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ABSTRACT 

Shadow mapping is a commonly used technique for generating hard shadows in real time. However, existing 

shadow map based algorithms cannot render full soft shadows penumbras onto arbitrary dynamic geometry by 

utilizing only consumer level programmable graphics hardware. In this paper we introduce a new fully hardware 

accelerated penumbra map algorithm which stores additional penumbra information into separate penumbra 

maps. The method is capable of generating approximate soft shadows on both sides of the hard shadow 

boundaries at real time frame rates. The shadow generation requires neither graphics hardware read backs nor 

processing with the CPU while it is able to handle arbitrary shadow receivers and dynamic environments. The 

algorithm also has a straightforward implementation on programmable graphics hardware. 
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1. INTRODUCTION 
One of the most challenging tasks in computer 

graphics is the efficient computation of soft shadows. 

Soft shadows occur because different points in the 

scene receive different amounts of light from an area 

light source. Regions which are fully in the shadow, 

that is, occluded from the light source, are called the 

umbra. Points that cannot fully see the light source, 

but can see some part of it, are in the soft transition 

from no shadow to fully in the shadow (the 

penumbra region). Thus the soft shadow calculation 

can be seen as an area visibility problem. Algorithms 

that model both umbra and penumbra shadows are 

commonly referred to as “soft shadow” algorithms. 

There are two main avenues for the treatment of area 

light sources in hardware accelerated real-time 

computer graphics: shadow volumes and shadow 

maps. Shadow volumes [Cro77a] construct 

additional polygons that bound the umbra regions 

and a pixel is in the shadow if it is inside the 

bounded umbra region. Approximate soft shadows 

can be achieved by generating multiple shadow 

volumes from different sample positions of the area 

light source or by constructing additional penumbra 

geometry [Ass03a]. Shadow maps on the other hand 

[Wil78a] discretize the scene geometry as seen from 

the light source into a shadow map. The shadow map 

is essentially a z-buffer, and describes the light space 

z-coordinate of the pixels that are lit by the light 

source. This information is later used for determining 

whether a pixel in the camera view space is seen by 

the light source or not and thus lit or dark.  Fully 

hardware accelerated soft shadows can be generated 

by rendering multiple shadow maps from various 

light source sample positions [Hec97a]. 

The soft shadow algorithm presented in this paper 

may be classified as a shadow map algorithm, but 

instead of only storing the z-coordinates for each 

pixel as seen from the light source, our new 

algorithm stores additional penumbra information 

into separate penumbra maps which will be used to 

generate the penumbra regions. In contrast to 

previous penumbra mapping algorithms [Kir03a, 

Cha03a, Wym03a], our method generates both inner 

and outer penumbra regions on both sides of the hard 

shadow edges and it does not require any runtime 
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processing with the CPU. As in those methods, our 

approach produces only approximate and not 

physically based soft shadows, as will be discussed 

in section 4.3. In particular, our method tends to 

generate slightly larger penumbras which are 

however visually appealing. 

We refer to the frustum of a camera as a view frustum 

and the frustum of a light source as a light frustum. A 

pixel shader is a GPU program that computes the 

color value of a pixel in the image space. A render 

target buffer is a table where the pixel shader results 

are gathered. A vertex shader is a GPU program that 

computes vertex parameters during various 

transformations.  

The paper is organized as follows. In Section 2 

related work is reviewed. In Section 3 some basic 

quantities relevant to the practical implementation of 

irradiance calculations are presented. In Section 4, 

we give a detailed description of our new algorithm. 

Then in Section 5, we discuss implementation details 

and present our test results obtained under a variety 

of conditions. We discuss some limitations in Section 

6 and finally in Section 7 we point out directions for 

future work and present our conclusions. 

2. Previous work 
In this section we review the work that is most 

closely related to ours. For a complete review of 

shadow generation algorithms see [Ake02a, Has03a]. 

2.1 Hard shadow mapping  
The shadow map method was first introduced by 

Williams [Wil78a]. First the algorithm forms the 

light space image into a z-buffer, the (standard) 

shadow map which represents the surfaces 

illuminated by the light. Then the view frustum 

image is generated into another z-buffer and those 

parts that coincide with the shadow map are 

illuminated. Coincidence is tested by transforming 

each view frustum pixel into the light frustum and 

comparing the transformed depth value with the 

shadow map (Figure 1).  

Because the shadow map method is based on 

transformations between discrete maps, it is prone to 

quantization and aliasing problems. Reeves et al. 

[Ree87a] presented the percentage closer filtering 

method for softening the shadow boundaries and thus 

reducing the shadow boundary aliasing. The intensity 

of a sample is determined based on the percentage of 

the surrounding weighted samples that are closer to 

the light source.  

2.2 Approximate soft shadowing.  
Heckbert and Herf [Hec97a] introduced an 

algorithm, which creates soft shadow textures for 

each receiver surface by combining multiple hard 

shadow images. Although the algorithm can utilize 

graphics hardware, it is mostly suitable for shadow 

texture pre-generation due to the large number of 

samples needed to achieve smooth penumbra 

regions. 

 

 

Figure 1. Two z-buffers are created, one in the 

light frustum and another in the view frustum. 

The shadow regions are determined by pixel 

transformations and depth comparisons between 

these z-buffers. 

Soler and Sillion [Sol98a] used a convolution on 

occluder images to compute approximate soft 

shadows. For parallel light sources, a light source 

image is convolved with a hard shadow image of a 

clustered geometry. General configurations are 

handled by an error driven algorithm. Hardware 

accelerated implementtations would require 

specialized DSP features, which are not available on 

current consumer level graphics hardware. 

A method presented by Gooch et al. [Goo99a] 

approximates the two-dimensional sampling of the 

spherical light source with a one-dimensional 

sampling process. This is implemented by moving 

the receiver surface up and down, and averaging the 

resulting shadows.  Haines [Hai01a] presented an 

algorithm for creating outer penumbra regions on a 

flat surface by searching the silhouette edges and 

forming circular shadow cones at each vertex. 

Adjacent cones are used to interpolate the shadows 

along each edge. Neither of these two methods works 

with arbitrary receiver geometries nor do they have 

implementations on concurrent graphics hardware. 

Heidrich et al. [Hei00a] introduced an algorithm for 

linear light source shadows by using a few light 

source samples in low frequency scenes. Separate 

shadow maps are generated from each light source 

sample point and depth discontinuities are detected. 

The resulting depth discontinuities are then 



where L is the radiance from the light source, θl is 

the incident angle, θi is the angle made with the 

lighting normal, V is the binary visibility term, and r 

is the distance from the processed point on the 

surface to the point on the light source. 

triangulated, warped, and rendered into a visibility 

map. The method has been generalized to polygonal 

light sources by Ying et al. [Yin02a]. 

Brabec et al. [Bra02a] presented an area light source 

algorithm using a single shadow map which 

generates soft shadow boundaries by performing a 

neighborhood scan for every view frustum pixel. The 

distance from the hard shadow boundary then 

determines the illumination. The algorithm utilizes 

graphics hardware for the view frustum and light 

frustum rendering, but all soft shadow computations 

are CPU based.  

A common approximation in rapid soft shadow 

calculations is to separate lighting and visibility 

calculations. Thus, it is reasonable to compute the 

average visibility term that attenuates the lighting as 

[Agr00a]: 

∫=
lightA

light

VdA
A

v
1

                             (2) 

Agrawala et al. [Agr00a] used multisampling of the 

area light source and layered attenuation maps for 

storing multiple depth samples for each pixel. They 

also described a coherent ray tracing based algorithm 

for higher quality images. 

The irradiance at the current pixel can then be 

approximated by: 

lvE ≈                                  (3) 

Approximate soft shadows can be divided into inner 

and outer penumbra regions according to whether 

they lie inside or outside the hard shadow region as 

seen from a single light source sample point. Kirsch 

and Doellner [Kir03a] presented an algorithm which 

generates approximate inner penumbra regions.  

Respectively, Chan and Durand [Cha03a] and 

Wyman and Hansen [Wym03a] introduced outer 

penumbra algorithms. The central contribution of 

Chan and Durand was to replace the fixed soft 

shadow width for outer penumbra regions by an 

approximate width depending on the distance 

between the occluder and the receiver. In our current 

work, we mimic both inner and outer penumbras, and 

our algorithm is fully hardware accelerated. The 

previously mentioned penumbra methods required 

runtime processing with the CPU.   

where l is the surface irradiance due to a point light 

source and v is the average visibility term. Our 

algorithm is strongly based on this assumption and 

we mainly concentrate on the rapid computation of 

the visibility term.  

4. Algorithm 
In this chapter we begin with a general description of 

our algorithm (Section 4.1). This is followed by a 

technical description of the penumbra quad, an 

essential concept used in the algorithm (Section 4.2). 

In Section 4.3 we present the algorithm in full detail 

by explaining how penumbra shadow maps are 

generated from the penumbra quads and how the 

umbra and penumbra shadows in the view frustum 

are finally rendered (Section 4.4). 

4.1 Algorithm Structure Assarsson and Möller [Ass03a] recently introduced a 

shadow volume based algorithm for generating 

geometrically based soft shadows. The algorithm is 

based on generating additional penumbra volumes 

where each penumbra volume pixel clips it’s 

silhouette edge towards the area light source (for a 

description of silhouettes, see Section 4). Shadow 

volumes are prone to excessive fill-rate problems and 

the penumbra volumes will aggravate the situation 

further. 

Consider the following simple geometry: A ground 

plane, a closed polygonal object above the ground 

plane, and a point light source above the object. The 

light from the point light source falls on the object 

(occluder) which subsequently casts a hard shadow 

onto the ground plane. We begin by calculating the 

standard shadow map (first shadow map) for the light 

source. In the shadow map the occluder is a 2-D 

object with a closed boundary (silhouette). As the 

occluder typically is made up from polygons, 

analytically the silhouette consists of a sequence of 

straight lines closing on itself. By construction the 

silhouette generates the boundary of the hard 

shadow. Suppose now that the point light source 

grows to an area light source of for instance circular 

cross section. The effect of this is the emergence of 

penumbra shadows on both the inner and the outer 

sides of the boundary of the hard shadow. In our 

algorithm we attribute the growth of the penumbra 

regions to the silhouette lines by assigning one 

3. Preliminaries 
During the calculation of soft shadows we have to 

address the question on how to compute the 

irradiance incident on a surface. The computation of 

the irradiance from an area light source on a surface 

is given by [Coh93a]: 
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quadrilateral for each silhouette line. This 

quadrilateral is generated by duplicating the end 

points of the silhouette lines, and it will be used to 

compute two new quadrilaterals, the outer and the 

inner penumbra quad, depending on whether the 

duplicated points are shifted to the outside or the 

inside of the silhouette. Thus only one geometric 

object will be used to generate two penumbra quads, 

and henceforth we will only speak of the penumbra 

quads. The algorithm essentially deals with a method 

of estimating the size, illumination and shadow effect 

of these quads, that is, we compute where the quads 

will throw their penumbra shadows. The results of 

these calculations are stored in two additional maps 

in the light space image, called penumbra maps, one 

for the outside quads (outer penumbra map) and one 

for the inside quads (inner penumbra map). The 

utilization of the inner penumbra map also uses a 

second shadow map which stores depth values of the 

second front facing surfaces as seen from the light 

source; the inner penumbra shadows will be cast on 

these objects. The final illumination in the light space 

image is generated from a linear combination of the 

four shadow maps, yielding the umbra and penumbra 

shadows. As will be shown, both shadow maps and 

both penumbra maps can be fully generated and 

combined in the GPU with no read-backs or 

processing with the CPU.  

Figure 2. The penumbra quad is enlarged to 

illustrate the basic concepts. Every edge of the 

original object is replaced by a penumbra quad 

which has two edges parallel to the original edge 

(inner- and outer edge) and two opposite sides of 

zero length. All penumbra quad vertices have two 

face normals from their sharing polygons. The

stretching normal is an average of the object 

normals sharing the vertex.  

In the following subsections, we describe in more 

detail the penumbra quads, how the penumbra maps 

are generated, and the soft shadow visualization 

process. 

4.2 Penumbra quads 
The penumbra regions are located on both sides of 

the hard shadow boundaries which are directly 

related to the silhouette edges as seen from the center 

of an area light source. Soft shadows can thus be 

computed by detecting the silhouette edges with the 

CPU and uploading new penumbra geometry into the 

graphics card at each frame. However, this is often 

computationally rather expensive and therefore we 

compute the penumbra fully with the GPU by 

creating additional static geometry, penumbra quads, 

which are modified at runtime. The penumbra quads 

are created at start up, and both inner and outer 

penumbra map rendering utilize the same 

quadrilaterals. 

For each object and each edge, we generate a quad 

that has two sides consisting of copies of the original 

edge, the inner and the outer edge, and two opposite 

sides of zero length. The edges have different 

behavior because the inner edges always remain at 

the silhouette and only the outer edges are moved. 

Therefore we add two face normals and one 

stretching normal into every penumbra quad vertex 

(Figure 2), where the outer edge face normals are 

taken from the original mesh normals and the inner 

edge face normals are set to equal value (we will see 

later why). The stretching normal is always an 

average of the face normals sharing the current 

vertex in the original mesh. As the result, penumbra 

quads can be modified with the vertex shader at 

runtime and only the outer edges are detected as 

silhouettes. The inner edges are necessary ingredients 

in forming the penumbra quads as geometrical 

objects. 

It should be noted that every shadow casting object 

has to be collapsed into a single two-manifold mesh, 

where all redundant back-to-back triangles are 

removed and the remaining mesh is welded together 

before generating the penumbra quads. For example, 

if the wing and the fuselage of an airplane are 

separate closed objects, then the wing should be 

connected to the fuselage in such a way that back-to-

back triangles in the junction area are removed. 

Otherwise, false penumbra regions may be 

generated, because the vertex shader will falsely 

classify edges in the junction as silhouettes. The 

same restriction applies to the GPU based shadow 

volume generation [Eng02a] as well, but the 

resulting artifacts are usually less distracting with 

hard shadows.    



4.3 Penumbra map generation  
The average visibility information for both penumbra 

maps is generated by rendering penumbra quads at 

the silhouette edges.  This requires that one has to 

detect the silhouette edges, stretch the corresponding 

penumbra quads to become visible, and compute the 

average visibility value for each rendered penumbra 

map pixel.  

To accomplish this, we first detect the silhouette 

edges with the vertex shader by computing two dot 

products between the two penumbra quad face 

normals and the vector from the light to the vertex. 

The vertex is concluded to be part of the silhouette if 

the results have opposite signs. Then we stretch these 

silhouette penumbra quads by projecting each 

silhouette vertex into the light source's far plane and 

back towards a point determined by the stretching 

normal and the boundary of the light source (Figure 

3). We compute this back stretching point from the 

angle of the stretching normal and the boundary of 

the light source. Notice that by putting equal face 

normals for the inner edges, these will not be 

detected as silhouette edges. 

After the penumbra quad vertices have been 

processed they are sent to the pixel shader, which 

computes the average visibility values for the visible 

penumbra quad pixels. The computation utilizes 

penumbra quad vertex visibility values (v in Eq. 3), 

that are v = 0.0 at the outer edge (vertices) of the 

inner penumbra polygons and v = 0.5 at the inner 

edges. Similarly, for the outer edge of the outer 

penumbra polygons, the visibility value is  v = 1.0 

and for the inner edge v = 0.5. The visibility value v 

= 0.0 means that the point is fully occluded from the 

light source and v = 1.0 indicates that the pixel can 

"see" all points on the light source. This 

configuration gives a perspective correct linear 

transition between the fully lit and the fully 

shadowed regions and it can be easily computed with 

the pixel shader. The result is not physically based 

but it generates acceptable soft shadow boundaries, 

and both inner and outer penumbra quads are 

rendered by using the same penumbra quad geometry 

with due care paid to the stretching direction. Figure 

4 illustrates the result of calculating the inner and 

outer penumbra maps with corresponding shading. 

The initial z-buffer for outer penumbra map 

rendering is the standard shadow map because it 

prevents penumbra region leaking, that is, a false 

assignment of receiver surface. The problem here is 

that the GPU vertex shader does not identify which 

surfaces (and silhouettes) are lit by the light source 

and which are simply in the shadow of the occluders 

and therefore should not be assigned any penumbra 

quads. Similarly the inner penumbra map is rendered 

by second depth values (second shadow map) as the 

initial depth buffer [Nvi02].  

Figure 3. Every silhouette vertex is projected all 

the way down to the far plane and then back 

towards the area light source's silhouette. The 

back stretching direction towards the back 

stretching point is determined with the 

stretching normal. This process is performed 

separately for both the inner and the outer 

penumbra quads.

Our algorithm cannot use the exact distance between 

the occluder and the receiver, that is, the first depth 

map value for the outer penumbra quad vertices and 

the second depth map value for the inner penumbra 

quad vertices due to hardware restrictions. This may 

however change in the near future, when a fast copy 

from the frame buffer to a vertex attribute array on 

the GPU becomes available [Bra03a]. This will 

enable the rendering of depth values as seen from the 

light source for each penumbra quad vertex and they 

can be used directly for the stretching distances. Due 

to the lack of this feature, we are forced to use the 

light source's far plane for the stretching distance. 

Additionally, if our procedure in its present form 

yields too large penumbra quads, it can be easily 

modified by computing additional smoothie values 

for the penumbra regions [Cha03a]. 

We note in passing that although penumbra quads are 

assigned to all edges, the presented algorithm detects 

and uses only the silhouette edges of shadow casting 

objects as seen from a single point light source. 

Similar approximations have been used before 

[Bra02a, Ass03a] and we discuss some limitations of 

this approximation in Section 6. 

 



 

Figure 4. A simple example of inner (left) and 

outer (right) penumbra maps where the scene 

consists of a sphere and a ground plate. The inner 

penumbra map has v = 0.0 (black) visibility value  

adjusted to the outer vertices and v = 0.5 to the 

inner vertices. Respectively, the outer penumbra 

map has v = 0.5 visibility value adjusted to the 

inner vertices and v = 1.0 (white) to the outer 

vertices. 

4.4 Soft shadow visualization  
The soft shadow visualization process utilizes the 

first shadow map, the second shadow map and the 

penumbra maps for rendering the umbra and 

penumbra regions.  

During the soft shadow rendering pass, each view 

frustum pixel is transformed into the light space and 

the first shadow map depth test is performed. If the 

pixel passes this test, the pixel is lit according to the 

first shadow map, and the outer penumbra map is 

thus sampled in order to determine the illumination. 

In contrast, when the first depth test fails, which 

indicates that the current pixel is fully in the shadow 

according to the first shadow map, the depth of the 

transformed pixel is compared against the second 

shadow map. The inner penumbra value is used to 

brighten the illumination when the pixel passes the 

second shadow test. Otherwise, only the ambient 

value is added. 

By using the second shadow map we are able to 

guarantee that the soft shadow regions will not 

penetrate to the consecutive third, fourth, etc. depth 

order surfaces. This method is not a physically 

correct way to treat the soft shadow attenuation, but 

the artifacts seem to be acceptable with relatively 

small area light sources. The possible limitations of 

the used sampling technique are discussed in more 

detail in Section 6. 

The visualization process can be further accelerated 

by bounding the light frustum regions more 

accurately [Arv03a]. As a result, the number of 

pixels on which the shadow map test is performed 

will diminish. 

5. Implementation and results 
We have implemented the algorithm described in the 

previous sections using DirectX 9.0. The main 

objective of the implementation was to verify that the 

algorithm generates plausible soft shadows at real 

time frame rates, including inner and outer 

penumbras, by utilizing only off the shelf graphics 

hardware. Thus, it will require some future work to 

compare our method in more detail against other 

existing soft shadow algorithms. 

The tests were run on a 1.4GHz AMD Athlon with 

an ATI Radeon 9700 Pro graphics card. Both the 

screen and the floating point render target resolutions 

were 1024x1024. The floating point format increased 

the memory bandwidth consumption significantly, 

but gave more accurate depth values and smoother 

average visibility transitions. The shadow maps and 

the penumbra maps were rendered from scratch for 

every frame in order to simulate a highly dynamic 

environment. The irradiance due to a point light 

source as formulated in Section 3 was computed for 

each pixel according to the Phong model [Pho75a]. 

 

Figure 5. A test scene with non-trivial shadow 

casting objects (2148 triangles). The left image is 

generated with penumbra maps while the right 

image is generated with 128 supersampled 

shadow map images. 

 

Figure 6.   A test scene (5064 triangles) with 

clouds where shadow casting objects have 

relatively large inner areas. The left image is 

generated with penumbra maps and the right 

image is generated with 512 supersampled 

shadow map images. 

Our implementation first rendered the shadow maps 

and the penumbra maps. We then rendered the z-

buffer from the view frustum before performing the 

actual soft shadowed rendering. This additional 

rendering pass reduced the soft shadowing pixel 

shader commands to the view frustum’s visible 



pixels. The rest of the implementation 

straightforwardly adapted the above description of 

the algorithm. 

We measured the frame rates for two test scenes 

using the shadow map multisampling [Hec97a], and 

our new algorithm. In practice, shadow maps are best 

suited for local light sources and therefore we chose 

two scenes that have local light sources. Both test 

scenes (Figs. 5, 6) ran at approximately 25 frames 

per second for our algorithm, while the 

multisampling approach ran slower than one frame 

per second (128-512 samples). As can be seen from 

the Fig. 5, the penumbra regions cannot be very large 

with objects which have relatively small inner areas. 

Proportionally, the penumbra regions can be 

relatively large when the shadow casting objects 

have large inner areas (Fig. 6).  

6. Discussion 
Here we will discuss the possible artifacts of our 

algorithm due to approximations used. The artifacts 

can be classified into three classes: discrete sampling 

artifacts, object overlap artifacts, and single 

silhouette artifacts. 

The first artifact occurs due to the discrete sampling 

representation for storing the average visibility 

values. As long as there is enough render target area 

for storing the average visibility values, our 

algorithm is able to produce plausible soft shadows. 

However, when a shadow casting object is lit by a 

large area light source and the distance between the 

occluder and the receiver surface is large, our 

algorithm may generate aliased soft shadow 

boundaries because multiple view space pixels are 

transformed into a single penumbra map pixel.  

The second type of artifact may occur when several 

objects, or several parts of a single concave object 

overlap in the light space. Our algorithm treats these 

objects independently and may therefore combine 

their shadowing contribution incorrectly. This 

limitation is hard to overcome, because the current 

graphics hardware is not capable of reading and 

writing into same render target component during a 

single rendering pass. Thus, we are only able to 

perform blending operations for outer penumbra 

quads before the first shadow map [Cha03a, 

Wym03a]. Additionally, the inner penumbra quads 

may sometimes be rendered falsely due to the second 

shadow map attenuation. This can be the case with 

an object which has a deep concave corner between 

the first and the second shadow map. Nevertheless, 

this can be corrected by subdividing the concave 

object into convex sub-objects, assigning separate ID 

values for each sub-object, and storing the back 

facing polygon IDs of the shadow casting object into 

the second shadow map. Thus, the inner penumbra 

quad pixels are only rendered into the inner 

penumbra map if the ID in the second shadow map 

equals the ID of the shadow casting penumbra quad. 

It should be noted that the approximation used here 

can work flawlessly with relatively small area light 

sources, and without the second depth limitation the 

inner penumbra regions could be falsely cast onto the 

consecutive receiver surfaces. Figure 7 shows an 

example with object overlap artifacts. 

Figure 7.  The top image is generated with 1024 

supersampled shadow maps and the bottom 

image is generated with penumbra maps. As can 

be seen from the magnification, the overlapping 

shadow boundaries are not physically correct due 

to second depth attenuation for inner penumbra 

quads. The dashed line indicates approximate 

hard shadow boundaries.

Thirdly, every physically correct soft shadow 

algorithm must consider the change in the silhouette 



boundary according to sample location. The change 

at the silhouette boundary is based on object 

properties and ignoring it may cause artifacts into the 

shapes of the shadow regions. A relevant discussion 

of the limitations of single sample point artifacts is 

given by Assarsson and Akenine-Möller [Ass03a]. 

7. Conclusions and future work 
We have presented a new soft shadow algorithm that 

is an extension to the standard shadow map 

algorithm. The shadow penumbra quad is a new 

shadow generation primitive that we have introduced 

and the algorithm is able to render approximate soft 

shadows on arbitrary geometries using these 

penumbra quads. The presented algorithm has a 

straightforward implementation on the latest 

generation of consumer level graphics hardware. 

In future work, we want to apply different functions 

for calculating more realistic average visibility 

transitions. We also believe that the presented 

penumbra maps can be divided into multiple layers to 

mimic the illumination attenuation in a more 

authentic way. It would also be valuable to compare 

other existing soft shadowing techniques with ours in 

more detail. 

8. REFERENCES 
[Ake02a] Akenine-Möller, T., and Haines, E. Real-

Time Rendering, 2nd edition.  A.K. Peters Ltd., 

2002. 

[Agr00a] Agrawala M., Ramamoorthi, R., Heirich, 

A., and Moll, L. Efficient image-based methods 

for rendering soft shadows. In Proceedings of 

SIGGRAPH ’00, pp. 375-384, 2000. 

[Arv03a] Arvo, J., and Aila, T. Optimized Shadow 

Mapping Using the Stencil Buffer. Journal of 

Graphics Tools, accepted for publication. 

[Ass03a] Assarsson, U., and Akenine-Möller, T. A 

Geometry-based Soft Shadow Volume Algorithm 

using Graphics Hardware. ACM Transactions on 

Graphics, vol. 22, no. 3, 2003. 

[Bra02a] Brabec, S., Seidel, H-P. Single Sample Soft 

Shadows Using Depth Maps. In Proceedings of 

Graphics Interface, pp. 219-228, May 2002. 

[Bra03a] Brabec, S., Seidel, H-P. Shadow Volumes 

on Programmable Graphics Hardware. 

Eurographics ‘03 (Computer Graphics Forum), 

2003. 

[Cha03a] Chan, E., and Durand, F. Rendering fake 

soft shadows with smoothies. Eurographics 

symposium on rendering, 2003.  

[Coh93a] Cohen, M. F., and Wallace, J. R. Radiosity 

and Realistic Image Synthesis. Academic Press 

Professional 1993. 

[Cro77a] Crow, F. Shadow Algorithms for Computer 

Graphics. In Proceedings of SIGGRAPH '77,  pp. 

242-248, July, 1977.  

[Eng02a] Engel, W. F. (Editor). Direct3D ShaderX: 

Vertex and Pixel Shader Tips and Tricks. 

Wordware Publishing, Inc, 2002. 

 [Goo99a] Gooch, B., Sloan, P-P., Gooch, A., 

Shriley, P., and Riesenfeld, R. Interactive 

technical illustration. ACM Symposium on 

Interactive 3D Graphics, pp. 31-38, April 1999. 

[Hai01a] Haines, E. Soft planar shadows using 

plateaus. Journal of Graphics Tools, vol. 6, no. 1, 

pages 19-27. 2001. 

[Has03a] Hasenfratz, J-M., Lapierre, M., 

Holzschuch, N., and Sillion, F.  A survey of real-

time soft shadow algorithms. Eurographics state-

of-the-art report, 2003. 

 [Hec97a] Heckbert, P., and Herf, M. Simulating soft 

shadows with graphics hardware. CMU-CS-97-

104, Carnegie Mellon University, 1997. 

[Hei00a] Heidrich, W., Brabec, S., and Seidel, H-P. 

Soft Shadow maps for linear lights. Eurographics 

Workshop on Rendering, pp. 269-280, 2000. 

[Kir03a] Kirsch, F., and Doellner J. Real-time soft 

shadows using a single light source sample. 

Journal of WSCG, vol. 11. no. 1, 2003. 

[Mor00a] Moerin, S. ATI Radeon - HyperZ 

Tecnology. SIGGRAPH / Eurographics Graphics 

Hardware Workshop, Hot3D session, 2000. 

[Nvi02] Nvidia corporation. Order independent 

transparency white paper. 

http://developer.nvidia.com\object\order_indepen

dent_transparency.html. 

[Pho75a] Phong, B-T. Illumination for computer 

generated pictures. Communications of the ACM, 

vol. 18, no. 6, pp. 311-317, 1975. 

[Ree87a] Reeves, T., Salesin, D., and Cook, R. 

Rendering Antialiased Shadows with Depth 

Maps. In Proceedings of SIGGRAPH '87, pp. 

283-291, July 1987. 

[Sol98a] Soler, C., and Sillion, F. Fast Calculation of 

Soft Shadow Textures Using Convolution. In 

Proceedings of SIGGRAPH ’98, pp. 321-332, 

1998. 

 [Wil78a] Williams, L. Casting Curved Shadows on 

Curved Surfaces. In Proceedings of SIGGRAPH 

'78, pp. 270-274, August, 1978. 

 [Wym03a] Wyman, C., and Hansen, C. Penumbra 

maps. Eurographics symposium on rendering, 

2003 

[Yin02a] Ying Z., Tang M., and Dong J. Soft 

shadows maps for area light sources. In 10th 

Pacific Conference on Computer Graphics and 

Applications, pp. 442-443. 2002

 


	INTRODUCTION
	Previous work
	2.1 Hard shadow mapping
	2.2 Approximate soft shadowing.

	Preliminaries
	Algorithm
	4.1 Algorithm Structure
	4.2 Penumbra quads
	4.3 Penumbra map generation
	4.4 Soft shadow visualization

	Implementation and results
	Discussion
	Conclusions and future work
	REFERENCES

