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Abstract. Voice conversion is a process which modifies speech produced
by one speaker so that it sounds as if it is uttered by another speaker.
In this paper a new voice conversion system is presented. The system
requires parallel training data. By using linear prediction analysis, speech
is described with line spectral frequencies and the corresponding residua.
LSFs are converted together with instantaneous F0 by joint probabilistic
function. The residua are transformed by employing residual prediction.
In this paper, a new modification of residual prediction is introduced
which uses information on the desired target F0 to determine a proper
residuum and it also allows an efficient control of F0 in resulting speech.
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1 Introduction

The aim of voice conversion is to transform an utterance pronounced by a source
speaker so that it sounds as if it is spoken by a target speaker.

In [1] and [2], some initial experiments on voice conversion were presented.
In this paper, a new voice conversion system is described. This system requires
parallel training data which is analysed by using pitch-synchronous linear pre-
diction. Thus, speech frames are represented by line spectral frequencies (LSFs),
corresponding residua and instantaneous fundamental frequency. LSFs are con-
verted together with instantaneous F0 by using a joint probabilistic function.
The residua are transformed by employing residual prediction – a method which
estimates a suitable residuum for a given parameter vector. In this paper, a new
extension of this method is introduced which uses information on the desired
target F0 to determine a proper residuum and it also allows an efficient control
of F0 in resulting speech.

This paper is organized as follows. Section 2 describes speech data used in
our experiments and methods used for its analysis, synthesis and time-alignment.
Section 3 deals with parameter transformation for voiced and unvoiced speech.
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Section 4 describes the extended inter-speaker residual prediction. In Section 5,
the performance of our conversion system is evaluated. Finally, Section 6 con-
cludes the paper and outlines our future work.

2 Speech Data

Speech data for our experiments were recorded under special conditions in an
anechoic chamber. Along with the speech signal, the glottal signal (EGG) was
recorded to ensure more robust pitch-mark detection and F0 contour estimation.

Firstly, one female speaker recorded the reference utterances – a set of 55 short
sentences. All sentences were in the Czech language. Subsequently, four other
speakers (two males and two females) listened to these reference utterances and
tried to repeat them in the reference speaker’s style. This should guarantee better
pronunciation and prosodic consistency among all speakers.

2.1 Speech Analysis and Synthesis

Our voice conversion system employs pitch-synchronous linear prediction (LP)
analysis. Each voiced frame is two pitch long with one pitch overlap. Pitch-marks
are extracted from the EGG signal. Unvoiced frames are 10 msec long with
5 msec overlap. LP parameters are represented by their line spectral frequencies
(LSFs), which are converted by employing a probabilistic function (e.g. [3] or [5]).
Residual signal is represented by its amplitude and phase FFT-spectra, which
are transformed by using residual prediction (e.g. [5] or [6]).

The reconstruction of speech is performed by a simple OLA method. For anal-
ysis and synthesis we employ special weight windows; in both cases a square root
of Hann window is used. This is a trade-off between efficacious speech description
and smooth frame composition on condition of correct speech reconstruction.

2.2 Speech Data Alignment and Selection

To find the conversion function properly, the training data has to be correctly
time-aligned. This is performed by the dynamic time warping (DTW) algorithm.
For each frame, the feature vector consists of delta-LSFs and V/U flag whose
value is 1 for voiced and 0 for unvoiced frame.

After time-alignment, some suspicious data have to be excluded from the
training set, because they probably correspond to incorrect time-alignment caused
e.g. by prosodic or pronunciation mismatch:

– pairs composed of one voiced and one unvoiced frame
– long constant sections (horizontal or vertical) of warping function
– frame pairs with a very low energy or with too different energy values
– frame pairs with too different values of normalized F0



3 Parameter Transformation

Parameters (LSFs) are transformed using a probabilistic conversion function
based on the description of training data with a Gaussian mixture model (GMM).
The conversion function is determined for voiced and unvoiced speech separately.
Although unvoiced speech is supposed to be unimportant for speaker identity
perception, the conversion of unvoiced speech proved good on transitions be-
tween voiced and unvoiced speech. Without unvoiced speech transformation,
some unusual source speaker’s glimmer was noticed in the converted utterances.

3.1 Simple LSF Transformation

This approach to parameter transformation was proposed by Stylianou et al. [3]
and later improved by Kain et al. [5]. However, we used it only for the conversion
of unvoiced speech. The interrelation between source and target speaker’s LSFs
(x and y, respectively) is described by a joint GMM with Q mixtures

p(x, y) =
Q∑
q=1

αqN
{[x
y

]
;µq, Σq

}
. (1)

All unknown parameters (mixture weights αq, mean vectors µq and covari-
ance matrices Σq) are estimated by employing the expectation-maximization
(EM) algorithm. The mean vectors µq and covariance matrices Σq consist of
blocks which correspond to source and target speaker’s components
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]
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The transformation function is defined as a conditional expectation of tar-
get y given source x

ỹ = E{y|x} =
Q∑
q=1

p(q|x)
[
µyq +Σyx

q

(
Σxx
q

)−1(x− µxq )
]
, (3)

where p(q|x) is the conditional probability of mixture q given source x

p(q|x) =
αqN{x;µxq , Σxx

q }∑Q
i=1 αiN{x;µxi , Σxx

i }
. (4)

3.2 Combined LSF & F0 Transformation

This extension of the aforementioned simple LSF transformation was introduced
by En-Najjary at al. [7]; however, the implemented system employed the Har-
monic plus Noise Model of speech production.



This method exploits the interdependency between LSFs and instantaneous F0;
they are converted together by using one transformation function. Formally, new
variables are introduced

χ =
[

102 · x
fx

]
ψ =

[
102 · y
fy

]
. (5)

A simple composition of LSFs and instantaneous F0 would be unsuitable be-
cause the importance of particular components would not be well-balanced. This
is the reason for introducing the weighting factor 102; this value was experimen-
tally selected and performs well for all speaker combinations. In [7], the balancing
of components is solved by the normalization of fundamental frequency.

Again, the joint distribution of χ and ψ is estimated using EM algorithm

p(χ, ψ) =
Q∑
q=1
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]
; µq=
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]
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(6)

and the conversion function is defined as the conditional expectation of target ψ
given source χ

ψ̃ = E{ψ|χ} =
Q∑
q=1

p(q|χ)
[
µψq +Σψχ

q

(
Σχχ
q

)−1(χ− µχq )
]
. (7)

The resulting vector ψ̃ is decomposed into LSFs ỹ and instantaneous F0 f̃y
which is further used in the extended residual prediction method (see Section 4).

4 Residual Prediction

Residual prediction is a method which allows the estimation of a suitable residuum
for a given parameter vector. It would be unsatisfactory to use the original source
speaker’s residua because the residual signal still contains significant information
on speaker identity, mainly in voiced speech.

In voice conversion framework (see e.g. [6] or [5]), the residual prediction
is traditionally based on probabilistic description of source speaker’s cepstral
parameter space – with a GMM. For each mixture of this model, a typical
residual signal is determined; it is represented by its amplitude and phase residual
spectrum. Naturally, this method is only used for voiced frames. In unvoiced
speech, residua are adopted from source speech without any modification.

In [1] and [2], a new approach to residual prediction – so-called inter-speaker
residual prediction – was introduced. In comparison with the traditional residual
prediction, the cardinal difference is that the target speaker’s residua are esti-
mated directly by using the source speaker’s parameter vectors. Moreover, the
source speaker’s parameter space is described in a non-probabilistic manner.

In this paper, a new extension of this method is proposed which uses informa-
tion on the desired instantaneous F0 during the selection of a suitable residuum
and facilitates a simple and efficient control of F0 in the transformed speech.



4.1 Training Stage

A non-probabilistic description of source LSF space is used. Source LSFs are
clustered into Q classes by employing the binary split k-means algorithm; a rea-
sonable value of Q is about 20. Each class q is represented by its LSF centroid x̄q.
The pertinence of parameter vector xn (n = 1, 2, . . . N) to class q (q = 1, 2, . . . Q)
can be expressed by the following weight

w(q|xn) =

[
d(x̄q, xn)

]−1∑Q
i=1

[
d(x̄i, xn)

]−1 (8)

All training data are uniquely classified into these classes. For each class q,
a set Rq of pertaining data indices is established

Rq =
{
k; 1≤k≤N ∧ w(q|xk) = max

i=1...Q
w(i|xk)

}
. (9)

Thus all data xr for r ∈ Rq belongs into class q. Within each parameter class
q, the data is divided into Lq subclasses according to their instantaneous F0.
The number of subclasses Lq differs for particular parameter classes q. Each
F0 subclass is described by its central frequency f̄ `q (q-th LSF class, `-th F0 sub-
class) and the set of data belonging into this subclass is defined as a set R`q of
corresponding indices

R`q =
{
k; k∈Rq ∧ d(f̄ `q , fk) = min

i=1...Lq

d(f̄ iq, fk)
}
. (10)

For each F0 subclass, a typical residual amplitude spectrum r̂`q is determined
as the weighted average of amplitude spectra belonging into this subclass

r̂`q =

∑
n∈R`

q
rnw(q|xn)∑

n∈R`
q
w(q|xn)

. (11)

Although all FFT-spectra cover the same frequency range given by the sampling
frequency fs, their lengths in samples are different because they correspond to
the lengths of pitch-synchronously segmented frames. Thus all spectra have to be
interpolated to the same length; cubic spline interpolation is used and the target
length equals to the average length of all spectra within particular subclasses.

Similarly, the typical residual phase spectrum ϕ̂`q is determined. However
because of phase warping problem, it is not calculated but it is only simply
selected

ϕ̂`q = ϕn∗ n∗ = arg max
n∈R`

q

w(q|xn). (12)

The selected residual phase spectrum should be interpolated to the same length
as amplitude spectrum. To avoid the phase warping problem, nearest neighbour
interpolation is used.



4.2 Transformation Stage

In the transformation stage, the desired target instantaneous fundamental fre-
quency f̃n has to be known for each voiced frame; it is obtained by combined
LSF & F0 transformation (see Section 3.2).

The target residual amplitude spectrum r̃q is calculated as the weighted
average over all classes. However, from each class q only one subclass `q is selected
whose centroid f̄ `qq is the nearest to the desired fundamental frequency f̃n

r̃n =
Q∑
q=1

r̂`qq w(q|xn) `q = arg min
`=1...Lq

d(f̄ `q , f̃n) (13)

The target residual phase spectrum is selected from the parameter class q∗

with the highest weight w(q|xn) from the F0 subclass `∗ with the nearest central
frequency f̄ `

∗

q∗

ϕ̃n = ϕ̂`
∗

q∗ q∗ = arg max
q=1...Q

w(q|xn)

`∗ = arg min
`=1...Lq∗

d(f̄ `q∗ , f̃n)
(14)

The resulting amplitude and phase FFT-spectra have to be interpolated to
the length given by the desired F0 f̃n. The speech quality deterioration caused
by this interpolation should not be significant, because the length of predicted
residuum is very close to the target length.

5 Experiments and Results

In this section, the assessment of the described conversion system is presented.
In the first subsection, mathematical evaluation of LSF and F0 transformation
is presented. The second subsection deals with subjective evaluation by listening
tests.

In all experiments, the conversion from the reference speaker to all other
speakers was performed. 40 utterances were used for training and 15 different
utterances for the assessment.

5.1 Objective Evaluation – LSF and F0 Transformation

The performance of LSF transformation can be expressed by using the perfor-
mance index ILSF

ILSF = 1− E(ỹ, y)
E(x, y)

, (15)

where E(x, y) is the average Euclidean distance between LSFs of 2 time-aligned
utterances x = {x1, x2, . . . xN} and y = {y1, y2, . . . yN}

E(x, y) =
1
N

N∑
n=1

(xn − yn)>(xn − yn). (16)



The higher value of performance index signifies the better conversion perfor-
mance (maximum value is 1).

Similarly, the F0 transformation can be evaluated by performance index IF0

IF0 = 1− E(f̃y, fy)
E(fx, fy)

, (17)

or it can be also simply assessed by using average Euclidean distance E(f̃y, fy)
between transformed f̃y and target fy (the result is in Hz).

Results are stated in Table 1. They are presented separately for each speaker
to expose that the outcomes are speaker dependent.

Table 1. Mathematical evaluation of LSF and F0 transformation performance.

Target speaker Male 1 Male 2 Female 1 Female 2

LSF performance index
0.412 0.335 0.317 0.344

(voiced speech)

LSF performance index
0.316 0.254 0.237 0.217

(unvoiced speech)

F0 performance index 0.764 0.836 0.510 0.336

Default F0 distance [Hz]
50.64 68.12 30.38 21.76

(source – target)

Final F0 distance [Hz]
11.97 11.15 14.89 14.49

(transformed – target)

Though some performance indices were proposed which should facilitate more
complex transformation assessment (e.g. spectral performance index), they do
not often correspond to the real speech quality and resulting speaker identity as
it is perceived by people. Thus, the best way of evaluating a voice conversion
system in a complex way is listening tests.

5.2 Subjective Evaluation – Speaker Discrimination Test

An extension of standard ABX test was used. 10 participants listened to triplets
of utterances: original source and target (A and B in a random order) and
transformed (X). They made decisions whether X sounds like A or B and rate
their decision according to the following scale

1. X sounds like A
2. X sounds rather like A
3. X is halfway between A and B
4. X sounds rather like B
5. X sounds like B



For unified result interpretation, cases when A was from target and B from
source speaker were reversed. Thus all results correspond to the case when A is
source and B target utterance. Then the higher rating signifies the more effective
conversion. Average rating for female-to-male conversion was 4.36 (i.e. listeners
were sure of the target speaker identity) and for female-to-female conversion
was 3.54 (i.e. the identity was closer to the target speaker, but it was not so
persuasive).

6 Conclusion and Future Work

In this paper a new voice conversion system was introduced which is based on
probabilistic transformation of LSF and fundamental frequency and which uti-
lizes the extended inter-speaker residual prediction for determination of proper
residual signals.

Speaker discrimination tests revealed that the identity of converted speech
is closer to the target speaker. However in cases of similar source and target
voices (female-to-female conversion), the decision was not definite. This was
probably caused by insufficient speaking style consistency and a small amount
of training data. Generally, all speakers had some difficulty reproducing the
reference utterances; they focused on mimicking but their speech lost its fluency
and naturalness. Thus, in our future work we will concentrate on approaches
which do not require parallel training data.
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Techniques for Voice Conversion. In Proceedings of ICASSP’05 (2005) 13–16

7. En-Najjary, T., Rosec, O. and Chonavel, T.: A Voice Conversion Method Based on
Joint Pitch and Spectral Envelope Transformation. In Proceedings of Interspeech
2004 - ICSLP (2004) 1225–1228


