
Hardware Accelerated Soft Shadows

using Penumbra Quads

Jukka Arvo (*) Jan Westerholm (¤)
Department of Information Technology, University of Turku (*),

Turku Centre for Computer Science (*,¤), and Åbo Akademi University (¤)

Lemminkäisenkatu 14 A,
 FIN-20520 TURKU, Finland

jarvo@cs.utu.fi (*), jan.westerholm@abo.fi (¤)

ABSTRACT

Shadow mapping is a commonly used technique for generating hard shadows in real time. However, existing

shadow map based algorithms cannot render full soft shadows penumbras onto arbitrary dynamic geometry by

utilizing only consumer level programmable graphics hardware. In this paper we introduce a new fully hardware

accelerated penumbra map algorithm which stores additional penumbra information into separate penumbra

maps. The method is capable of generating approximate soft shadows on both sides of the hard shadow

boundaries at real time frame rates. The shadow generation requires neither graphics hardware read backs nor

processing with the CPU while it is able to handle arbitrary shadow receivers and dynamic environments. The

algorithm also has a straightforward implementation on programmable graphics hardware.

Keywords

Shadow algorithms, soft shadows, graphics hardware, shadow map

1. INTRODUCTION
One of the most challenging tasks in computer

graphics is the efficient computation of soft shadows.

Soft shadows occur because different points in the

scene receive different amounts of light from an area

light source. Regions which are fully in the shadow,

that is, occluded from the light source, are called the

umbra. Points that cannot fully see the light source,

but can see some part of it, are in the soft transition

from no shadow to fully in the shadow (the

penumbra region). Thus the soft shadow calculation

can be seen as an area visibility problem. Algorithms

that model both umbra and penumbra shadows are

commonly referred to as “soft shadow” algorithms.

There are two main avenues for the treatment of area

light sources in hardware accelerated real-time

computer graphics: shadow volumes and shadow

maps. Shadow volumes [Cro77a] construct

additional polygons that bound the umbra regions

and a pixel is in the shadow if it is inside the

bounded umbra region. Approximate soft shadows

can be achieved by generating multiple shadow

volumes from different sample positions of the area

light source or by constructing additional penumbra

geometry [Ass03a]. Shadow maps on the other hand

[Wil78a] discretize the scene geometry as seen from

the light source into a shadow map. The shadow map

is essentially a z-buffer, and describes the light space

z-coordinate of the pixels that are lit by the light

source. This information is later used for determining

whether a pixel in the camera view space is seen by

the light source or not and thus lit or dark. Fully

hardware accelerated soft shadows can be generated

by rendering multiple shadow maps from various

light source sample positions [Hec97a].

The soft shadow algorithm presented in this paper

may be classified as a shadow map algorithm, but

instead of only storing the z-coordinates for each

pixel as seen from the light source, our new

algorithm stores additional penumbra information

into separate penumbra maps which will be used to

generate the penumbra regions. In contrast to

previous penumbra mapping algorithms [Kir03a,

Cha03a, Wym03a], our method generates both inner

and outer penumbra regions on both sides of the hard

shadow edges and it does not require any runtime

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972

WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

processing with the CPU. As in those methods, our

approach produces only approximate and not

physically based soft shadows, as will be discussed

in section 4.3. In particular, our method tends to

generate slightly larger penumbras which are

however visually appealing.

We refer to the frustum of a camera as a view frustum

and the frustum of a light source as a light frustum. A

pixel shader is a GPU program that computes the

color value of a pixel in the image space. A render

target buffer is a table where the pixel shader results

are gathered. A vertex shader is a GPU program that

computes vertex parameters during various

transformations.

The paper is organized as follows. In Section 2

related work is reviewed. In Section 3 some basic

quantities relevant to the practical implementation of

irradiance calculations are presented. In Section 4,

we give a detailed description of our new algorithm.

Then in Section 5, we discuss implementation details

and present our test results obtained under a variety

of conditions. We discuss some limitations in Section

6 and finally in Section 7 we point out directions for

future work and present our conclusions.

2. Previous work
In this section we review the work that is most

closely related to ours. For a complete review of

shadow generation algorithms see [Ake02a, Has03a].

2.1 Hard shadow mapping
The shadow map method was first introduced by

Williams [Wil78a]. First the algorithm forms the

light space image into a z-buffer, the (standard)

shadow map which represents the surfaces

illuminated by the light. Then the view frustum

image is generated into another z-buffer and those

parts that coincide with the shadow map are

illuminated. Coincidence is tested by transforming

each view frustum pixel into the light frustum and

comparing the transformed depth value with the

shadow map (Figure 1).

Because the shadow map method is based on

transformations between discrete maps, it is prone to

quantization and aliasing problems. Reeves et al.

[Ree87a] presented the percentage closer filtering

method for softening the shadow boundaries and thus

reducing the shadow boundary aliasing. The intensity

of a sample is determined based on the percentage of

the surrounding weighted samples that are closer to

the light source.

2.2 Approximate soft shadowing.
Heckbert and Herf [Hec97a] introduced an

algorithm, which creates soft shadow textures for

each receiver surface by combining multiple hard

shadow images. Although the algorithm can utilize

graphics hardware, it is mostly suitable for shadow

texture pre-generation due to the large number of

samples needed to achieve smooth penumbra

regions.

Figure 1. Two z-buffers are created, one in the

light frustum and another in the view frustum.

The shadow regions are determined by pixel

transformations and depth comparisons between

these z-buffers.

Soler and Sillion [Sol98a] used a convolution on

occluder images to compute approximate soft

shadows. For parallel light sources, a light source

image is convolved with a hard shadow image of a

clustered geometry. General configurations are

handled by an error driven algorithm. Hardware

accelerated implementtations would require

specialized DSP features, which are not available on

current consumer level graphics hardware.

A method presented by Gooch et al. [Goo99a]

approximates the two-dimensional sampling of the

spherical light source with a one-dimensional

sampling process. This is implemented by moving

the receiver surface up and down, and averaging the

resulting shadows. Haines [Hai01a] presented an

algorithm for creating outer penumbra regions on a

flat surface by searching the silhouette edges and

forming circular shadow cones at each vertex.

Adjacent cones are used to interpolate the shadows

along each edge. Neither of these two methods works

with arbitrary receiver geometries nor do they have

implementations on concurrent graphics hardware.

Heidrich et al. [Hei00a] introduced an algorithm for

linear light source shadows by using a few light

source samples in low frequency scenes. Separate

shadow maps are generated from each light source

sample point and depth discontinuities are detected.

The resulting depth discontinuities are then

where L is the radiance from the light source, θl is

the incident angle, θi is the angle made with the

lighting normal, V is the binary visibility term, and r

is the distance from the processed point on the

surface to the point on the light source.

triangulated, warped, and rendered into a visibility

map. The method has been generalized to polygonal

light sources by Ying et al. [Yin02a].

Brabec et al. [Bra02a] presented an area light source

algorithm using a single shadow map which

generates soft shadow boundaries by performing a

neighborhood scan for every view frustum pixel. The

distance from the hard shadow boundary then

determines the illumination. The algorithm utilizes

graphics hardware for the view frustum and light

frustum rendering, but all soft shadow computations

are CPU based.

A common approximation in rapid soft shadow

calculations is to separate lighting and visibility

calculations. Thus, it is reasonable to compute the

average visibility term that attenuates the lighting as

[Agr00a]:

∫=
lightA

light

VdA
A

v
1

 (2)

Agrawala et al. [Agr00a] used multisampling of the

area light source and layered attenuation maps for

storing multiple depth samples for each pixel. They

also described a coherent ray tracing based algorithm

for higher quality images.

The irradiance at the current pixel can then be

approximated by:

lvE ≈ (3)

Approximate soft shadows can be divided into inner

and outer penumbra regions according to whether

they lie inside or outside the hard shadow region as

seen from a single light source sample point. Kirsch

and Doellner [Kir03a] presented an algorithm which

generates approximate inner penumbra regions.

Respectively, Chan and Durand [Cha03a] and

Wyman and Hansen [Wym03a] introduced outer

penumbra algorithms. The central contribution of

Chan and Durand was to replace the fixed soft

shadow width for outer penumbra regions by an

approximate width depending on the distance

between the occluder and the receiver. In our current

work, we mimic both inner and outer penumbras, and

our algorithm is fully hardware accelerated. The

previously mentioned penumbra methods required

runtime processing with the CPU.

where l is the surface irradiance due to a point light

source and v is the average visibility term. Our

algorithm is strongly based on this assumption and

we mainly concentrate on the rapid computation of

the visibility term.

4. Algorithm
In this chapter we begin with a general description of

our algorithm (Section 4.1). This is followed by a

technical description of the penumbra quad, an

essential concept used in the algorithm (Section 4.2).

In Section 4.3 we present the algorithm in full detail

by explaining how penumbra shadow maps are

generated from the penumbra quads and how the

umbra and penumbra shadows in the view frustum

are finally rendered (Section 4.4).

4.1 Algorithm Structure Assarsson and Möller [Ass03a] recently introduced a

shadow volume based algorithm for generating

geometrically based soft shadows. The algorithm is

based on generating additional penumbra volumes

where each penumbra volume pixel clips it’s

silhouette edge towards the area light source (for a

description of silhouettes, see Section 4). Shadow

volumes are prone to excessive fill-rate problems and

the penumbra volumes will aggravate the situation

further.

Consider the following simple geometry: A ground

plane, a closed polygonal object above the ground

plane, and a point light source above the object. The

light from the point light source falls on the object

(occluder) which subsequently casts a hard shadow

onto the ground plane. We begin by calculating the

standard shadow map (first shadow map) for the light

source. In the shadow map the occluder is a 2-D

object with a closed boundary (silhouette). As the

occluder typically is made up from polygons,

analytically the silhouette consists of a sequence of

straight lines closing on itself. By construction the

silhouette generates the boundary of the hard

shadow. Suppose now that the point light source

grows to an area light source of for instance circular

cross section. The effect of this is the emergence of

penumbra shadows on both the inner and the outer

sides of the boundary of the hard shadow. In our

algorithm we attribute the growth of the penumbra

regions to the silhouette lines by assigning one

3. Preliminaries
During the calculation of soft shadows we have to

address the question on how to compute the

irradiance incident on a surface. The computation of

the irradiance from an area light source on a surface

is given by [Coh93a]:

VdA
r

L
E

lightA

li∫= 2

coscos

π
θθ

 (1)

quadrilateral for each silhouette line. This

quadrilateral is generated by duplicating the end

points of the silhouette lines, and it will be used to

compute two new quadrilaterals, the outer and the

inner penumbra quad, depending on whether the

duplicated points are shifted to the outside or the

inside of the silhouette. Thus only one geometric

object will be used to generate two penumbra quads,

and henceforth we will only speak of the penumbra

quads. The algorithm essentially deals with a method

of estimating the size, illumination and shadow effect

of these quads, that is, we compute where the quads

will throw their penumbra shadows. The results of

these calculations are stored in two additional maps

in the light space image, called penumbra maps, one

for the outside quads (outer penumbra map) and one

for the inside quads (inner penumbra map). The

utilization of the inner penumbra map also uses a

second shadow map which stores depth values of the

second front facing surfaces as seen from the light

source; the inner penumbra shadows will be cast on

these objects. The final illumination in the light space

image is generated from a linear combination of the

four shadow maps, yielding the umbra and penumbra

shadows. As will be shown, both shadow maps and

both penumbra maps can be fully generated and

combined in the GPU with no read-backs or

processing with the CPU.

Figure 2. The penumbra quad is enlarged to

illustrate the basic concepts. Every edge of the

original object is replaced by a penumbra quad

which has two edges parallel to the original edge

(inner- and outer edge) and two opposite sides of

zero length. All penumbra quad vertices have two

face normals from their sharing polygons. The

stretching normal is an average of the object

normals sharing the vertex.

In the following subsections, we describe in more

detail the penumbra quads, how the penumbra maps

are generated, and the soft shadow visualization

process.

4.2 Penumbra quads
The penumbra regions are located on both sides of

the hard shadow boundaries which are directly

related to the silhouette edges as seen from the center

of an area light source. Soft shadows can thus be

computed by detecting the silhouette edges with the

CPU and uploading new penumbra geometry into the

graphics card at each frame. However, this is often

computationally rather expensive and therefore we

compute the penumbra fully with the GPU by

creating additional static geometry, penumbra quads,

which are modified at runtime. The penumbra quads

are created at start up, and both inner and outer

penumbra map rendering utilize the same

quadrilaterals.

For each object and each edge, we generate a quad

that has two sides consisting of copies of the original

edge, the inner and the outer edge, and two opposite

sides of zero length. The edges have different

behavior because the inner edges always remain at

the silhouette and only the outer edges are moved.

Therefore we add two face normals and one

stretching normal into every penumbra quad vertex

(Figure 2), where the outer edge face normals are

taken from the original mesh normals and the inner

edge face normals are set to equal value (we will see

later why). The stretching normal is always an

average of the face normals sharing the current

vertex in the original mesh. As the result, penumbra

quads can be modified with the vertex shader at

runtime and only the outer edges are detected as

silhouettes. The inner edges are necessary ingredients

in forming the penumbra quads as geometrical

objects.

It should be noted that every shadow casting object

has to be collapsed into a single two-manifold mesh,

where all redundant back-to-back triangles are

removed and the remaining mesh is welded together

before generating the penumbra quads. For example,

if the wing and the fuselage of an airplane are

separate closed objects, then the wing should be

connected to the fuselage in such a way that back-to-

back triangles in the junction area are removed.

Otherwise, false penumbra regions may be

generated, because the vertex shader will falsely

classify edges in the junction as silhouettes. The

same restriction applies to the GPU based shadow

volume generation [Eng02a] as well, but the

resulting artifacts are usually less distracting with

hard shadows.

4.3 Penumbra map generation
The average visibility information for both penumbra

maps is generated by rendering penumbra quads at

the silhouette edges. This requires that one has to

detect the silhouette edges, stretch the corresponding

penumbra quads to become visible, and compute the

average visibility value for each rendered penumbra

map pixel.

To accomplish this, we first detect the silhouette

edges with the vertex shader by computing two dot

products between the two penumbra quad face

normals and the vector from the light to the vertex.

The vertex is concluded to be part of the silhouette if

the results have opposite signs. Then we stretch these

silhouette penumbra quads by projecting each

silhouette vertex into the light source's far plane and

back towards a point determined by the stretching

normal and the boundary of the light source (Figure

3). We compute this back stretching point from the

angle of the stretching normal and the boundary of

the light source. Notice that by putting equal face

normals for the inner edges, these will not be

detected as silhouette edges.

After the penumbra quad vertices have been

processed they are sent to the pixel shader, which

computes the average visibility values for the visible

penumbra quad pixels. The computation utilizes

penumbra quad vertex visibility values (v in Eq. 3),

that are v = 0.0 at the outer edge (vertices) of the

inner penumbra polygons and v = 0.5 at the inner

edges. Similarly, for the outer edge of the outer

penumbra polygons, the visibility value is v = 1.0

and for the inner edge v = 0.5. The visibility value v

= 0.0 means that the point is fully occluded from the

light source and v = 1.0 indicates that the pixel can

"see" all points on the light source. This

configuration gives a perspective correct linear

transition between the fully lit and the fully

shadowed regions and it can be easily computed with

the pixel shader. The result is not physically based

but it generates acceptable soft shadow boundaries,

and both inner and outer penumbra quads are

rendered by using the same penumbra quad geometry

with due care paid to the stretching direction. Figure

4 illustrates the result of calculating the inner and

outer penumbra maps with corresponding shading.

The initial z-buffer for outer penumbra map

rendering is the standard shadow map because it

prevents penumbra region leaking, that is, a false

assignment of receiver surface. The problem here is

that the GPU vertex shader does not identify which

surfaces (and silhouettes) are lit by the light source

and which are simply in the shadow of the occluders

and therefore should not be assigned any penumbra

quads. Similarly the inner penumbra map is rendered

by second depth values (second shadow map) as the

initial depth buffer [Nvi02].

Figure 3. Every silhouette vertex is projected all

the way down to the far plane and then back

towards the area light source's silhouette. The

back stretching direction towards the back

stretching point is determined with the

stretching normal. This process is performed

separately for both the inner and the outer

penumbra quads.

Our algorithm cannot use the exact distance between

the occluder and the receiver, that is, the first depth

map value for the outer penumbra quad vertices and

the second depth map value for the inner penumbra

quad vertices due to hardware restrictions. This may

however change in the near future, when a fast copy

from the frame buffer to a vertex attribute array on

the GPU becomes available [Bra03a]. This will

enable the rendering of depth values as seen from the

light source for each penumbra quad vertex and they

can be used directly for the stretching distances. Due

to the lack of this feature, we are forced to use the

light source's far plane for the stretching distance.

Additionally, if our procedure in its present form

yields too large penumbra quads, it can be easily

modified by computing additional smoothie values

for the penumbra regions [Cha03a].

We note in passing that although penumbra quads are

assigned to all edges, the presented algorithm detects

and uses only the silhouette edges of shadow casting

objects as seen from a single point light source.

Similar approximations have been used before

[Bra02a, Ass03a] and we discuss some limitations of

this approximation in Section 6.

Figure 4. A simple example of inner (left) and

outer (right) penumbra maps where the scene

consists of a sphere and a ground plate. The inner

penumbra map has v = 0.0 (black) visibility value

adjusted to the outer vertices and v = 0.5 to the

inner vertices. Respectively, the outer penumbra

map has v = 0.5 visibility value adjusted to the

inner vertices and v = 1.0 (white) to the outer

vertices.

4.4 Soft shadow visualization
The soft shadow visualization process utilizes the

first shadow map, the second shadow map and the

penumbra maps for rendering the umbra and

penumbra regions.

During the soft shadow rendering pass, each view

frustum pixel is transformed into the light space and

the first shadow map depth test is performed. If the

pixel passes this test, the pixel is lit according to the

first shadow map, and the outer penumbra map is

thus sampled in order to determine the illumination.

In contrast, when the first depth test fails, which

indicates that the current pixel is fully in the shadow

according to the first shadow map, the depth of the

transformed pixel is compared against the second

shadow map. The inner penumbra value is used to

brighten the illumination when the pixel passes the

second shadow test. Otherwise, only the ambient

value is added.

By using the second shadow map we are able to

guarantee that the soft shadow regions will not

penetrate to the consecutive third, fourth, etc. depth

order surfaces. This method is not a physically

correct way to treat the soft shadow attenuation, but

the artifacts seem to be acceptable with relatively

small area light sources. The possible limitations of

the used sampling technique are discussed in more

detail in Section 6.

The visualization process can be further accelerated

by bounding the light frustum regions more

accurately [Arv03a]. As a result, the number of

pixels on which the shadow map test is performed

will diminish.

5. Implementation and results
We have implemented the algorithm described in the

previous sections using DirectX 9.0. The main

objective of the implementation was to verify that the

algorithm generates plausible soft shadows at real

time frame rates, including inner and outer

penumbras, by utilizing only off the shelf graphics

hardware. Thus, it will require some future work to

compare our method in more detail against other

existing soft shadow algorithms.

The tests were run on a 1.4GHz AMD Athlon with

an ATI Radeon 9700 Pro graphics card. Both the

screen and the floating point render target resolutions

were 1024x1024. The floating point format increased

the memory bandwidth consumption significantly,

but gave more accurate depth values and smoother

average visibility transitions. The shadow maps and

the penumbra maps were rendered from scratch for

every frame in order to simulate a highly dynamic

environment. The irradiance due to a point light

source as formulated in Section 3 was computed for

each pixel according to the Phong model [Pho75a].

Figure 5. A test scene with non-trivial shadow

casting objects (2148 triangles). The left image is

generated with penumbra maps while the right

image is generated with 128 supersampled

shadow map images.

Figure 6. A test scene (5064 triangles) with

clouds where shadow casting objects have

relatively large inner areas. The left image is

generated with penumbra maps and the right

image is generated with 512 supersampled

shadow map images.

Our implementation first rendered the shadow maps

and the penumbra maps. We then rendered the z-

buffer from the view frustum before performing the

actual soft shadowed rendering. This additional

rendering pass reduced the soft shadowing pixel

shader commands to the view frustum’s visible

pixels. The rest of the implementation

straightforwardly adapted the above description of

the algorithm.

We measured the frame rates for two test scenes

using the shadow map multisampling [Hec97a], and

our new algorithm. In practice, shadow maps are best

suited for local light sources and therefore we chose

two scenes that have local light sources. Both test

scenes (Figs. 5, 6) ran at approximately 25 frames

per second for our algorithm, while the

multisampling approach ran slower than one frame

per second (128-512 samples). As can be seen from

the Fig. 5, the penumbra regions cannot be very large

with objects which have relatively small inner areas.

Proportionally, the penumbra regions can be

relatively large when the shadow casting objects

have large inner areas (Fig. 6).

6. Discussion
Here we will discuss the possible artifacts of our

algorithm due to approximations used. The artifacts

can be classified into three classes: discrete sampling

artifacts, object overlap artifacts, and single

silhouette artifacts.

The first artifact occurs due to the discrete sampling

representation for storing the average visibility

values. As long as there is enough render target area

for storing the average visibility values, our

algorithm is able to produce plausible soft shadows.

However, when a shadow casting object is lit by a

large area light source and the distance between the

occluder and the receiver surface is large, our

algorithm may generate aliased soft shadow

boundaries because multiple view space pixels are

transformed into a single penumbra map pixel.

The second type of artifact may occur when several

objects, or several parts of a single concave object

overlap in the light space. Our algorithm treats these

objects independently and may therefore combine

their shadowing contribution incorrectly. This

limitation is hard to overcome, because the current

graphics hardware is not capable of reading and

writing into same render target component during a

single rendering pass. Thus, we are only able to

perform blending operations for outer penumbra

quads before the first shadow map [Cha03a,

Wym03a]. Additionally, the inner penumbra quads

may sometimes be rendered falsely due to the second

shadow map attenuation. This can be the case with

an object which has a deep concave corner between

the first and the second shadow map. Nevertheless,

this can be corrected by subdividing the concave

object into convex sub-objects, assigning separate ID

values for each sub-object, and storing the back

facing polygon IDs of the shadow casting object into

the second shadow map. Thus, the inner penumbra

quad pixels are only rendered into the inner

penumbra map if the ID in the second shadow map

equals the ID of the shadow casting penumbra quad.

It should be noted that the approximation used here

can work flawlessly with relatively small area light

sources, and without the second depth limitation the

inner penumbra regions could be falsely cast onto the

consecutive receiver surfaces. Figure 7 shows an

example with object overlap artifacts.

Figure 7. The top image is generated with 1024

supersampled shadow maps and the bottom

image is generated with penumbra maps. As can

be seen from the magnification, the overlapping

shadow boundaries are not physically correct due

to second depth attenuation for inner penumbra

quads. The dashed line indicates approximate

hard shadow boundaries.

Thirdly, every physically correct soft shadow

algorithm must consider the change in the silhouette

boundary according to sample location. The change

at the silhouette boundary is based on object

properties and ignoring it may cause artifacts into the

shapes of the shadow regions. A relevant discussion

of the limitations of single sample point artifacts is

given by Assarsson and Akenine-Möller [Ass03a].

7. Conclusions and future work
We have presented a new soft shadow algorithm that

is an extension to the standard shadow map

algorithm. The shadow penumbra quad is a new

shadow generation primitive that we have introduced

and the algorithm is able to render approximate soft

shadows on arbitrary geometries using these

penumbra quads. The presented algorithm has a

straightforward implementation on the latest

generation of consumer level graphics hardware.

In future work, we want to apply different functions

for calculating more realistic average visibility

transitions. We also believe that the presented

penumbra maps can be divided into multiple layers to

mimic the illumination attenuation in a more

authentic way. It would also be valuable to compare

other existing soft shadowing techniques with ours in

more detail.

8. REFERENCES
[Ake02a] Akenine-Möller, T., and Haines, E. Real-

Time Rendering, 2nd edition. A.K. Peters Ltd.,

2002.

[Agr00a] Agrawala M., Ramamoorthi, R., Heirich,

A., and Moll, L. Efficient image-based methods

for rendering soft shadows. In Proceedings of

SIGGRAPH ’00, pp. 375-384, 2000.

[Arv03a] Arvo, J., and Aila, T. Optimized Shadow

Mapping Using the Stencil Buffer. Journal of

Graphics Tools, accepted for publication.

[Ass03a] Assarsson, U., and Akenine-Möller, T. A

Geometry-based Soft Shadow Volume Algorithm

using Graphics Hardware. ACM Transactions on

Graphics, vol. 22, no. 3, 2003.

[Bra02a] Brabec, S., Seidel, H-P. Single Sample Soft

Shadows Using Depth Maps. In Proceedings of

Graphics Interface, pp. 219-228, May 2002.

[Bra03a] Brabec, S., Seidel, H-P. Shadow Volumes

on Programmable Graphics Hardware.

Eurographics ‘03 (Computer Graphics Forum),

2003.

[Cha03a] Chan, E., and Durand, F. Rendering fake

soft shadows with smoothies. Eurographics

symposium on rendering, 2003.

[Coh93a] Cohen, M. F., and Wallace, J. R. Radiosity

and Realistic Image Synthesis. Academic Press

Professional 1993.

[Cro77a] Crow, F. Shadow Algorithms for Computer

Graphics. In Proceedings of SIGGRAPH '77, pp.

242-248, July, 1977.

[Eng02a] Engel, W. F. (Editor). Direct3D ShaderX:

Vertex and Pixel Shader Tips and Tricks.

Wordware Publishing, Inc, 2002.

 [Goo99a] Gooch, B., Sloan, P-P., Gooch, A.,

Shriley, P., and Riesenfeld, R. Interactive

technical illustration. ACM Symposium on

Interactive 3D Graphics, pp. 31-38, April 1999.

[Hai01a] Haines, E. Soft planar shadows using

plateaus. Journal of Graphics Tools, vol. 6, no. 1,

pages 19-27. 2001.

[Has03a] Hasenfratz, J-M., Lapierre, M.,

Holzschuch, N., and Sillion, F. A survey of real-

time soft shadow algorithms. Eurographics state-

of-the-art report, 2003.

 [Hec97a] Heckbert, P., and Herf, M. Simulating soft

shadows with graphics hardware. CMU-CS-97-

104, Carnegie Mellon University, 1997.

[Hei00a] Heidrich, W., Brabec, S., and Seidel, H-P.

Soft Shadow maps for linear lights. Eurographics

Workshop on Rendering, pp. 269-280, 2000.

[Kir03a] Kirsch, F., and Doellner J. Real-time soft

shadows using a single light source sample.

Journal of WSCG, vol. 11. no. 1, 2003.

[Mor00a] Moerin, S. ATI Radeon - HyperZ

Tecnology. SIGGRAPH / Eurographics Graphics

Hardware Workshop, Hot3D session, 2000.

[Nvi02] Nvidia corporation. Order independent

transparency white paper.

http://developer.nvidia.com\object\order_indepen

dent_transparency.html.

[Pho75a] Phong, B-T. Illumination for computer

generated pictures. Communications of the ACM,

vol. 18, no. 6, pp. 311-317, 1975.

[Ree87a] Reeves, T., Salesin, D., and Cook, R.

Rendering Antialiased Shadows with Depth

Maps. In Proceedings of SIGGRAPH '87, pp.

283-291, July 1987.

[Sol98a] Soler, C., and Sillion, F. Fast Calculation of

Soft Shadow Textures Using Convolution. In

Proceedings of SIGGRAPH ’98, pp. 321-332,

1998.

 [Wil78a] Williams, L. Casting Curved Shadows on

Curved Surfaces. In Proceedings of SIGGRAPH

'78, pp. 270-274, August, 1978.

 [Wym03a] Wyman, C., and Hansen, C. Penumbra

maps. Eurographics symposium on rendering,

2003

[Yin02a] Ying Z., Tang M., and Dong J. Soft

shadows maps for area light sources. In 10th

Pacific Conference on Computer Graphics and

Applications, pp. 442-443. 2002

	INTRODUCTION
	Previous work
	2.1 Hard shadow mapping
	2.2 Approximate soft shadowing.

	Preliminaries
	Algorithm
	4.1 Algorithm Structure
	4.2 Penumbra quads
	4.3 Penumbra map generation
	4.4 Soft shadow visualization

	Implementation and results
	Discussion
	Conclusions and future work
	REFERENCES

