
A Client-Server-Scenegraph for the Visualization of 

Large and Dynamic 3D Scenes  

Jörg Sahm 
Fraunhofer IGD 

Fraunhoferstr. 5 

64283 Darmstadt, Germany 

sahm@igd.fhg.de 

Ingo Soetebier 
Fraunhofer IGD 

Fraunhoferstr. 5 

64283 Darmstadt, Germany 

ingo@igd.fhg.de  

ABSTRACT 

With the increasing capabilities of hardware for 3D graphics and network, 3D multi-user environments get more 

and more interesting for e-business, entertainment and cooperative work. This aspect concerns not only high-end 

devices, like caves or graphic workstation, also small mobile devices like laptop computers or PDAs become 

more and more suitable for the visualization of 3D graphics. In order to visualize a large and dynamic 3D scene 

on multiple clients with different capabilities, an appropriate scene representation is required. In this paper a 

client-server-scenegraph is introduced, which addresses critical problems in the area of distributed 3D graphics 

such as the handling of dynamic 3D scenes, which exceed the capacity of the clients or even of the server. 

Another point is the selection of the data, which has to be transmitted from the server to the clients, although the 

users and the scene elements are moving. Since many clients lack the memory, they only hold the currently most 

relevant scene information. For that reason there has to be an efficient matching between the server's and the 

clients' data. 

Keywords 
scene representation, distributed/network graphics, out-of-core rendering  

1. INTRODUCTION 
In the last few years several client-server frameworks 

have been developed, which transmit only parts of a 

large 3D scene from the server to the clients. Size 

and quality of the transmitted data depend on the 

capabilities of the client, the client's position and 

view direction, and the available transmission 

bandwidth. Since clients typically lack the memory 

and the computing power in comparison to the 

server, the clients only hold a subset of the server's 

scene. If the scene is interactive and dynamic, the 

clients' data is changing rapidly: While the server has 

to transmit the elements, which are currently in the 

client's area of interest, the client discards the 

information outside of its area of interest in order to 

save memory and running power. One problem is the 

definition of such an area of interest. Another 

problem is to determine the areas of interest for 

multiple clients and 3D scenes with thousands of 

elements on the server side in real-time. Since the 

elements may change their position, server and client 

are in need of a scene representation, which can 

handle even dynamic scenes. If an element is 

transmitted, discarded, or transformed, then server 

and client have to communicate about the element. 

Since this kind of communication occurs frequently 

and the scenes may contain a large number of 

elements, there is the problem to identify a specific 

element on the server and its corresponding partner 

on the client very fast. Because of the resulting data 

effort of large 3D scenes, another problem is to 

handle scenes, which exceed even the server's 

memory capacity. In this paper a client-server-

scenegraph is introduced, which encapsulates several 

data structures and methods for the solution of the 

listed problems. 

Related Work 
A lot of computer graphics libraries depend on scene 

graph data structures. There are modern 

programming libraries like SGI's OpenGL Optimizer 

[Sgi98a] or the OpenSG graphics library [Rei02a], 

which are using scenegraph data structures as a 

representation for the 3D scene. One use of the 
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scenegraph data structure is the visibility 

determination of a certain viewpoint in the scene. A 

detailed overview on visibility algorithms is 

presented by Cohen-Or et al [Coh00a]. 

Another area is the transmission of 3D scenes over a 

network. The previously mentioned visibility 

algorithms can also be used to choose the 3D object, 

which should be transferred over the network. 

Funkhouser et al [Fun93a] presented a heuristic 

approach using a definition for cost and benefit of 

objects in the scene. These properties are optimized 

to choose an appropriate LOD of an object of the 

scene. In the year 1995 Funkhouser [Fun95a] 

presented a client-server-architecture in order to 

reduce the message traffic between multiple 

participants in Virtual Reality (VR) scenes. Virtual 

Reality was the first field of application, in which the 

concept of client-server-rendering was used. In Mann 

et al [Man97a] use a high-end workstation as server 

in order to send large sets of textures to the clients. 

While the clients interpolate the rendered images 

from their local information, the server renders 

difference images between the clients' and the 

original view. The missing textures are sent by 

demand to the clients. Other work in this area 

includes the approach described by Teler et al 

[Tel01a]. Similar to the approach of Funkhouser et al 

[Fun93a], he defines cost and benefit for 

transmission, which is then optimized for a certain 

viewpoint. Schneider et al [Sch99a] present a 

complex performance model where an optimal 

transmission method is chosen depending on network 

performance, available resources and user 

preferences. The approach of Hesina et al [Hes98a] 

maintains an area of interest around the user's 

viewpoint. There is a prefetch algorithm for 

transmitting the graphical objects over the network 

belonging to this area of interest. Contrary to the 

presented approach, these papers do not mention a 

scenegraph representation of the 3D scene. 

There are also papers addressing the problem of 

managing very large scenes. Those scenes may even 

exceed the main memory of a standard workstation 

and thus they can be only rendered out-of-core. 

Varadhan et al [Var02a] presented a concurrent 

approach using a prioritized prefetching strategy for 

loading graphical objects from disk. Another 

approach was presented by Klein et al [Kle02a]. 

They are using a data structure to create an 

approximate image of the scene with a special kind 

of polygon sampling. 

2. CONCEPT 
In this section the concept of the client-sever-

scenegraph is introduced. At first an algorithm for 

the rearrangement of a dynamic space partition tree is 

introduced. After this a new concept for the 

definition of an area of interest is explained. This 

concept can be used for the transmission of scene 

elements as well as for the later discussed out-of-core 

rendering. Finally, the concept presents a solution for 

the identification problem of corresponding elements 

on server and clients. 

The Dynamic Space Partition Tree 
Each 3D scene is represented by a dynamic space 

partition tree (SPT) on server and client as well. 

Although the concept of space partition trees is not 

new (e.g. see [Fuc80a, Sch69a, Gre93a]), there are 

not efficient approaches for large and dynamic 3D 

scenes in real-time. In the presented SPT, the nodes 

are divided into inner nodes and leaf nodes. Inner 

nodes do not have a visual appearance but represent 

an axis aligned parallelepiped region of the scene. 

Leaf nodes represent the 3D objects of the scene and 

are classified into group nodes and element nodes. 

An element node encapsulates not only the visual 

appearance of a 3D object, but also its specific 

behavior. While an element node represents only a 

single object of the scene (e.g. the door of a car), 

group nodes contain several element nodes, which 

are connected to an animation hierarchy. The 

approach differentiates between static, passive, and 

active leaf nodes. While the state of static nodes 

never changes, active nodes are able to perform 

simulation specific actions. Passive nodes normally 

remain static, but can be forced to action because of 

some kind of interaction. 

2.1.1 The Basic Rearrangement Operations 
The rearrangement of the SPT becomes necessary 

because of scene manipulations, which are either 

caused by simulation and animation instructions or 

by user interactions. These manipulations consist of 

the insertion of elements into the scene, the removal 

of elements from the scene, and the transformation of 

elements inside of the scene. In order to rearrange the 

SPT, the approach makes use of two basic 

operations, namely the divide operation and the 

reunite operation. Leaf Nodes completely inside of 

the region of an inner node I are added as children to 

I. If the number of leaf nodes inside of I exceeds a 

specific threshold, then I is divided into several 

subregions. These subregions are represented by 

other inner nodes, which are also added to I. The 

number and the size of the subregions depend on the 

chosen SPT implementation (e.g. an Octree or a KD-

Tree). The presented approach is not in need of a 

specific implementation, but requires, that the axis 

aligned bounding box (AABB) of a child node is 

completely inside of the parent node's AABB. The 

AABB of an inner node is identical to the 

represented region. While the AABB of an element 



node is defined by its geometric information, the 

AABB of a group node is defined by the AABBs of 

all its element nodes. If a leaf node intersects several 

inner nodes, it is added to the parent inner node, 

which completely contains the leaf node. Greene et al 

[Gre93a] propose some alternatives, but, if applied to 

dynamic scenes, they are too expensive concerning 

memory and running time. If the number of leaf 

nodes inside of an inner node's subtree is below the 

specific threshold, then the leaf nodes are added to 

the inner node, and the subtree is deleted. In the 

following this process is denoted as "the inner node 

is reunited".  

Typically, the elements of an animation hierarchy are 

close to each other and inherit the transformation of 

their parents. In many applications this aspect results 

in similar move directions of combined elements, e.g. 

if the user drives a virtual car, then all the car's doors, 

windows and wheels are moved in the same 

direction. If the car leaves an inner node's AABB 

performing a continuous translation, then each 

element of the car's animation hierarchy could cause 

a rearrangement of the SPT. For that reason the 

element nodes inside of a group node are not handled 

separately by the basic operations, but only the group 

node is added to an inner node.   
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Pointer to List Entry

Temporary Bounding Box

Current List

Ingoing List

Outgoing List

AABB

Pointer to Parent Node

Pointer to Data Node

a)

b) c) 

Figure 1. Figure a illustrates the basic structure of 

all node types, including  a pointer to a data node 

(see section 2.3). Figure b shows the inner node 

structure, and figure c the leaf node structure. 

As a further optimization leaf nodes may define a 

temporary bounding box (TBB) [Sud96a] (see figure 

1). This TBB guaranties, that the leaf node will not 

leave the TBB for a certain time interval. If the TBB 

is set, the leaf node is sorted into the SPT by its TBB 

and not by its AABB. During the time interval of the 

TBB, the leaf node does not cause changes of the 

tree. But since the TBB typically contains the leaf 

node's AABB, the leaf node is sorted into a lower 

level of the tree, what can result in lesser 

performance of applications such as occlusion 

culling or collision detection. 

2.1.2 The Rearrangement Data Structures 
Each inner node contains three lists, namely the 

current list, the incoming list, and the outgoing list 

(see figure 1). The current list represents the actual 

state stc of the animation or simulation at the time tc, 

and contains references to all the leaf nodes, which 

are currently inside of the inner node's AABB. 

Unlike the current list, the incoming list and the 

outgoing list represent the next time step tc+1 of the 

animation or simulation. If a leaf node will leave the 

inner node in the time step tc+1, then a reference to 

this leaf node is added to the inner node's outgoing 

list. If a leaf node will enter an inner node in the time 

step tc+1, then a reference to this leaf node is added to 

the incoming list of the target inner node. If the 

function size(L) returns the entry count of a list L 

then the value n = size(current) + size(incoming) - 

size(outgoing) represents the inner node's number of 

leaf nodes at the time tc+1. This approach has two 

advantages: The first advantage is, that the current 

list never changes, until tc+1 becomes the current time 

step. So this list is always consistent and readable for 

parallel algorithms (e.g. visualization, collision 

detection, searching). Furthermore the state stc+1 can 

be determined simultaneously to these algorithms. 

The second advantage is, that the necessary 

rearrangement of the SPT at the time tc+1 has not to 

consider each element manipulation separately, but 

only the effective sum of all manipulations, which is 

computed by r = n(tc+1) - n(tc). For that reason the 

algorithm introduced in section 2.1.3 can take 

advantage of compensating operations: If a leaf node 

L1 leaves an inner node IA and enters an inner node 

IB, while a leaf node L2 leaves IB and enters IA, then IA 

and IB have neither to be divided nor reunited. 

Because size(current) only returns the local leaf node 

count of an inner node (i.e. the number of leaf nodes, 

which could not be added to a subregion of the inner 

node), each inner node provides the global leaf node 

count g, which returns the number of all leaf nodes 

inside of the inner node's subtree. 

In order to collect all inner nodes, which are affected 

by an element manipulation in the next time step tc+1, 

the SPT provides a modified list for each level of the 

SPT. The first time a leaf node leaves or enters an 

inner node I in the time step tc+1, a reference to I is 

added to the modified list of I's level. So the 

modified list does not contain double references to I. 

2.1.3 The Rearrangement Algorithm 
The rearrangement algorithm is started each time a 

new time step is entered. During the rearrangement 

the current lists of the inner nodes are locked. The 

algorithm processes the inner nodes bottom-up, i.e. it 

starts processing the inner nodes referenced by the 

affected modified list of the highest level and then 

steps to the next lower level (the SPT's root has level 

0). The following pseudo code illustrates the 

algorithm (for the values r, g, n see section  2.1.2): 



<set level to highest affected level> 

<while level greater 0) 

  <set A to first inner node of modified list 

   of current level> 

  <while A not equals end of modified list> 

    <compute n of A> 

    <remove all references of A's outgoing 

     list from A's current list> 

    <add all references of A's incoming 

     to A's current list> 

    <clear A's incoming and outgoing list> 

    <compute r of A> 

    <if r unequal 0> 

      <add r to g of A> 

      <add r to g of parent P of A>; 

      <if P not in modified list with level - 1 

       then add P to modified list with level - 1> 

      <if g equals 0 then delete A> 

      <else>  

      <if A not divided and g of A greater threshold  

       then divide A>  

      <if A divided and g of A lesser threshold>   

       then reunite A>  

  <set A to next node of current modified list> 

  <clear modified list at current level>; 

  <decrement level by 1> 

Removing the references of the inner node's outgoing 

list from its current list seems to be an expensive 

operation, because searching in an unsorted list 

requires the complexity O(n). This can be easily 

changed to O(1), if each leaf node contains a 

reference to the entry inside of its parent's current 

list. This works well, because each leaf node can not 

be addressed by several current lists at the same time. 

The Area of Interest Computation 
An important task of the server is the determination 

of the scene elements, which have to be transmitted 

to the clients. For this the server is in need of a 

proper client representation, which is called the 

"client's area of interest" in the following. In the 

presented approach the area of interest of a client is 

defined by four nested AABBs, which contain the 

client's view frustum (see figure 2). Leaf nodes 

inside of the smallest AABB get the highest priority, 

while leaf nodes outside of the largest AABB get the 

lowest priority. The server provides a specific 

priority renderer for each of the four AABBs. 

Renderer do not only visualize the scene, but traverse 

the SPT in order to produce some kind of output. 

Since the server supports multiple clients, the first 

renderer begins with the largest AABB of the first 

client: 

1. If the inner node is outside of the AABB, 

then mark the inner node as Outside. Set the 

node's priority to 0. 

2. If the inner node is inside of the AABB, 

then mark the inner node as Inside. Set the 

node's priority to 1. 

3. If the inner node intersects the AABB, then 

mark the  inner node as Partial. All leaf 

nodes inside of the inner node have to be 

tested against the AABB. Partial leaf nodes 

are marked as Inside. After that, the 

renderer steps down to the children of the 

inner node recursively. 

Similar to visibility culling algorithms the renderer 

makes use of spatial coherence. If an inner node is 

marked as Inside (Outside), then all its children are 

Inside (Outside). If the first renderer steps to the 

second client, it only has to traverse the Partial and 

Outside inner nodes. The renderer of the second 

ABBB only traverses inner nodes, which have been 

marked as Inside or Partial by the first renderer, etc. 

If there are many clients, this algorithm becomes 

very expensive, when applied in each simulation 

step. So the algorithm works asynchronously. In each 

cycle of the priority algorithm the first renderer 

processes one client, the second renderer two clients, 

the third renderer four clients, and the fourth renderer 

eight clients. Since a renderer Rn, n = 2..4 only 

traverses a subset of the renderer Rn-1, Rn's running 

time is significantly shorter in comparison to Rn-1. 

The basic concept is, that changes inside of the 

smaller AABBs have to be considered very fast, 

while changes outside of the largest AABB can be 

ignored for a specific time interval. With an 

increasing number of clients, either the frequency of 

the priority algorithm or the size of the AABBs has 

to be increased.  

 

Figure 2. Each client is represented by its area of 

interest on the server side, which consists of four 

nested AABBs. Elements inside of the smallest 

AABB have the highest priority and are colored 

red in the illustrated server test environment. 

Elements colored blue are out of the areas. 



The Out-of-Core Rendering 
The areas of interest do not only determine the leaf 

nodes, which may have to be transmitted to the 

clients, but also the nodes, which could be swapped 

out to the file system, if the server or the clients lack 

the memory (on the client side the algorithm 

described in section 2.1.3 processes only the four 

AABB's of the client's area of interest in order to 

provide the out-of-core rendering). For example leaf 

nodes with the priority 0 should be swapped out at 

first, because they are outside of all areas of interest 

and are so currently not accessed. But the data could 

not be selected only by the nodes' priority. For 

example static leaf nodes do not cause 

rearrangements of the SPT, so they have to be 

swapped out before dynamic leaf nodes, even if their 

priority is higher. Swapping out inner nodes with low 

level is critical, since the renderer traverse these 

nodes very often. Another point is to divide the data 

of leaf nodes and inner nodes into "often accessed" 

and "rarely accessed" information (e.g. the AABB of 

a node is an often accessed data). Rarely accessed 

information is encapsulated by a separated data node 

(see figure 1), which is referenced by the 

corresponding leaf node or inner node. So if the 

server or the client requires memory, these data 

nodes are swapped out to the file system before their 

main nodes. 

The basic concept of the swapping strategy is very 

simple: If the memory usage is below a specific 

threshold, then check for swapped out data and swap 

it into memory. If the SG's memory usage exceeds 

the threshold, then check for data in memory and 

swap it to the file system. Since the swapping of 

large data sets would be too expensive, the strategy 

processes only a specific amount of data in one step. 

The strategy swaps the data from the memory into 

the file system in the following order: 

1. Data nodes of static leaf nodes 

2. Static leaf nodes 

3. Data nodes of dynamic leaf nodes 

4. Dynamic leaf nodes 

5. Data nodes of inner nodes 

6. Inner nodes 

If swapping data from IOC into memory, then the 

order is vice versa. For each of the enumerated data 

types, the strategy provides a specific I/O renderer. 

The data with lower priority and higher level is 

swapped out to the file system at first, while the data 

with higher priority and lower level is swapped to 

memory at first. 

Identification 
Since the clients usually don't have the server's 

capacity, they only hold a subset of the server's 

scene. If a leaf node is in the client's area of interest, 

it is transmitted to the client, where it is added to the 

client's SPT. Sometimes a leaf node causes further 

communication between server and client, e.g. 

because of user interactions. For that reason, there 

has to be an identification between the corresponding 

leaf nodes of server and client. Since a scene may 

contain thousands of elements, the search for a 

specific leaf node could be very expensive.  

As illustrated in figure 1 each leaf node contains an 

ID. If a leaf node is added to the server's SPT, then a 

reference to this leaf node is inserted into a key-

value-map. The map returns a key, which is set as the 

leaf node's ID. If the leaf node is transmitted to a 

client, then the client inserts the node into its own 

map. So the client's leaf node has a different ID than 

the server's node. For that reason, the server provides 

a lookup-map for each client, which maps the client's 

ID to the ID of the server (see figure 3). 

Additionally, the leaf nodes on the server side 

provide a vector structure, which contains the leaf 

node's IDs for all clients. If the server requests an 

information about a specific leaf node from the 

client, then the server transforms the leaf node's ID 

into the according client's ID with the help of the 

node's vector. Furthermore the vector identifies all 

clients, to which the leaf node was transmitted.  

 

Figure 3. The server provides several maps in 

order to identify corresponding leaf nodes on 

server and client. All pointers are of type 

NodePointer, which can point to an address inside 

the memory or a file. The ServerLeafNode is the 

server specific implementation of the leaf node 

(see section 3). The DataPointer addresses the 

separated data node with the rarely accessed 

information. 

Why are the ID's of clients and server not identical? 

The reason is, that searching for an information 

inside of a map should only require a constant 

amount of time. The map of the presented approach 



is defined by a tree with a constant number of levels. 

While the map's data is stored in the leaves, the inner 

nodes provide one array and one heap: The array 

contains pointers to other nodes (i.e. to the children). 

The heap contains partial sorted indices of pointers 

inside the array, which lay upon the path to a leaf 

with free entries. If a new information has to be 

added, the algorithm traverses the tree, until a leaf 

with free entries is reached. The returned key 

represents the path from the root to the leaf: 

  <set key to 0> 

  <set level to 0> 

  <set maxlevel to maximum level> 

  <set arraysize to size of array> 

  <set current node to root> 

  <while node is not leaf> 

    <get the first index i from the first heap> 

    <add i * arraysize
(maxlevel - level) to key> 

    <get the pointer Pi from the array> 

    <if Pi is invalid> 

      <then create a new node N and set Pi to N> 

    <set node to Pi> 

    <increase level by 1> 

  <get the first index i from the first heap> 

  <add i * arraysize
(maxlevel - level) to key> 

  <get the pointer Pi from the array> 

  <if Pi is invalid> 

    <then create a new node N and set Pi to N> 

  <set Pi to the data> 

  <for all visited inner nodes> 

    <if heap of visited child is empty> 

      <then remove used i from heap> 

The size of the array and the maximum level depend 

on the size of the returned key. Since the system 

should support very large scenes, a 64 bit key is 

used. So the map contains 8 levels and each node has 

an array with 256 entries. Because the number of the 

levels is independent from the number of the map 

entries, the map has always a search complexity of 

O(1). Since even this map could exceed the memory 

capacity of a standard PC, the map provides, in 

combination with a last recently used (LRU) 

approach, an ideal structure for a disk paging 

algorithm (the inner nodes manage 256 entries and 

have a constant size). Because of the heap the 

information is always added to the free entry, which 

represents the smallest key. 

3. IMPLEMENTATION 
All components of server and client are implemented 

in C++. The GUI uses Qt for the graphical user 

interface and an OpenGL based renderer for 

visualization. All multi-threaded aspects are 

implemented with help of the ACE library. The SPT 

is implemented as an Octree. In order to realize the 

out-of-core rendering, all references are implemented 

as a special pointer class (NodePointer). This pointer 

class contains several flags and a 64 bit pointer to an 

address in the system's memory or file system. One 

of the flags indicates, whether the addressed node is 

stored in the memory or in a file.  

In order to get a maximum of flexibility, the 

inheritance hierarchy illustrated in figure 4 has been 

used for the different node types. If substituting 

Element with Group, figure 4 shows the inheritance 

hierarchy of the group nodes. SPTNodes represent 

the specific implementation of the SPT. Since each 

node should know its own state and address, all 

nodes inherit from NodePointer. Some of the 

NodePointer's flags represent the type of a node. 

Possible types are the leaves of the hierarchy. While 

the nodes in the middle of the inheritance hierarchy 

provide fields and methods, which are not client or 

server specific, the nodes of the left side implement 

client specific aspects and the nodes of the right side 

server specific aspects. 

4. RESULTS 
Testing was performed with random generated 

scenes. Because the main intention of the approach is 

the management of large, dynamic, and distributed 

data sets, the appearance trees of the leaf nodes only 

described cubes. If the scenes contained dynamic leaf  

Figure 4. The inheritance hierarchy. 



nodes, these nodes flew in arbitrary direction to the 

end of scene and returned on the opposite side. All 

results were measured on an AMD Athlon 2000+ 

MHz with 512 MB memory and a 123.5GB IDE 

IBM hard disk. 

As mentioned in section 2.1.1 the SPT differentiates 

between the three element manipulations insert, 

remove and transform. Table 1 illustrates the number 

of operations, which were performed in one second. 

The threshold 

 

represents the maximum amount of 

leaf nodes, before an inner node has to be divided. 

The insert and remove operations include the list 

insertion, the map insertion, and the complete 

rearrangement of the SPT. The transform operation 

includes not only the rearrangement of the SPT, but 

also the computation of the leaf nodes' animation. An 

increased 

 

implies a decreased complexity of the 

SPT, so performance is getting better. A further 

increase of 

 

has to be adapted to other applications, 

such as visualization or collision detection. Taking 

the results of the insert operation, the client could 

insert about 40000 received leaf nodes per second to 

the scenegraph. 

 

Insert Remove Transform 

1 32000 35000 130000 

10 38000 42000 265000 

20 40000 44000 270000 

30 41000 46000 275000 

40 43000 48000 276000 

50 44000 49000 278000 

Table 1. The results of the element manipulations 

insert, remove, and transform. 

Table 2 shows the isolated results of the server's 

identification map. The table presents the number of 

operations, which were performed in one second. 

While the search operation is independent of the 

number of elements inside of the map, the add and 

remove operation have to process the partial sorted 

heaps. The variation of these operations is not caused 

by the maximum amount of elements, but by the 

current tree constellation of the map. 

Add Remove Search 

1845000 - 1850000 1998000 - 2000000 7700000 

Table 2. The maximum number of map 

operations in one second. 

Table 3 presents the results of the SPT's 

rearrangement. Testing was performed with a scene 

of 50000 dynamic leaf nodes. The number of the 

SPT's inner nodes (second column) varies because of 

the changing SPT structure. As it can be seen from 

the last two columns, the number of divide and 

reunite operations is very small in comparison to the 

total number of inner nodes. 

 
Inner Nodes Divide Reunite 

1 38400 - 39500 0 - 1150 0 - 960 

10 14500 - 15300 0 -  161 0 - 160 

20 4750 -  5350 0 -   13 0 -  15 

30 4700 -  5300 0 -   13 0 -  11 

40 4700 -  5300 0 -    9  0 -    9 

50 4650 -  5150 0 -   14 0 -   7 

Table 3. Very dynamic scenes are compensated by 

the rearrangement. 

Because the presented I/O strategy swaps data from 

the memory into the file system and vice versa, table 

4 illustrates the results of the "Write" and "Read" 

operations in seconds. While "Write" represents the 

swapping from memory to files, "Read" means the 

swapping from files to memory. Testing was 

performed with a SPT subtree of 50000 leaf nodes. 

Between each test, the hard disk's I/O cache was 

overwritten with other data. Column two contains the 

number of the subtree's inner nodes. The algorithm 

processed all structures of the subtree, which are 

enumerated in section 2.3. The algorithm's running 

time depends on the number of inner nodes, so 

running time becomes almost constant in the lower 

rows. 

 

Inner Nodes Write Read 

1 39000 3.4s 2.9s 

10 15000 2.9s 2.4s 

20 5050 2.6s 2.2s 

30 4950 2.4s 2.2s 

40 4900 2.3s  2.2s 

50 4800 2.3s 2.2s 

Table 4. The results of the I/O strategy. 

Table 5 presents the total effort of all priority 

renderer. Testing was performed with a scene of 

100000 static leaf nodes and 100000 dynamic leaf 

nodes. Column two shows the average number of 

inner nodes. The last three columns contain the 

number of visited inner nodes/leaf nodes, which 

depend on the number of clients. That means, if the 

four priority renderer would traverse all the nodes of 

a scene for a specific client, the algorithm would visit 

more than 200000 leaf nodes. As it can be seen in the 

last column, this value is not reached even by 30 

clients. 

 

Nodes 10 Clients 20 Clients 30 Clients 

10 
43400 

200000 

3600 

23300 

6150 

42300 

10900 

70700 

20 
20900 

200000 

2700 

25000 

4650 

44350 

8200 

74250 

30 
20650 

200000 

2650 

25150 

4600 

44500 

8100 

74500 

40 
17000 

200000 

2400 

26200  

4200 

46300 

7400 

77400 

50 
8650 

200000 

1750 

29400 

3050 

52000 

5350 

88000 

Table 5. The priority renderer traverse only a 

small percentage of the scene. 



  

Figure 5. The visualization of the city of 

Hamburg, presented at the InterGeo 2003, was 

realized with the server's architecture (© 

Fraunhofer IGD, GIS-tec, and the city of 

Hamburg). 

5. CONCLUSION 
In this paper a client-server-scenegraph for the 

distributed visualization of large and dynamic 3D 

scenes was introduced. Although the concept of 

SPTs is well known, a new approach for the fast 

rearrangement of dynamic SPTs was explained. The 

approach takes advantage of compensating element 

transformations and allows the parallel processing of 

the scene's data. Furthermore a new area of interest 

concept was illustrated in combination with an 

algorithm for the fast computation of these areas. The 

area of interest concept can not only be used for the 

transmission of the elements, but also for a swapping 

strategy in order to realize out-of-core rendering. 

Finally, a solution for the identification problem was 

given, which bases on key-value-maps with a 

constant search time. The system has been tested 

with randomly generated dynamic scenes as well as 

with a terrain/city visualization application (see 

figure 5). 
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