
A Client-Server-Scenegraph for the Visualization of

Large and Dynamic 3D Scenes

Jörg Sahm
Fraunhofer IGD

Fraunhoferstr. 5

64283 Darmstadt, Germany

sahm@igd.fhg.de

Ingo Soetebier
Fraunhofer IGD

Fraunhoferstr. 5

64283 Darmstadt, Germany

ingo@igd.fhg.de

ABSTRACT

With the increasing capabilities of hardware for 3D graphics and network, 3D multi-user environments get more

and more interesting for e-business, entertainment and cooperative work. This aspect concerns not only high-end

devices, like caves or graphic workstation, also small mobile devices like laptop computers or PDAs become

more and more suitable for the visualization of 3D graphics. In order to visualize a large and dynamic 3D scene

on multiple clients with different capabilities, an appropriate scene representation is required. In this paper a

client-server-scenegraph is introduced, which addresses critical problems in the area of distributed 3D graphics

such as the handling of dynamic 3D scenes, which exceed the capacity of the clients or even of the server.

Another point is the selection of the data, which has to be transmitted from the server to the clients, although the

users and the scene elements are moving. Since many clients lack the memory, they only hold the currently most

relevant scene information. For that reason there has to be an efficient matching between the server's and the

clients' data.

Keywords
scene representation, distributed/network graphics, out-of-core rendering

1. INTRODUCTION
In the last few years several client-server frameworks

have been developed, which transmit only parts of a

large 3D scene from the server to the clients. Size

and quality of the transmitted data depend on the

capabilities of the client, the client's position and

view direction, and the available transmission

bandwidth. Since clients typically lack the memory

and the computing power in comparison to the

server, the clients only hold a subset of the server's

scene. If the scene is interactive and dynamic, the

clients' data is changing rapidly: While the server has

to transmit the elements, which are currently in the

client's area of interest, the client discards the

information outside of its area of interest in order to

save memory and running power. One problem is the

definition of such an area of interest. Another

problem is to determine the areas of interest for

multiple clients and 3D scenes with thousands of

elements on the server side in real-time. Since the

elements may change their position, server and client

are in need of a scene representation, which can

handle even dynamic scenes. If an element is

transmitted, discarded, or transformed, then server

and client have to communicate about the element.

Since this kind of communication occurs frequently

and the scenes may contain a large number of

elements, there is the problem to identify a specific

element on the server and its corresponding partner

on the client very fast. Because of the resulting data

effort of large 3D scenes, another problem is to

handle scenes, which exceed even the server's

memory capacity. In this paper a client-server-

scenegraph is introduced, which encapsulates several

data structures and methods for the solution of the

listed problems.

Related Work
A lot of computer graphics libraries depend on scene

graph data structures. There are modern

programming libraries like SGI's OpenGL Optimizer

[Sgi98a] or the OpenSG graphics library [Rei02a],

which are using scenegraph data structures as a

representation for the 3D scene. One use of the

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972

WSCG 2004, February 2-6, 2004, Plzen, Czech Republic.

Copyright UNION Agency Science Press

scenegraph data structure is the visibility

determination of a certain viewpoint in the scene. A

detailed overview on visibility algorithms is

presented by Cohen-Or et al [Coh00a].

Another area is the transmission of 3D scenes over a

network. The previously mentioned visibility

algorithms can also be used to choose the 3D object,

which should be transferred over the network.

Funkhouser et al [Fun93a] presented a heuristic

approach using a definition for cost and benefit of

objects in the scene. These properties are optimized

to choose an appropriate LOD of an object of the

scene. In the year 1995 Funkhouser [Fun95a]

presented a client-server-architecture in order to

reduce the message traffic between multiple

participants in Virtual Reality (VR) scenes. Virtual

Reality was the first field of application, in which the

concept of client-server-rendering was used. In Mann

et al [Man97a] use a high-end workstation as server

in order to send large sets of textures to the clients.

While the clients interpolate the rendered images

from their local information, the server renders

difference images between the clients' and the

original view. The missing textures are sent by

demand to the clients. Other work in this area

includes the approach described by Teler et al

[Tel01a]. Similar to the approach of Funkhouser et al

[Fun93a], he defines cost and benefit for

transmission, which is then optimized for a certain

viewpoint. Schneider et al [Sch99a] present a

complex performance model where an optimal

transmission method is chosen depending on network

performance, available resources and user

preferences. The approach of Hesina et al [Hes98a]

maintains an area of interest around the user's

viewpoint. There is a prefetch algorithm for

transmitting the graphical objects over the network

belonging to this area of interest. Contrary to the

presented approach, these papers do not mention a

scenegraph representation of the 3D scene.

There are also papers addressing the problem of

managing very large scenes. Those scenes may even

exceed the main memory of a standard workstation

and thus they can be only rendered out-of-core.

Varadhan et al [Var02a] presented a concurrent

approach using a prioritized prefetching strategy for

loading graphical objects from disk. Another

approach was presented by Klein et al [Kle02a].

They are using a data structure to create an

approximate image of the scene with a special kind

of polygon sampling.

2. CONCEPT
In this section the concept of the client-sever-

scenegraph is introduced. At first an algorithm for

the rearrangement of a dynamic space partition tree is

introduced. After this a new concept for the

definition of an area of interest is explained. This

concept can be used for the transmission of scene

elements as well as for the later discussed out-of-core

rendering. Finally, the concept presents a solution for

the identification problem of corresponding elements

on server and clients.

The Dynamic Space Partition Tree
Each 3D scene is represented by a dynamic space

partition tree (SPT) on server and client as well.

Although the concept of space partition trees is not

new (e.g. see [Fuc80a, Sch69a, Gre93a]), there are

not efficient approaches for large and dynamic 3D

scenes in real-time. In the presented SPT, the nodes

are divided into inner nodes and leaf nodes. Inner

nodes do not have a visual appearance but represent

an axis aligned parallelepiped region of the scene.

Leaf nodes represent the 3D objects of the scene and

are classified into group nodes and element nodes.

An element node encapsulates not only the visual

appearance of a 3D object, but also its specific

behavior. While an element node represents only a

single object of the scene (e.g. the door of a car),

group nodes contain several element nodes, which

are connected to an animation hierarchy. The

approach differentiates between static, passive, and

active leaf nodes. While the state of static nodes

never changes, active nodes are able to perform

simulation specific actions. Passive nodes normally

remain static, but can be forced to action because of

some kind of interaction.

2.1.1 The Basic Rearrangement Operations
The rearrangement of the SPT becomes necessary

because of scene manipulations, which are either

caused by simulation and animation instructions or

by user interactions. These manipulations consist of

the insertion of elements into the scene, the removal

of elements from the scene, and the transformation of

elements inside of the scene. In order to rearrange the

SPT, the approach makes use of two basic

operations, namely the divide operation and the

reunite operation. Leaf Nodes completely inside of

the region of an inner node I are added as children to

I. If the number of leaf nodes inside of I exceeds a

specific threshold, then I is divided into several

subregions. These subregions are represented by

other inner nodes, which are also added to I. The

number and the size of the subregions depend on the

chosen SPT implementation (e.g. an Octree or a KD-

Tree). The presented approach is not in need of a

specific implementation, but requires, that the axis

aligned bounding box (AABB) of a child node is

completely inside of the parent node's AABB. The

AABB of an inner node is identical to the

represented region. While the AABB of an element

node is defined by its geometric information, the

AABB of a group node is defined by the AABBs of

all its element nodes. If a leaf node intersects several

inner nodes, it is added to the parent inner node,

which completely contains the leaf node. Greene et al

[Gre93a] propose some alternatives, but, if applied to

dynamic scenes, they are too expensive concerning

memory and running time. If the number of leaf

nodes inside of an inner node's subtree is below the

specific threshold, then the leaf nodes are added to

the inner node, and the subtree is deleted. In the

following this process is denoted as "the inner node

is reunited".

Typically, the elements of an animation hierarchy are

close to each other and inherit the transformation of

their parents. In many applications this aspect results

in similar move directions of combined elements, e.g.

if the user drives a virtual car, then all the car's doors,

windows and wheels are moved in the same

direction. If the car leaves an inner node's AABB

performing a continuous translation, then each

element of the car's animation hierarchy could cause

a rearrangement of the SPT. For that reason the

element nodes inside of a group node are not handled

separately by the basic operations, but only the group

node is added to an inner node.

ID

Pointer to List Entry

Temporary Bounding Box

Current List

Ingoing List

Outgoing List

AABB

Pointer to Parent Node

Pointer to Data Node

a)

b) c)

Figure 1. Figure a illustrates the basic structure of

all node types, including a pointer to a data node

(see section 2.3). Figure b shows the inner node

structure, and figure c the leaf node structure.

As a further optimization leaf nodes may define a

temporary bounding box (TBB) [Sud96a] (see figure

1). This TBB guaranties, that the leaf node will not

leave the TBB for a certain time interval. If the TBB

is set, the leaf node is sorted into the SPT by its TBB

and not by its AABB. During the time interval of the

TBB, the leaf node does not cause changes of the

tree. But since the TBB typically contains the leaf

node's AABB, the leaf node is sorted into a lower

level of the tree, what can result in lesser

performance of applications such as occlusion

culling or collision detection.

2.1.2 The Rearrangement Data Structures
Each inner node contains three lists, namely the

current list, the incoming list, and the outgoing list

(see figure 1). The current list represents the actual

state stc of the animation or simulation at the time tc,

and contains references to all the leaf nodes, which

are currently inside of the inner node's AABB.

Unlike the current list, the incoming list and the

outgoing list represent the next time step tc+1 of the

animation or simulation. If a leaf node will leave the

inner node in the time step tc+1, then a reference to

this leaf node is added to the inner node's outgoing

list. If a leaf node will enter an inner node in the time

step tc+1, then a reference to this leaf node is added to

the incoming list of the target inner node. If the

function size(L) returns the entry count of a list L

then the value n = size(current) + size(incoming) -

size(outgoing) represents the inner node's number of

leaf nodes at the time tc+1. This approach has two

advantages: The first advantage is, that the current

list never changes, until tc+1 becomes the current time

step. So this list is always consistent and readable for

parallel algorithms (e.g. visualization, collision

detection, searching). Furthermore the state stc+1 can

be determined simultaneously to these algorithms.

The second advantage is, that the necessary

rearrangement of the SPT at the time tc+1 has not to

consider each element manipulation separately, but

only the effective sum of all manipulations, which is

computed by r = n(tc+1) - n(tc). For that reason the

algorithm introduced in section 2.1.3 can take

advantage of compensating operations: If a leaf node

L1 leaves an inner node IA and enters an inner node

IB, while a leaf node L2 leaves IB and enters IA, then IA

and IB have neither to be divided nor reunited.

Because size(current) only returns the local leaf node

count of an inner node (i.e. the number of leaf nodes,

which could not be added to a subregion of the inner

node), each inner node provides the global leaf node

count g, which returns the number of all leaf nodes

inside of the inner node's subtree.

In order to collect all inner nodes, which are affected

by an element manipulation in the next time step tc+1,

the SPT provides a modified list for each level of the

SPT. The first time a leaf node leaves or enters an

inner node I in the time step tc+1, a reference to I is

added to the modified list of I's level. So the

modified list does not contain double references to I.

2.1.3 The Rearrangement Algorithm
The rearrangement algorithm is started each time a

new time step is entered. During the rearrangement

the current lists of the inner nodes are locked. The

algorithm processes the inner nodes bottom-up, i.e. it

starts processing the inner nodes referenced by the

affected modified list of the highest level and then

steps to the next lower level (the SPT's root has level

0). The following pseudo code illustrates the

algorithm (for the values r, g, n see section 2.1.2):

<set level to highest affected level>

<while level greater 0)

 <set A to first inner node of modified list

 of current level>

 <while A not equals end of modified list>

 <compute n of A>

 <remove all references of A's outgoing

 list from A's current list>

 <add all references of A's incoming

 to A's current list>

 <clear A's incoming and outgoing list>

 <compute r of A>

 <if r unequal 0>

 <add r to g of A>

 <add r to g of parent P of A>;

 <if P not in modified list with level - 1

 then add P to modified list with level - 1>

 <if g equals 0 then delete A>

 <else>

 <if A not divided and g of A greater threshold

 then divide A>

 <if A divided and g of A lesser threshold>

 then reunite A>

 <set A to next node of current modified list>

 <clear modified list at current level>;

 <decrement level by 1>

Removing the references of the inner node's outgoing

list from its current list seems to be an expensive

operation, because searching in an unsorted list

requires the complexity O(n). This can be easily

changed to O(1), if each leaf node contains a

reference to the entry inside of its parent's current

list. This works well, because each leaf node can not

be addressed by several current lists at the same time.

The Area of Interest Computation
An important task of the server is the determination

of the scene elements, which have to be transmitted

to the clients. For this the server is in need of a

proper client representation, which is called the

"client's area of interest" in the following. In the

presented approach the area of interest of a client is

defined by four nested AABBs, which contain the

client's view frustum (see figure 2). Leaf nodes

inside of the smallest AABB get the highest priority,

while leaf nodes outside of the largest AABB get the

lowest priority. The server provides a specific

priority renderer for each of the four AABBs.

Renderer do not only visualize the scene, but traverse

the SPT in order to produce some kind of output.

Since the server supports multiple clients, the first

renderer begins with the largest AABB of the first

client:

1. If the inner node is outside of the AABB,

then mark the inner node as Outside. Set the

node's priority to 0.

2. If the inner node is inside of the AABB,

then mark the inner node as Inside. Set the

node's priority to 1.

3. If the inner node intersects the AABB, then

mark the inner node as Partial. All leaf

nodes inside of the inner node have to be

tested against the AABB. Partial leaf nodes

are marked as Inside. After that, the

renderer steps down to the children of the

inner node recursively.

Similar to visibility culling algorithms the renderer

makes use of spatial coherence. If an inner node is

marked as Inside (Outside), then all its children are

Inside (Outside). If the first renderer steps to the

second client, it only has to traverse the Partial and

Outside inner nodes. The renderer of the second

ABBB only traverses inner nodes, which have been

marked as Inside or Partial by the first renderer, etc.

If there are many clients, this algorithm becomes

very expensive, when applied in each simulation

step. So the algorithm works asynchronously. In each

cycle of the priority algorithm the first renderer

processes one client, the second renderer two clients,

the third renderer four clients, and the fourth renderer

eight clients. Since a renderer Rn, n = 2..4 only

traverses a subset of the renderer Rn-1, Rn's running

time is significantly shorter in comparison to Rn-1.

The basic concept is, that changes inside of the

smaller AABBs have to be considered very fast,

while changes outside of the largest AABB can be

ignored for a specific time interval. With an

increasing number of clients, either the frequency of

the priority algorithm or the size of the AABBs has

to be increased.

Figure 2. Each client is represented by its area of

interest on the server side, which consists of four

nested AABBs. Elements inside of the smallest

AABB have the highest priority and are colored

red in the illustrated server test environment.

Elements colored blue are out of the areas.

The Out-of-Core Rendering
The areas of interest do not only determine the leaf

nodes, which may have to be transmitted to the

clients, but also the nodes, which could be swapped

out to the file system, if the server or the clients lack

the memory (on the client side the algorithm

described in section 2.1.3 processes only the four

AABB's of the client's area of interest in order to

provide the out-of-core rendering). For example leaf

nodes with the priority 0 should be swapped out at

first, because they are outside of all areas of interest

and are so currently not accessed. But the data could

not be selected only by the nodes' priority. For

example static leaf nodes do not cause

rearrangements of the SPT, so they have to be

swapped out before dynamic leaf nodes, even if their

priority is higher. Swapping out inner nodes with low

level is critical, since the renderer traverse these

nodes very often. Another point is to divide the data

of leaf nodes and inner nodes into "often accessed"

and "rarely accessed" information (e.g. the AABB of

a node is an often accessed data). Rarely accessed

information is encapsulated by a separated data node

(see figure 1), which is referenced by the

corresponding leaf node or inner node. So if the

server or the client requires memory, these data

nodes are swapped out to the file system before their

main nodes.

The basic concept of the swapping strategy is very

simple: If the memory usage is below a specific

threshold, then check for swapped out data and swap

it into memory. If the SG's memory usage exceeds

the threshold, then check for data in memory and

swap it to the file system. Since the swapping of

large data sets would be too expensive, the strategy

processes only a specific amount of data in one step.

The strategy swaps the data from the memory into

the file system in the following order:

1. Data nodes of static leaf nodes

2. Static leaf nodes

3. Data nodes of dynamic leaf nodes

4. Dynamic leaf nodes

5. Data nodes of inner nodes

6. Inner nodes

If swapping data from IOC into memory, then the

order is vice versa. For each of the enumerated data

types, the strategy provides a specific I/O renderer.

The data with lower priority and higher level is

swapped out to the file system at first, while the data

with higher priority and lower level is swapped to

memory at first.

Identification
Since the clients usually don't have the server's

capacity, they only hold a subset of the server's

scene. If a leaf node is in the client's area of interest,

it is transmitted to the client, where it is added to the

client's SPT. Sometimes a leaf node causes further

communication between server and client, e.g.

because of user interactions. For that reason, there

has to be an identification between the corresponding

leaf nodes of server and client. Since a scene may

contain thousands of elements, the search for a

specific leaf node could be very expensive.

As illustrated in figure 1 each leaf node contains an

ID. If a leaf node is added to the server's SPT, then a

reference to this leaf node is inserted into a key-

value-map. The map returns a key, which is set as the

leaf node's ID. If the leaf node is transmitted to a

client, then the client inserts the node into its own

map. So the client's leaf node has a different ID than

the server's node. For that reason, the server provides

a lookup-map for each client, which maps the client's

ID to the ID of the server (see figure 3).

Additionally, the leaf nodes on the server side

provide a vector structure, which contains the leaf

node's IDs for all clients. If the server requests an

information about a specific leaf node from the

client, then the server transforms the leaf node's ID

into the according client's ID with the help of the

node's vector. Furthermore the vector identifies all

clients, to which the leaf node was transmitted.

Figure 3. The server provides several maps in

order to identify corresponding leaf nodes on

server and client. All pointers are of type

NodePointer, which can point to an address inside

the memory or a file. The ServerLeafNode is the

server specific implementation of the leaf node

(see section 3). The DataPointer addresses the

separated data node with the rarely accessed

information.

Why are the ID's of clients and server not identical?

The reason is, that searching for an information

inside of a map should only require a constant

amount of time. The map of the presented approach

is defined by a tree with a constant number of levels.

While the map's data is stored in the leaves, the inner

nodes provide one array and one heap: The array

contains pointers to other nodes (i.e. to the children).

The heap contains partial sorted indices of pointers

inside the array, which lay upon the path to a leaf

with free entries. If a new information has to be

added, the algorithm traverses the tree, until a leaf

with free entries is reached. The returned key

represents the path from the root to the leaf:

 <set key to 0>

 <set level to 0>

 <set maxlevel to maximum level>

 <set arraysize to size of array>

 <set current node to root>

 <while node is not leaf>

 <get the first index i from the first heap>

 <add i * arraysize
(maxlevel - level) to key>

 <get the pointer Pi from the array>

 <if Pi is invalid>

 <then create a new node N and set Pi to N>

 <set node to Pi>

 <increase level by 1>

 <get the first index i from the first heap>

 <add i * arraysize
(maxlevel - level) to key>

 <get the pointer Pi from the array>

 <if Pi is invalid>

 <then create a new node N and set Pi to N>

 <set Pi to the data>

 <for all visited inner nodes>

 <if heap of visited child is empty>

 <then remove used i from heap>

The size of the array and the maximum level depend

on the size of the returned key. Since the system

should support very large scenes, a 64 bit key is

used. So the map contains 8 levels and each node has

an array with 256 entries. Because the number of the

levels is independent from the number of the map

entries, the map has always a search complexity of

O(1). Since even this map could exceed the memory

capacity of a standard PC, the map provides, in

combination with a last recently used (LRU)

approach, an ideal structure for a disk paging

algorithm (the inner nodes manage 256 entries and

have a constant size). Because of the heap the

information is always added to the free entry, which

represents the smallest key.

3. IMPLEMENTATION
All components of server and client are implemented

in C++. The GUI uses Qt for the graphical user

interface and an OpenGL based renderer for

visualization. All multi-threaded aspects are

implemented with help of the ACE library. The SPT

is implemented as an Octree. In order to realize the

out-of-core rendering, all references are implemented

as a special pointer class (NodePointer). This pointer

class contains several flags and a 64 bit pointer to an

address in the system's memory or file system. One

of the flags indicates, whether the addressed node is

stored in the memory or in a file.

In order to get a maximum of flexibility, the

inheritance hierarchy illustrated in figure 4 has been

used for the different node types. If substituting

Element with Group, figure 4 shows the inheritance

hierarchy of the group nodes. SPTNodes represent

the specific implementation of the SPT. Since each

node should know its own state and address, all

nodes inherit from NodePointer. Some of the

NodePointer's flags represent the type of a node.

Possible types are the leaves of the hierarchy. While

the nodes in the middle of the inheritance hierarchy

provide fields and methods, which are not client or

server specific, the nodes of the left side implement

client specific aspects and the nodes of the right side

server specific aspects.

4. RESULTS
Testing was performed with random generated

scenes. Because the main intention of the approach is

the management of large, dynamic, and distributed

data sets, the appearance trees of the leaf nodes only

described cubes. If the scenes contained dynamic leaf

Figure 4. The inheritance hierarchy.

nodes, these nodes flew in arbitrary direction to the

end of scene and returned on the opposite side. All

results were measured on an AMD Athlon 2000+

MHz with 512 MB memory and a 123.5GB IDE

IBM hard disk.

As mentioned in section 2.1.1 the SPT differentiates

between the three element manipulations insert,

remove and transform. Table 1 illustrates the number

of operations, which were performed in one second.

The threshold

represents the maximum amount of

leaf nodes, before an inner node has to be divided.

The insert and remove operations include the list

insertion, the map insertion, and the complete

rearrangement of the SPT. The transform operation

includes not only the rearrangement of the SPT, but

also the computation of the leaf nodes' animation. An

increased

implies a decreased complexity of the

SPT, so performance is getting better. A further

increase of

has to be adapted to other applications,

such as visualization or collision detection. Taking

the results of the insert operation, the client could

insert about 40000 received leaf nodes per second to

the scenegraph.

Insert Remove Transform

1 32000 35000 130000

10 38000 42000 265000

20 40000 44000 270000

30 41000 46000 275000

40 43000 48000 276000

50 44000 49000 278000

Table 1. The results of the element manipulations

insert, remove, and transform.

Table 2 shows the isolated results of the server's

identification map. The table presents the number of

operations, which were performed in one second.

While the search operation is independent of the

number of elements inside of the map, the add and

remove operation have to process the partial sorted

heaps. The variation of these operations is not caused

by the maximum amount of elements, but by the

current tree constellation of the map.

Add Remove Search

1845000 - 1850000 1998000 - 2000000 7700000

Table 2. The maximum number of map

operations in one second.

Table 3 presents the results of the SPT's

rearrangement. Testing was performed with a scene

of 50000 dynamic leaf nodes. The number of the

SPT's inner nodes (second column) varies because of

the changing SPT structure. As it can be seen from

the last two columns, the number of divide and

reunite operations is very small in comparison to the

total number of inner nodes.

Inner Nodes Divide Reunite

1 38400 - 39500 0 - 1150 0 - 960

10 14500 - 15300 0 - 161 0 - 160

20 4750 - 5350 0 - 13 0 - 15

30 4700 - 5300 0 - 13 0 - 11

40 4700 - 5300 0 - 9 0 - 9

50 4650 - 5150 0 - 14 0 - 7

Table 3. Very dynamic scenes are compensated by

the rearrangement.

Because the presented I/O strategy swaps data from

the memory into the file system and vice versa, table

4 illustrates the results of the "Write" and "Read"

operations in seconds. While "Write" represents the

swapping from memory to files, "Read" means the

swapping from files to memory. Testing was

performed with a SPT subtree of 50000 leaf nodes.

Between each test, the hard disk's I/O cache was

overwritten with other data. Column two contains the

number of the subtree's inner nodes. The algorithm

processed all structures of the subtree, which are

enumerated in section 2.3. The algorithm's running

time depends on the number of inner nodes, so

running time becomes almost constant in the lower

rows.

Inner Nodes Write Read

1 39000 3.4s 2.9s

10 15000 2.9s 2.4s

20 5050 2.6s 2.2s

30 4950 2.4s 2.2s

40 4900 2.3s 2.2s

50 4800 2.3s 2.2s

Table 4. The results of the I/O strategy.

Table 5 presents the total effort of all priority

renderer. Testing was performed with a scene of

100000 static leaf nodes and 100000 dynamic leaf

nodes. Column two shows the average number of

inner nodes. The last three columns contain the

number of visited inner nodes/leaf nodes, which

depend on the number of clients. That means, if the

four priority renderer would traverse all the nodes of

a scene for a specific client, the algorithm would visit

more than 200000 leaf nodes. As it can be seen in the

last column, this value is not reached even by 30

clients.

Nodes 10 Clients 20 Clients 30 Clients

10
43400

200000

3600

23300

6150

42300

10900

70700

20
20900

200000

2700

25000

4650

44350

8200

74250

30
20650

200000

2650

25150

4600

44500

8100

74500

40
17000

200000

2400

26200

4200

46300

7400

77400

50
8650

200000

1750

29400

3050

52000

5350

88000

Table 5. The priority renderer traverse only a

small percentage of the scene.

Figure 5. The visualization of the city of

Hamburg, presented at the InterGeo 2003, was

realized with the server's architecture (©

Fraunhofer IGD, GIS-tec, and the city of

Hamburg).

5. CONCLUSION
In this paper a client-server-scenegraph for the

distributed visualization of large and dynamic 3D

scenes was introduced. Although the concept of

SPTs is well known, a new approach for the fast

rearrangement of dynamic SPTs was explained. The

approach takes advantage of compensating element

transformations and allows the parallel processing of

the scene's data. Furthermore a new area of interest

concept was illustrated in combination with an

algorithm for the fast computation of these areas. The

area of interest concept can not only be used for the

transmission of the elements, but also for a swapping

strategy in order to realize out-of-core rendering.

Finally, a solution for the identification problem was

given, which bases on key-value-maps with a

constant search time. The system has been tested

with randomly generated dynamic scenes as well as

with a terrain/city visualization application (see

figure 5).

6. ACKNOWLEDGMENTS
This work was funded by the Heinz-Nixdorf-

Foundation.

7. REFERENCES
[Coh00a] Cohen-Or, D., Chrysanthou, Y., and Silva,

C. A survey of visibility for walkthrough

applications. EUROGRAPHICS 2000, course

notes, 2000.

[Fuc80a] Fuchs, H., Kedem, Z.M., and Naylor, B.F.

On Visible Surface Generation by A Priori Tree

Structures. ACM Computer Graphics (Proc. of

SIGGRAPH '80), pp.124-133, 1980.

[Fun95a] Funkhouser, T. RING: A client-server

system for multi-user virtual environments.

Symposium of Interactive 3D Graphics, ACM

SIGGRAPH, pp. 85-92, 1995.

[Fun93a] Funkhouser, T., and Sequin, C. Adaptive

Display Algorithm for Interactive Frame Rates

During Visualization of Complex Virtual

Environments. Proc. of SIGGRAPH '93, 1993.

[Gre93a] Greene, N., and Kass, M. Hierarchical Z-

buffer visibility. In Computer Graphics Proc.,

Annual Conference Series, 1993, pp. 231-240,

1993.

[Hes98a] Hessina, G., and Schmalstieg, D. A

Network Architecture for Remote Rendering.

Proc. of 2nd International Workshop on

Distributed Interactive Simulation and Real Time

Applications (DIS-RT'98), Montreal, Canada,

1998.

[Kle02a] Klein, J., Krokowski, J., Fischer, M.,

Wand, M., Wanka, R., and Meyer auf der Heide,

F. The Randomized Sample Tree: A Data

Structure for Interactive Walkthroughs in

Externally Stored Virtual Environments. VRST

'02, Hong Kong, 2002.

[Man97a] Mann, Y., and Cohen-Or, D. Selective

Pixel Transmission for Navigation in Remote

Virtual Environments. Computer Graphics

Forum, Vol. 16, No. 3, pp. 201-206, 1997.

[Rei02a] Reiners, R. OpenSG: A Scene Graph

System for Flexible and Efficient Rendering for

Virtual and Augmented Reality Applications.

Darmstadt, Technical University, PhD Thesis,

2002.

[Sch99a] Schneider, B.O., and Martin, I.M. An

adaptive framework for 3D graphics over

networks. Computer & Graphics 23, 1999.

[Sch69a] Schumacker, R., Brand, B., Gilliland, M.,

and Sharp, W. Study for Applying Computer-

Generated Images to Visual Simulation.

Technical Report AFHRL-TR-69-14, NTIS

AD700735, U.S. Air Force Human Resources

Lab., Air Force Systems Command, Brooks AFB,

TX, 1969.

[Sgi98a] Silicon Graphics Inc. SGI OpenGL

Optimizer Whitepaper.

http://www.sgi.com/software/optimizer/whitepap

er.pdf, 1998.

[Sud96a] Sudarsky, O., Gotsman, C. Output-

Sensitive Visibility Algorithms for Dynamic

Scenes with Applications to Virtual Reality. Proc.

of EUROGRAPHICS 1996, 1996.

[Tel01a] Teler, E., and Lischinski, D. Streaming of

Complex 3D Scenes for Remote Walkthroughs.

Proc. of EUROGRAPHICS 2001, 2001.

[Var02a] Varadhan, G., and Manocha, D. Out-of-

Core Rendering of Massive Geometric

Environments. IEEE Visualization 2002, 2002.

