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Abstract

In this paper, several experiments on F0 transformation within
the voice conversion framework are presented. The conversion
system is based on a probabilistic transformation of line spectral
frequencies and residual prediction. Three probabilistic meth-
ods of instantaneous F0 transformation are described and com-
pared. Moreover, a new modification of inter-speaker residual
prediction is proposed which utilizes the information on target
F0 directly during the determination of suitable residuum. Pref-
erence listening tests confirmed that this modification outper-
formed the standard version of residual prediction.
Index Terms: voice conversion, f0 transformation, residual
prediction

1. Introduction
The aim of voice conversion is to transform an utterance pro-
nounced by a source speaker so that it sounds as if it is spoken
by a target speaker.

This paper is focused on the problem of F0 transformation.
The task could be divided into two virtually independent parts.
Firstly, the target F0 trajectory is to be obtained. Secondly, the
reconstructed speech has to follow this F0 trajectory.

Two basic approaches to F0 transformation exist. The first
converts the instantaneousF0 frame by frame (e.g [1]), the other
describes and converts the whole F0 trajectory (e.g. [2] or [3]).
An ample comparison of both approaches is presented in [4].
This study concerns only a specific sort of F0 transformation
functions – frame by frame F0 conversion based on a proba-
bilistic description.

Our baseline voice conversion system (see [5] and [6]) uti-
lizes the pitch-synchronous linear prediction (LP) analysis, each
speech frame is two pitch long with one pitch overlap. LP
parameters are represented by their line spectral frequencies
(LSFs) which are converted by employing a probabilistic func-
tion (e.g. [7] or [8]). Residual signal is represented by its am-
plitude and phase FFT-spectra which are transformed by us-
ing residual prediction (e.g. [8] or [9]). The reconstruction of
speech is performed by a simple OLA method.

In this study, a new modification of inter-speaker residual
prediction is proposed which utilizes the information on tar-
get F0 directly during the determination of a suitable residuum.
Thus during the reconstruction of speech, only slight modifi-
cation is necessary. This version of residual prediction outper-
forms the standard one; this is confirmed by preference listening
tests.

The conversion functions are estimated from parallel train-
ing data: LSF sequences extracted from equal utterances from
source and target speaker are time-aligned by using DTW al-
gorithm. In the following text all training and testing data are
supposed to be time-aligned.

This paper is organized as follows. In Section 2, a sim-
ple method for LSF transformation using GMM is described.
Section 3 deals with two simple methods for converting funda-
mental frequency. Section 4 gives account of combined LSF
and F0 conversion. In Section 5, a new modification of residual
prediction is proposed. In Section 6, all the described methods
are evaluated and compared. Finally, Section 7 concludes this
paper.

2. LSF transformation
The interrelation between source and target speaker’s LSFs (x
and y, respectively) is described by a joint GMM with Q mix-
tures
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}
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All unknown parameters are estimated by employing the
expectation-maximization (EM) algorithm; for initialization the
binary split k-means algorithm is used. The mean vectors µq

and covariance matrices Σq can be decomposed into blocks cor-
responding to source and target speaker’s components
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The transformation function is defined as conditional ex-
pectation of target y given source x
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where p(q|x) is the conditional probability of mixture q given
source x
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The conversion function is determined for voiced and un-
voiced data separately. Although unvoiced speech is unimpor-
tant for speaker identity perception, the conversion of unvoiced
speech proved good on transitions between voiced and unvoiced
speech.

3. F0 transformation
3.1. F0 normalization

This method is also known as Gaussian normalization or
mean/variance transformation. It is is usually used as a refer-
ence method because of its simplicity and good performance.
It is based on the assumption that the instantaneous F0 from



source and target speakers (fx and fy , respectively) have Gaus-
sian distribution

p(fx) = N{fx;µx, σx} p(fy) = N{fy;µy, σy}. (5)

The transformation function that converts the mean and
variance from values µx, σx to values µy , σy is given by

f̃y = µy +
σy

σx
(fx − µx). (6)

The advantage of this method is that no parallel data are
needed. The transformation function can be obtained from ar-
bitrary (representative) speech data from both speakers.

3.2. Simple F0 expectation

The disadvantage of the previous method is that there is no
means to exploit the information included in data parallelism.

Similarly as in the case of LSF conversion, time-aligned
source and target instantaneous F0 values are described with a
joint GMM

p(fx, fy) =
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The converted fundamental frequency f̃y is given as the
conditional expectation of target fy given source fx

f̃y = E{fy|fx} =
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]
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4. Combined F0 & LSFs transformation
This method was already introduced in [1]; however, the imple-
mented system employed the Harmonic plus Noise Model of
speech production.

A possible interdependency between LSF and F0 is ex-
ploited here – they are converted together using one transfor-
mation function. Formally, new variables can be introduced

χ =
[
x
fx

]
ψ =

[
y
fy

]
. (9)

Again, the joint distribution of χ and ψ is estimated using
EM algorithm

p(χ, ψ) =

Q∑
q=1

αqN
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χ
ψ

]
;µq,Σq

}
(10)

and the conversion function is defined as the conditional expec-
tation

ψ̃ = E{ψ|χ}. (11)

However, the simple composition of LSFs and fundamen-
tal frequency in Eq. (9) is unsuitable because the importance of
particular components is not well-balanced. It leads to bad ini-
tialization. In [1], the fundamental frequency was normalized
and logarithmized. In our experiments we found out that a good
solution to this problem can be obtained in the following way

χ =
[

100 · x
fx

]
ψ =

[
100 · y
fy

]
(12)

Of course, to obtain the proper results, all transformation for-
mulas have to be consistently modified.

5. Residual prediction
Residual prediction is a technique which allows the estimation
of the suitable residuum for given LPC or similar parameters.
Traditionally, the residual prediction is based on probabilistic
description of cepstral parameter space – with a GMM. For each
mixture of this model, a typical amplitude and phase residual
spectrum is calculated. For more details see e.g. [9] or [8].

In [5] and [6] a new approach to residual prediction – so-
called inter-speaker residual prediction was introduced. It is
briefly described in the following subsection. In the second
subsection, a new modification of this approach is proposed
which utilizes the information on the desired (target) F0. Due
to the better determination of the residual signal, a smaller sig-
nal modification is necessary during the speech reconstruction
stage.

5.1. Simple inter-speaker residual prediction

Within inter-speaker residual prediction, the residuum of the
target speaker is estimated from the source speaker’s param-
eters. Consistently recorded utterances and correct time-
alignment are presupposed.

In our experiments on residual prediction, LSFs slightly
outperformed cepstral parameters, thus they are employed in
our experiments.

A non-probabilistic description of source LSF space is
used, the LSFs are clustered into Q (Q ≈ 20) classes by em-
ploying the bisective k-means algorithm; each class q is rep-
resented by its LSF centroid x̄q . The pertinence of parameter
vector xn to class q is expressed by

w(q|xn) =

[
(x̄q − xn)>(x̄q − xn)

]−1∑Q
i=1

[
(x̄i − xn)>(x̄i − xn)

]−1 (13)

For each parameter class q, the typical residual amplitude
spectrum r̂q is calculated as a weighted average over all training
data

r̂q =

∑N
n=1 rnw(q|xn)∑N

n=1 w(q|xn)
(14)

and the typical residual phase spectrum ϕ̂q is selected

ϕ̂q = ϕn∗ n∗ = arg max
n=1...N

w(q|xn). (15)

In order to calculate the amplitude spectrum, all spectra
have to be resampled (interpolated) to have the same length.
Cubic spline interpolation is used and the target length is given
as the average of all residua lengths. Due to consistency, phase
spectra have to be interpolated to the same length; nearest
neighbour interpolation is employed.

In the transformation stage, the residual amplitude spec-
trum r̃n is calculated as the weighted average over all classes

r̃n =

Q∑
q=1

r̂qw(q|xn) (16)

and the residual phase spectrum is selected from parameter class
q∗ with the highest weight w(q|xn)

ϕ̃n = ϕ̂q∗ q∗ = arg max
q=1...Q

w(q|xn). (17)

The determined amplitude and phase FFT-spectra have to
be resampled (interpolated) to the length which corresponds to
the desired instantaneous F0. Then, by using the inverse FFT



algorithm and by filtering with converted LPC filter, a new two-
pitch speech segment is obtained whose instantaneous F0 cor-
responds to the desired value. Resulting speech is reconstructed
by employing a simple OLA method.

5.2. Extended inter-speaker residual prediction

By employing the simple residual prediction, converted speech
can suffer from artifacts which are largely caused by phase spec-
trum interpolation. Especially in cases of larger interpolation.

A possible solution to this problem is to store more residua
which correspond to different instantaneous F0 values. As pre-
viously, the parameter space of the source speaker is divided
into Q classes. All training data are uniquely classified into
these classes. For each class q, a set Rq of pertaining data in-
dices is established

Rq =
{
k; 1≤k≤N ∧ d(x̄q, xk) = min

i=1...Q
d(x̄i, xk)

}
. (18)

Within each parameter class, the data are divided into Lq

subclasses according to their instantaneous F0, the number of
subclassesLq can differ for particular parameter classes q. Each
F0 subclass is described by its centroid f̄ `

q (q-th parameter class,
`-th F0 subclass) and the set of data belonging into this subclass
is defined as a set R`

q of corresponding indices

R`
q =

{
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}
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For each F0 subclass, a typical residual amplitude spectrum
r̂`

q is determined as the weighted average of amplitude spectra
belonging into this subclass

r̂`
q =

∑
n∈R`

q
rnw(q|xn)∑

n∈R`
q
w(q|xn)

(20)

and the typical residual phase spectrum ϕ̂`
q is selected

ϕ̂`
q = ϕn∗ n∗ = arg max

n∈R`
q

w(q|xn) (21)

In comparison with the previous method, amplitude and
phase spectra are interpolated to the average lengths within par-
ticular F0 subclasses. Thus the amount of signal modification
is significantly smaller.

During prediction, the residual amplitude spectrum r̃q is
calculated as the weighted average over all classes. However,
from each class q only one subclass `q is selected whose cen-
troid f̄ `

q is the nearest to the desired fundamental frequency f̃n

r̃n =

Q∑
q=1

r̂
`q
q w(q|xn) `q = arg min

`=1...Lq

d(f̄ `
q , f̃n) (22)

The residual phase spectrum is selected from the parameter
class q∗ with the highest weight w(q|xn) from the F0 subclass
`∗ with the nearest central frequency f̄ `

q

ϕ̃n = ϕ̂`∗
q∗ q∗ = arg max

q=1...Q
w(q|xn)

`∗ = arg min
`=1...Lq∗

d(f̄ `
q∗ , f̃n)

(23)

Again, the resulting amplitude and phase FFT-spectra have
to be interpolated to the length given by the desired F0 f̃n. The
impact of this interpolation should be less significant, because
the original and target lengths are very close to each other.

6. Experiments and results
In this section, assessment and comparison of all aforemen-
tioned methods is presented. In the first subsection, mathemat-
ical evaluation of F0 and LSF transformations are presented.
The second and third subsections deal with subjective evalua-
tion by listening tests.

6.1. Speech data

Speech data for our experiments were recorded in an anechoic
chamber. Firstly, one female speaker recorded the reference ut-
terances. It was a set of 55 quite short sentences (about 6 words
long); all sentences were in the Czech language. Subsequently,
4 other speakers (2 males and 2 females) listened to these ref-
erence utterances and repeated them. In this way, better pro-
nunciation and prosodic consistency is guaranteed. Along with
the speech signal, the EGG signal was recorded to ensure more
robust pitch-mark detection and F0 contour estimation.

6.2. Objective evaluation – LSF and F0 transformation

In all experiments, conversion from reference speaker to all
other speakers was performed. 40 utterances were used for
training and 15 different utterances for assessment.

The performance of F0 transformation can be expressed us-
ing average error (Euclidean distance) between transformed and
target (time-aligned) trajectories, f̃y and fy , respectively.

E(f̃y, fy) =
1

N

N∑
n=1

d(f̃y(n), fy(n)) (24)

The results are stated in Table 1. To expose the consistency
of results for all speakers, the results are presented separately.
It is interesting that the error between transformed and target
F0 trajectories does not probably depend on primary distance
between source and target F0 trajectories.

Table 1: Comparison of F0 transformation methods – average
F0 errors [Hz].

Target speaker Male 1 Male 2 Fem. 1 Fem. 2
Default F0 distance 50.64 68.12 30.38 21.76(source – target)
F0 normalization 13.14 12.32 16.71 15.66
Simple F0 expect. 13.08 11.77 16.75 15.75(1 mixture)
Simple F0 expect. 12.89 12.32 16.35 15.57(10 mixtures)
Combined expect. 11.97 11.15 14.89 14.45(10 mixtures)

The effectiveness of the conversion can be also evaluated
by so-called performance index which is defined by

IF = 1− E(f̃y, fy)

E(fx, fy)
(25)

The higher value of performance index signifies the better
conversion performance (max. value is 1). Comparison of F0

transformation methods is presented in Table 2.
Similarly, for evaluation of LSF conversion, performance

index ILSF is used

ILSF = 1− E(ỹ, y)

E(x, y)
(26)



Table 2: Comparison of F0 transformation methods – perfor-
mance indices.

Target speaker Male 1 Male 2 Fem. 1 Fem. 2
F0 normalization 0.740 0.819 0.450 0.280
Simple F0 expect. 0.742 0.827 0.449 0.276(1 mixture)
Simple F0 expect. 0.745 0.830 0.462 0.284(10 mixtures)
Combined expect. 0.764 0.836 0.510 0.336(10 mixtures)

The contribution of combined LSF & F0 transformation
compared to simple LSF transformation is stated in Table 3.

Table 3: Comparison of LSF transformation methods – perfor-
mance indices.

Target speaker Male 1 Male 2 Fem. 1 Fem. 2
Simple expect. 0.406 0.323 0.314 0.337(10 mixtures)
Combined expect. 0.412 0.335 0.317 0.344(10 mixtures)

6.3. Simple vs. extended residual prediction

For comparison of the proposed two versions of residual pre-
diction, the standard preference test was employed. In both
cases, combined LSF & F0 conversion was utilized. Ten par-
ticipants of the test listened to 10 pairs of utterances, one was
transformed by using simple residual prediction and the other
by using extended residual prediction. The listeners selected
utterances which sounded better. Results are presented in Ta-
ble 4.

Table 4: Simple vs. extended residual prediction

Target speaker Male Female Both
Simple RP preferred 1.9 % 0.0 % 1.0 %
Extended RP preferred 74.0 % 66.7 % 70.3 %
Cannot decide 24.1 % 33.3 % 28.7 %

6.4. Speaker discrimination test

Within this test, the combined LSF & F0 conversion and ex-
tended residual prediction were employed. An extension of
ABX test was used. Ten participants listened to triplets of utter-
ances: original source and target (A and B in a random order)
and transformed (X); they had to decide whether X sounds like
A or B and rate their decision according to the following scale

1. X sounds like A

2. X sounds rather like A

3. cannot make a decision

4. X sounds rather like B

5. X sounds like B

Moreover, the listeners were allowed to use real numbers
(e.g. 1.5 or 2.5) in indecisive cases.

Cases when A was from target and B from source speaker
was reversed (including ratings). Thus all results correspond
to the case when A is source and B target utterance. Then the
higher rating, the more effective conversion. Average results are
presented in Table 5.

Table 5: Speaker discrimination test – average rating.

Target sp. Male Female Both
Average rat. 4.36 3.54 3.94

7. Conclusion
In this paper, three probabilistic conversion functions for F0

transformation were compared. The transformation based on
combined LSF & F0 conditional expectation outperforms all
other methods. Moreover, the conversion of LSF is also im-
proved in this way. Furthermore, a new modification of inter-
speaker residual prediction was proposed and compared to the
traditional version by listening tests. All listeners definitely pre-
ferred the new method.
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