right cerebral white matter, (b) 

surface and volume of the right and the left 

cerebral cortex and surfaces of the right and the 

left cerebellum cortex. 

 



Region 
Interior 

voxels 

Boundar

y voxels 

Surface 

triangles 
Right cerebral 

cortex 
511036 77792 382609 

Right cerebral 

white matter 
165956 103513 256691 

Right caudate 1462 2693 7056 

Right 

cerebellum 

cortex 

60600 16410 52430 

Left cerebral 

cortex 
509588 83890 388824 

Left caudate 1588 2576 6609 

Left cerebellum 

cortex 
60484 16664 53871 

Non-brain head 

region 
4423855 464540 958439 

Table 3. Description of the MR labeled model of 

the brain. 

 

Fig kvol ksur khyb 
ocup 

ratio 

render 

cost 

ratio 

5.a 879125 0 0 0.118 0.294 

5.b 0 166951 0 0.224 0.194 

6.a 332907 0 103513 0.058 0.291 

6.b 1020624 106301 161682 0.172 0.469 

7.a 1235910 0 100554 0.179 0.447 

7.b 4936479 83890 0 0.674 0.867 

Table 4. Simulation results for the MR head 

dataset. The first column indicates the 

corresponding figure; the three next columns 

show the number of volume voxels (kvol), surface 

voxels (ksur) and hybrid voxels (khyb); Column 5 

shows the ratio of occupancy of the selected 

features in terms of number of selected voxels 

divided by the size of the model 190x220x178; 

Column 6 shows the ratio of cost of our 

implementation in relation to full traversal of the 

model for the same selection. 

The relative cost of our method, in comparison to full 

traversal, ranges between 20% and 30% for the 

phantom model and 20% and 70% for the head 

model. This is an important speedup of the rendering. 

Taking into account that the cost of creation of the 

structure in relation to the basic rendering cost is 

0.49, the proposed method speeds up the rendering, 

even for only one traversal. It should be noted that 

this reduction in the cost is attributable to the 

efficiency of the proposed traversal, since the 

rendering cost itself (shading, projecting and 

compositing in the selected voxels) is the same in our 

method as a in full traversal. However, the rendering 

cost influences the overall improvement of the 

method, as it is part of the total cost. This explains 

the variation of the cost ratio, depending on the 

number, type of selected voxels and number of 

triangles per voxels. The efficiency of our method is 

due to the fact that the occupancy ratios are low, at 

most 30% in the five first simulations on the head 

model, which is not a biased data, since the 

simulations correspond to real physician's queries. 

The worst efficiency is obtained in the last simulation 

in which almost 70% of the voxels are selected. We 

expect the occupancy of relevant features to be low in 

other applications. This observation was the primary 

motivation of our work. 

 

5. CONCLUSIONS 
The method proposed in this paper is aimed at 

speeding the traversal of hybrid classified models. 

The Rendering Decision Tree (RDT) together with 

the auxiliary Run-Length encoding (RL) of the model 

provides means of accessing directly to the regions 

and the surfaces selected for rendering avoiding 

unnecessary traversals of the entire model. The 

simulations performed show that the method can 

improve the efficiency of the traversal in 60 to 70 % 

percent. Several development stem from this work. 

First, we would like perform more measurements of 

the relative efficiency of our structure in comparison 

to substituting the auxiliary RL model by multiple 

overlapping less fragmented RL at different levels of 

the tree. Comparison of its efficiency with octree 

structures are also desirable. In addition, more work 

should be done to enhance the depth composition for 

zooming on boundary voxels crossed by one or more 

surfaces. Finally, we are currently investigating 

means of reducing the IO operations for successive 

rendering with a similar rendering selection.  

6. ACKNOWLEDGMENTS 
This work has been funded by the project MAT2002-

04297-C03-02 from the Ministerio de Educación y 

Ciencia. 

7. REFERENCES 
[Boa03] Boada, I, and Navazo, I., 3D texture-based 

hybrid visualizations. Computers and Graphics, 

(27):41-49, 2003. 

[Eck99] Eckel, G., OpenGL volumizer programer’s 

guide. Document nº 0073720001, 1999. 

[Fru91] Fruhauf, M., Combining volume rendering 

with line and surface rendering. Proceedings of 

Eurographics’91, pages 21-32. Elsevier Science 

Publisher (North Holland), 1991. 

[Goa89] Goadsell, D.S., Mian, S. and Olson, A.J., 

Rendering volumetric data in molecular systems. 

Journal of Molecular Graphics, 7, March 1989. 



[Goo88] Goodman, R.M. and Smyth, P. Decision tree 

design from a communication theory standpoint. 

IEEE Transactions on Information Theory, 

34(5):979-994, 1988. 

[Kau87] Kaufman, A. Efficient algorithms for 3D 

scan-conversion algorithms of parametric curves, 

surface and volumes. ACM Computer Graphics, 

21:171-179, July 1987. 

[Kau90] Kaufman, A., Yagel, R. and Cohen, D. 

Intermixing surface and volume rendering. 3D 

Imaging in Medicine: Algorithms, Systems and 

Applications, pp. 217-228, 1990. 

[Kre99] Kreeger, K. and Kaufman, A. Mixing 

translucent polygons with volumes. Proc. IEEE 

Visualization, pp. 191-198, 1999. 

[Kni01] Kniss, J., Kindlmann, G. and Hansen, C. 

Interactive volume rendering using multi-

dimensional transfer functions and direct 

manipulation widgets. Proceedings of the 

conference on Visualization 2001, pp. 255-262. 

IEEE Press, 2001 

[Lac94] Lacroute, P and Levoy, M. Fast volume 

rendering using a Shear-Warp factorization of the 

viewing transformation. ACM Computer 

Graphics, 28(4):451-458, July 1994. 

[Lev90] Levoy, M. A hybrid ray tracer for rendering 

polygon and volume data. IEEE Computer 

Graphics & Applications, 10(8):33-40, March 

1990. 

[Liv96] Livnat, Y., Shen, H.W. and Johnson, C.R. A 

near optimal isosurface extraction algorithm using 

the span space. IEEE Transactions on 

Visualization and Computer Graphics, 2(1), 

March 1996. 

[Loc87] Lorensen, W.E. and Cline, H.E. Marching 

Cubes: A high resolution 3D surface construction 

algorithm. ACM Computer Graphics, 21(4):163-

169, July 1987. 

[Mey92] Meyers, D., Skinner, S. and Sloan, K. 

Surfaces from contours. ACM Transactions on 

Graphics, 11(3):228-258, 1992. 

[Miy92] Miyazawa, T. and Koyadama, K. A high-

speed integrated renderer for interpreting multiple 

3D volume data. The Journal of Visualization and 

Computer Animation, 3:65-83, 1992. 

[Ney98] Neyret, F. Modeling, animating and 

rendering complex scenes using volumetric 

textures. IEEE Transactions on Visualization and 

Computer Graphics, 4(1):55-70, 1998. 

[Nom95] Noma, T. Bridging between surface 

rendering and volume rendering for 

multiresolution display. Proceedings of the 6
th

 

Eurographics Workshop on Rendering, pp 57-67. 

Eurographics, 1995. 

[Pui02] Puig, A., Tost, D. and Ferre, M. Design of a 

multimodal rendering system. Proc. 7
th

 

International Fall Workshop Vision, Modeling 

and Visualization 2002, Greiner G., Niemann H., 

Ertl T., Girod B. and Seidel HP. Editors, pp 488-

496, 2002. 

[Sob94] Sobierajski, L.M. and Kaufman, A. 

Volumetric ray tracing. Proc. 1994 Symposium on 

Volume Visualization, october 1994. 

[Sub90] Subramanian, K.R. and Fussell, D.F. 

Applying space subdivision techniques to volume 

rendering. Proc. Visualization’90, pp 150-159, 

1990. 

[Tos93] Tost, D., Puig, A. and Navazo, I. 

Visualization of mixed scenes based on volume 

and surface. Proc. European Workshop on 

Rendering, pp 281-294, 1993. 

[Wil92] Wilhems, J. and Van Gelder, A. Octrees for 

faster isosurface generation. ACM Transactions 

on Graphics, 11(3):201-227, July 1992. 

[Wil94] Wilhems, J. and Van Gelder, A. 

Multidimensional trees for controlled volume 

rendering and compression. Proc. ACM 

Symposium on Volume Visualization, 11:27-34, 

October 1994. 
 

 

 


