
Detection of Collisions and Self-collisions

Using Image-space Techniques

Bruno Heidelberger Matthias Teschner Markus Gross

Computer Graphics Laboratory

ETH Zurich

Abstract. Image-space techniques have shown to be very efficient for collision detection in dynamic
simulation and animation environments. This paper proposes a new image-space technique for effi-
cient collision detection of arbitrarily shaped, water-tight objects. In contrast to existing approaches
that do not consider self-collisions, our approach combines the image-space object representation with
information on face orientation to overcome this limitation.
While image-space techniques are commonly implemented on graphics hardware, software solutions
have been neglected so far. In this paper, the performance of two GPU-based implementations and
one CPU-based implementation of the proposed collision detection algorithm are compared. Results
suggest, that graphics hardware accelerates collision detection in geometrically complex environments,
while the CPU-based implementation provides more flexibility and better performance in case of small
environments.

Keywords. Collision detection, self-collision, image-space technique, graphics hardware, animation.

1 Introduction

Efficient collision detection is a fundamental prob-
lem in physically-based simulation and in computer
animation [Gan00], [Tes03]. Especially, collision
detection is addressed in cloth modeling [Vol95],
[Pro97], [Bri02] and in medical simulations, e. g.
to handle the interaction of surgical tools and tis-
sue [Lom99]. Further applications can be found in
robotics [Cam90], computational biology [Tur90],
and games [Mel00].

In order to accelerate collision detection for rigid
bodies, many approaches based on pre-computed
bounding-volume hierarchies have been proposed
[Hub93], [Qui94], [Got96], [Klo96], [Ber97], [Lar01],
[Zac02], [Bra02]. However, in case of deformable
objects these hierarchical data structures cannot be

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.

Journal of WSCG, Vol. 12, No. 1-3, ISSN 1213-6972

WSCG 2004, Feb 2-6, 2004, Plzen, Czech Republic.

Copyright UNION Agency - Science Press

pre-computed, but have to be updated frequently.
Although effort has been spent to optimize this up-
date [Lar01], it is still expensive in case of dynamic
environments.

Recently, image-space techniques have been pro-
posed for collision detection [Mys95], [Bac99],
[Hof01], [Kim02], [Hei03], [Kno03], [Gov03]. These
approaches commonly process projections of ob-
jects. They do not require any pre-processing and
employ graphics hardware. Therefore, they are es-
pecially appropriate for dynamic environments.

In this paper, a new image-space technique for
collision detection of arbitrarily shaped, deform-
ing objects with water-tight surfaces is presented.
The approach is based on Layered Depth Images
(LDI), as presented in [Hei03]. In contrast, the new
method combines LDI-based object representation
with information on face orientation to detect col-
lisions and self-collisions.

Further, this paper compares CPU-based and
GPU-based implementations of the presented col-
lision detection algorithm. Results suggest, that
graphics hardware can accelerate the collision de-
tection in large environments with up to 500k
faces, while the CPU-based implementation pro-
vides more flexibility and better performance in
case of small environments consisting of up to sev-
eral thousand surface triangles. Although graph-



ics hardware is very efficient in rasterizing the LDI
that is required for the collision detection, mul-
tiple rendering passes are required. In contrast,
the CPU-based implementation processes in only
one rendering pass. Additionally, data read-back
from the GPU, which is comparatively expensive
in small environments, is avoided.

2 Related Work

An early approach to image-space collision detec-
tion has been outlined in [Shi91]. The two depth
layers of convex objects are rendered into two depth
buffers. Now, the interval from the smaller depth
value to the larger depth value at each pixel ap-
proximately represents the object and is efficiently
used for interference checking. A similar approach
has been presented in [Bac99]. Both methods are
restricted to convex objects and do not consider
self-collisions.

In [Mys95], an image-space technique is pre-
sented which detects collisions for arbitrarily-
shaped objects. This approach can process concave
objects. However, the maximum depth complexity
is still limited. Additionally, object primitives have
to be pre-sorted. This method cannot efficiently
work with deforming objects and self-collisions are
not detected.

A first application of image-space collision de-
tection to cloth simulation has been presented in
[Vas01], and a medical application is presented in
[Lom99], where intersections of a surgical tool with
deformable tissue are detected by rendering the in-
terior of the tool. Again, these approaches are re-
stricted to convex objects.

In [Hof01], an image-space method is not only
employed for collision detection, but also for prox-
imity tests. This method is restricted to 2D ob-
jects. In [Kno03], edge intersections with surfaces
can be detected in multi-body environments. This
approach is very efficient. However, it is not ro-
bust in case of occluded edges. In [Gov03], sev-
eral image-space methods are combined for object
and sub-object pruning in collision detection. The
approach can handle objects with changing topol-
ogy. However, the setup is very complex and self-
collisions are not considered.

In [Hei03], an image-space technique is used to
compute an LDI representation for each object.
Based on this data structure, collisions can be de-
tected. However, self-collisions cannot be found.

In contrast to existing approaches, the proposed
approach does not only detect collisions between

different objects, but also handles self-collisions of
arbitrarily-shaped, deformable objects with closed
surface. The image-space algorithm computes an
LDI, which allows to process three different colli-
sion and self-collision queries. First, self-collisions
of an object can be detected. Second, the inter-
section volume of two objects can be computed.
Third, vertices penetrating the volume of an object
can be detected. Additionally, we investigate draw-
backs and benefits of three different GPU-based
and CPU-based implementations.

3 Method

In this section, the image-space approach for the
detection of collisions and self-collisions is pre-
sented. An overview of the algorithm is given in
Sec. 3.1, followed by a detailed description of three
different implementations. Sec. 3.2 and Sec. 3.3 ad-
dress two variants that are accelerated with graph-
ics hardware. Sec. 3.4 describes an implementation
that does not employ the GPU. Refer to Sec. 4 for a
performance analysis and a discussion of the char-
acteristics of the three implementations.

3.1 Overview

Our approach detects collisions and self-collisions
of 3D objects of manifold geometry. Although the
approach is not confined to triangular meshes, a
watertight object surface is required in order to
perform volumetric collision queries. The algo-
rithm computes an approximative volumetric rep-
resentation of the object. This representation is
used for three different collision queries. The algo-
rithm proceeds in three stages.

Stage 1 computes the Volume-of-Interest (VoI).
The VoI is an axis-aligned bounding-box (AABB)
representing the volume where collision queries are
performed. In the case of a self-collision test, the
VoI is chosen to be the AABB of the object. When
a collision test between a pair of objects is per-
formed, the VoI is given as the intersection of the
AABBs of the objects. If the VoI is empty, no col-
lision is detected and the algorithm aborts. If the
VoI is not empty, the objects and the VoI are fur-
ther processed in stage 2.

Stage 2 computes an LDI for objects inside the
VoI. Note, that LDI generation is restricted to
the VoI and object primitives outside the VoI are
discarded. The LDI consists of images or layers
of depth values representing object surfaces. The
depth values of the LDI can be interpreted as inter-



sections of parallel rays or 3D scan lines entering or
exit the object. Thus, an LDI classifies the VoI into
inside and outside regions with respect to an ob-
ject. The concept is similar in spirit to well-known
scan-conversion algorithms to fill concave polygons
[Fol90], where intersections of a scan line with a
polygon represent transitions between interior and
exterior. In contrast to [Hei03], additional infor-
mation on face orientation is stored in the LDI.
Thus, depth and front-face / back-face classifica-
tion is known for each entry in the LDI data struc-
ture. Stage 2 results in an LDI with sorted depth
values and explicitly labeled entry (front-face) and
exit (back-face) points within the VoI.
Stage 3 performs one of three possible collision
queries. a) Self-collisions are detected by analyzing
the order of entry (front-face) and exit (back-face)
points within the LDI. If they correctly alternate,
there is no self-collision. If invalid sequences of
front-faces and back-faces are detected, the opera-
tion provides the explicit representation of the self-
intersection volume. b) Collisions between pairs of
objects are detected by combining their LDIs us-
ing Boolean intersection. If the intersection of all
inside regions is empty, no collision is detected. If
it is not, the operation provides an explicit repre-
sentation of the intersection volume. c) Individual
vertices are tested against the volume of the object.
The vertex is transformed into the local coordinate
system of the LDI. If a transformed vertex inter-
sects with an inside region, a collision is detected.

The VoI computation in stage 1 and the collision
queries in stage 3 do not significantly contribute
to the computational cost of the algorithm (see
[Hei03]). Since the LDI generation in stage 2 is
comparatively expensive, we have analyzed three
variants. Two variants employ the GPU, which is
obviously useful, since stage 2 basically rasterizes
triangles. However, lack of flexibility in GPU im-
plementations and the data read-back delay moti-
vated a third implementation, which is completely
processed on the CPU. Sec. 3.2-3.4 give a detailed
description of the three variants of stage 2.

3.2 Ordered LDI

The first method generates an ordered LDI using
graphics hardware and is based on depth peeling.
A similar approach has been used for correct ren-
dering of transparent surfaces in [Eve01]. In con-
trast, we do not render a fixed number of layers, but
use a flexible abort criterion to generate the entire
LDI of an object with respect to the VoI. Addi-
tionally, color information is not considered in our

approach. Back-faces and front-faces of an object
are handled in two successive steps. This allows
to label all LDI entries accordingly. This separa-
tion also eliminates singularities of contour edges,
which is a robustness problem of the original ap-
proach. If back-faces and front-faces coincide, the
original algorithm produces a single depth value
instead of two, thus falsifying the inside / outside
classification.

In order to solve this problem and to generate
an LDI with additional information on face orien-
tation, the following multi-pass algorithm is per-
formed twice. The first pass processes front-faces,
followed by a second pass for back-faces. Two
depth buffers with corresponding depth tests are
used. One buffer is active, one is passive. Switch-
ing between active and passive buffer is possible.

1. Active depth buffer is cleared. Object is ren-
dered into active depth buffer with a regular
depth test.

2. If no depth value has been written to the active
depth buffer, LDI generation is aborted.

3. The content of the active depth buffer is stored
in the LDI structure. Active and passive depth
buffer are switched.

4. Active depth buffer is cleared. Object is ren-
dered into the active depth buffer with regular
depth test. In addition, a second test with the
passive depth buffer is performed. Values with
a camera distance smaller or equal than in the
passive depth buffer are discarded.

5. Go back to step 2.

This algorithm is implemented using core
OpenGL 1.4 functionality and a few widely
used OpenGL ARB extensions. The second
depth test is provided by the GL ARB shadow

and GL ARB depth texture extensions through
hardware-accelerated shadow-mapping function-
ality as described in [Eve01]. In contrast,
we use an occlusion query is used as a ro-
bust abort criterion for the multi-pass algorithm.
By enabling the occlusion query mode using
GL ARB occlusion query, the number of writ-
ten fragments is automatically accumulated by the
GPU. This counter can be queried after the ren-
dering is completed. If one or more fragments have
been rendered, this counter is larger than zero, i. e.
another valid layer of the LDI has been produced.
Therefore, LDI generation is aborted if the occlu-
sion query returns zero written fragments. Fig. 3.3
illustrates the Ordered LDI generation.



Figure 1: An ordered LDI is generated in multiple
rendering passes. The result of a rendering pass
is copied to the shadow map, which is used as a
second depth buffer in the subsequent pass.

3.3 Unordered LDI

The second method generates an unordered LDI
using graphics hardware. To get an ordered LDI,
depth values are sorted on the CPU. In this ap-
proach, the second depth buffer, required in the
Ordered LDI approach, is eliminated. Depth tests
are disabled. In contrast to [Hei03], front-faces and
back-faces are handled in successive steps to pro-
vide information for self-collision queries in stage
3.

The following multi-pass algorithm is performed
once for front-faces and again for back-faces. Depth
buffer and stencil buffer are employed. Stencil tests
and stencil operations are used. Color buffer and
depth test are disabled, which improves the perfor-
mance.

1. Layer index counter is initialized to 0. Stencil
test is set to pass if current stencil value is less
than or equal to layer index counter. Stencil
operation is defined to always increment sten-
cil value for each incoming fragment.

2. Depth and stencil buffer are cleared. Object
is rendered into depth buffer.

3. If maximum value in the stencil buffer is zero,
LDI generation is aborted. Otherwise, the
maximum stencil value and the content of the
depth buffer are stored in the LDI structure.
Layer index is incremented by one.

4. If the current layer index is greater or equal

to the maximum stencil value, the LDI gener-
ation is aborted.

5. Depth and stencil buffer are cleared. Object
is rendered into depth buffer.

6. Content of the depth buffer is stored in the
LDI structure. Layer index counter is incre-
mented by one.

7. Go back to step 4.

Since fragments are rendered in arbitrary order,
the algorithm generates an unsorted LDI. For fur-
ther processing, the LDI is sorted per pixel on the
CPU. Although the rendering order is arbitrary,
our algorithm relies on consistency across individ-
ual passes, which is provided by the GPU.

This algorithm is implemented using core
OpenGL 1.4 functionality. OpenGL extensions
are not employed. Each rendering pass requires
a buffer read-back. Reading back data from the
GPU, however, can be expensive depending on the
actual hardware. We propose two methods for opti-
mizing the data transfer using OpenGL extensions.
First, depth and stencil values of a pixel are usu-
ally stored in the same 32-bit word in the frame
buffer. This allows to read-back both buffers in
a single pass using an OpenGL extension, such as
GL NV packed depth stencil. Second, all render-
ing passes can be performed independently from
each other except for the first pass. We exploit this
fact to render individual layers into different re-
gions of the frame buffer. Once finished, the whole
frame buffer is read back in a single pass. This op-
timization reduces the number of read-backs to a
maximum of two, assuming that the frame buffer
memory is sufficiently large. Thus, stalls in the ren-
dering pipeline are reduced and the performance of
the algorithm is significantly improved. Fig. 2 il-
lustrates the Unordered LDI generation.

3.4 Software LDI

The third method for LDI generation is completely
processed on the CPU. The investigation of this
variant has been motivated by two drawbacks of
GPU implementations. First, detailed timing mea-
surements of the two graphics-hardware acceler-
ated techniques have indicated that buffer read-
backs are a main performance bottleneck. Second,
graphics hardware requires multiple passes for LDI
generation, since the output is restricted to one
value per fragment in the frame buffer. In con-
trast, a software-renderer does not suffer from this



Figure 2: Each rendering pass generates an un-
sorted LDI layer. Additionally, the first rendering
pass computes the depth complexity, i. e. the num-
ber of rendering passes.

restriction, as it can rasterize into multiple buffers
at the same time. Therefore, a simplified software-
renderer has been implemented, which is especially
designed for LDI generation.

The simplified software-renderer only features
basic frustum culling, face clipping, orthogonal
projection, and rasterization of triangle meshes.
The produced fragments are directly stored in the
LDI structure. This is in contrast to hardware-
accelerated methods which depend on an interme-
diate frame buffer.

First, the software-renderer culls object triangles
against the VoI provided by stage 1. If necessary,
the remaining triangles are clipped against the VoI.
This clipping might produce additional triangles,
as shown in [Sut74]. Then, the software-renderer
rasterizes all triangles that have passed the culling
and clipping stages. The depth of each generated
fragment is stored in the LDI structure along with
the information on front-face / back-face orienta-
tion. Fragments rasterized at the same position in
the LDI do not overwrite each other, but result in
the generation of an additional LDI layer for this
pixel.

The software-renderer generates fragments in
arbitrary order, similar to the Unordered LDI
method. Therefore, per pixel sorting of the LDI
is performed for further processing.

4 Results

We have implemented the three methods presented
in Sec. 3 on a PC Pentium 4 with 3 GHz and a
GeForce FX Ultra 5800 GPU. Various experiments
have been carried out to measure the performance
of the methods. This section presents three test
scenarios employing different collision queries.

The first scenario uses a dynamically deforming
hand and a phone, consisting of 4800 faces and
900 faces, respectively. Volumetric collision detec-
tion is performed between the hand and the phone.
Additionally, the animated hand is tested for self-
collisions. The LDI resolution is 64x64. Tab. 1
shows timings for both collision queries.

Method
Collision

min / max
[ms]

Self-collision
min / max

[ms]

Overall
min / max

[ms]

Ordered 28.6 40.0 68.6
37.3 54.2 91.5

Unordered 9.5 12.3 21.8
12.2 17.7 29.9

Software 2.8 4.9 7.7
4.1 7.1 11.2

Table 1: Dynamic test sequence with an animated
hand (4800 faces) and a phone (900 faces). Mini-
mum and maximum values are given for collisions
between hand and phone, and for self-collisions
of the hand. Overall time for collision and self-
collision detection is shown in the last column. The
resolution of the LDI is 64x64. Fig. 3 and Fig. 4
illustrate the test.

In the first test scenario, the software LDI pro-
vides the best performance, since data transfer
from and to the GPU significantly reduces the per-
formance of the Ordered and Unordered LDI ap-
proach. Data read-back is independent from the
model geometry. Therefore, rasterization perfor-
mance of the graphics hardware is outweighed by
data read-back for smaller geometries. Further, the
Unordered LDI approach is more efficient than the
Ordered LDI approach. Although both methods
require about the same number of rendering passes,
the rendering setup for the Ordered LDI approach
is more involved. All experiments indicate, that
the Unordered LDI approach is about three times
faster compared to the Ordered LDI approach.

In the second scenario, arbitrarily placed par-
ticles are tested against the volume of a dragon.
The particles are randomly positioned within the
AABB of the model. The LDI resolution is 64x64.



Three different scene complexities have been tested
with up to 500k faces and 100k particles. Measure-
ments are given in Tab. 2.

Method
High

Complexity
[ms]

Medium
Complexity

[ms]

Low
Complexity

[ms]

Ordered 453.1 160.6 50.3
Unordered 225.2 74.5 24.4
Software 398.7 105.2 37.1

Table 2: Particles at arbitrary positions within the
AABB of a dragon model are tested against the
volume. Measurements are given for three model
complexities: High (520k faces, 100k particles),
medium (150k faces, 30k particles), and low (50k
faces, 10k particles). The LDI resolution is 64x64.
Fig. 5 illustrates the test.

In the second experiment, the VoI encloses the
entire model, i. e. all triangles of the dragon have to
be rendered. In highly complex scenes, most time is
spent for triangle rasterization and the read-back
delay is less important. In this case, the GPU-
based Unordered LDI approach outperforms the
software-renderer and a rate of 5Hz can be achieved
for a large scene with 500k triangles and 100k par-
ticles.

In the third experiment, collisions of a hat and a
mouse model with fixed geometric complexity are
detected using varying LDI resolutions.

Method
LDI

32 x 32
[ms]

LDI
64 x 64

[ms]

LDI
128 x 128

[ms]

Ordered 24.0 26.0 51.1
Unordered 8.0 8.7 17.2
Software 2.1 3.0 5.9

Table 3: Test with an animated hat (1500 faces)
and a mouse (15000 faces). Collisions are detected
with intersected LDIs. LDI resolution varies from
32x32 to 128x128. Fig. 6 illustrates the test.

Due to the moderate geometric complexity of
the scene, the Software LDI shows the best perfor-
mance in the third experiment. It can be seen, that
the LDI resolution significantly influences the per-
formance of our approach. In all methods, higher
LDI resolution requires more fragments to be ren-
dered. Additionally, data read-back slows down in
case of higher LDI resolution for GPU-based ap-
proaches.

In this experiment, collision detection of the test
scenario with 16k triangles can be performed with
a rate of 500Hz using the Software LDI approach.
Therefore, this method is well-suited for games or
for interactive animation environments.

In general, all experiments show that our ap-
proach to collision and self-collision detection can
be accelerated with graphics hardware for large en-
vironments. In typical game environments how-
ever, collisions are checked between less complex
characters comparable to the third experiment. In
such applications, the CPU-based implementation
provides best performance with up to 500Hz.

5 Ongoing Work

We are currently focussing on applications of the
presented collision detection technique. Based on
research in efficient collision response and fast de-
formable models, we intend to integrate all compo-
nents into a system for real-time cloth simulation
and for interactive surgery simulation. In cloth
simulation, fast collision detection for deformable
objects is required to handle the interaction of cloth
and walking avatars. In surgery simulation, the
presented approach can be employed to interac-
tively simulate interactions between different de-
formable organs.

Further, we are investigating collision detections
methods, that overcome the current limitation of
closed objects. We intend to generalize our method
to arbitrary triangle meshes.

6 Conclusions

We have presented a new image-space technique
for the detection of collisions and self-collisions for
arbitrarily shaped, water-tight objects. Due to the
fact, that no pre-processing is required, our method
is especially useful in dynamic environments with
deformable objects.

We have presented three implementations of our
approach. The performance analysis has shown,
that our approach can be accelerated with graphics
hardware in case of geometrically complex scenes,
while the CPU-based implementation provides bet-
ter performance in case of small environments.

Our method efficiently detects collisions of com-
plex objects with up to 500k triangles. Smaller en-
vironments can be handled at rates of up to 500Hz
on current PCs. Therefore, the approach can be
used in games, in interactive simulation or anima-
tion environments.



7 Acknowledgement

This research is supported by the Swiss National
Science Foundation. The project is part of the
Swiss National Center of Competence in Research
on Computer Aided and Image Guided Medical In-
terventions (NCCR Co-Me).

References

[Bac99] G. Baciu, W. Sai-Keung Wong, and H. Sun.
RECODE: an image–based collision detection al-
gorithm. The Journal of Visualization and Com-
puter Animation, vol. 10, pp. 181–192, 1999.

[Ber97] G. van den Bergen. Efficient collision detection
of complex deformable models using AABB trees.
Journal of Graphics Tools, vol. 2:4, pp. 1–13, 1997.

[Bra02] G. Bradshaw, C. O’Sullivan. Sphere-tree con-
struction using medial–axis approximation. Proc.
of ACM Symposium on Computer Animation SCA
’02, pp. 33–40, 2002.

[Bri02] R. Bridson, R. Fedkiw, J. Anderson. Robust
treatment of collisions, contact and friction for
cloth animation. Proc. of SIGGRAPH ’02, pp.
594–603, 2002.

[Cam90] S. Cameron. Collision detection by four-
dimensional intersection testing. IEEE Transac-
tion on Robotics and Automation, vol. 6:3, pp.
291–302, 1990.

[Eve01] C. Everitt. Interactive order-independent
transparency. Technical Report, NVIDIA Corp.,
2001.

[Fol90] J. D. Foley, A. van Dam, S. K. Feiner, J. F.
Hughes. Computer Graphics: Principles and Prac-
tics. Addison-Wesley Publishing Company, 1990.

[Gan00] F. Ganovelli, J. Dingliana, C. O’Sullivan,
BucketTree: Improving collision detection be-
tween deformable objects. Proc. Spring Confer-
ence on Computer Graphics SCCG ’00, Budmerice
Castle, Bratislava, 2000.

[Got96] S. Gottschalk, M. Lin, D. Manocha. OBB-tree:
A hierarchical structure for rapid interference de-
tection. Proc. SIGGRAPH ’96, pp. 171–180, 1996.

[Gov03] N. Govindaraju, S. Redon, M. Lin,
D. Manocha. CULLIDE: Interactive colli-
sion detection between complex models in large
environments using graphics hardware. Proc. of
ACM Graphics Hardware, 2003.

[Hei03] B. Heidelberger, M. Teschner, M. Gross. Real-
time volumetric intersections of deforming objects.
Proc. of Vision, Modeling, Visualization VMV’03,
pp. 461–468, 2003.

[Hof01] K. Hoff, A. Zaferakis, M. Lin, D. Manocha.
Fast and simple 2D geometric proximity queries
using graphics hardware. Proc. of Symposium on
Interactive 3D Graphics ’01, pp. 145–148, 2001.

[Hub93] P. Hubbard. Interactive collision detection.
Proc. of IEEE Symposium on Research Frontiers
in Virtual Reality ’93, pp. 24–31, 1993.

[Kim02] Y. Kim, M. Otaduy, M. Lin, D. Manocha.
Fast Penetration Depth Computation for
Physically-based Animation. Proc. of Com-
puter Animation ’02, pp. 23–31, 2002.

[Klo96] J. Klosowski, M. Held, J. Mitchell, H. Sowiz-
ral, K. Zikan. Efficient collision detection using
bounding volume hierarchies of k–DOPs. Proc. of
SIGGRAPH ’96, pp. 171–180, 1996.

[Kno03] D. Knott, D. Pai. CinDeR: Collision and inter-
ference detection in real–time using graphics hard-
ware. Proc. of Graphics Interface ’03, 2003.

[Lar01] T. Larsson, T. Akenine-Moeller. Collision de-
tection for continuously deforming bodies. Proc.
of Eurographics ’01, pp. 325–333, 2001.

[Lom99] J. Lombardo, M.-P. Cani, F. Neyret. Real-
time collision detection for virtual surgery. Proc.
of Computer Animation ’99, pp. 33–39, 1999.

[Mel00] S. Melax. Dynamic plane shifting BSP traver-
sal. Proc. of Graphics Interface ’00, pp. 213–220,
2000.

[Mys95] K. Myszkowski, O. Okunev, T. Kunii. Fast
collision detection between complex solids using
rasterizing graphics hardware. The Visual Com-
puter, vol. 11:9, pp. 497–512, 1995.

[Pro97] X. Provot. Collision and self-collision handling
in cloth model dedicated to design garment. Proc.
of Graphics Interface ’97, pp. 177–189, 1997.

[Qui94] S. Quinlan. Efficient distance computation be-
tween non-convex objects. Proc. of IEEE Int.
Conf. on Robotics and Automation, pp. 3324–
3329, 1994.

[Shi91] M. Shinya, M. Forgue. Interference detection
through rasterization. Journal of Visualization
and Computer Animation, vol. 2, pp. 132–134,
1991.

[Sut74] I. E. Sutherland, G. W. Hodgman. Reentrant
polygon clipping. Communications of the ACM,
vol. 17:1 , pp. 32–42, 1974.

[Tes03] M. Teschner, B. Heidelberger, M. Mueller,
D. Pomeranets, M. Gross. Optimized spatial hash-
ing for collision detection of deformable objects.
Proc. of Vision, Modeling, Visualization VMV’03,
pp. 47–54, 2003.

[Tur90] G. Turk. Interactive collision detection for
molecular graphics. Technical Report TR90-014,
University of North Carolina at Chapel Hill, 1990.

[Vas01] T. Vassilev, B. Spanlang, Y. Chrysanthou.
Fast cloth animation on walking avatars. Proc.
of Eurographics ’01, pp. 260–267, 2001.

[Vol95] P. Volino, M. Courchesne, N. Magnenat-
Thalmann. Versatile and efficient techniques for
simulating cloth and other deformable objects.
Proc. of SIGGRAPH ’95, pp. 137–144, 1995.

[Zac02] G. Zachmann. Minimal hierarchical collision
detection. Proc. of ACM Virtual Reality Software
and Technology VRST ’02, pp. 121–128, 2002.



Figure 3: Dynamic animation of a hand with 4800 faces and a phone with 900 faces. Collisions (red) are
detected. Refer to Tab. 1 for performance measurements.

Figure 4: Left: Collisions (red) and self-collisions (green) of the hand are detected. Middle: Self-
collisions (green) are detected. Right: LDI representation with a resolution of 64x64. Refer to Tab. 1
for performance measurements.

Figure 5: Left: Dragon with 500k faces. Middle: LDI representation with a resolution of 64x64. Right:
Particles penetrating the volume of the dragon are detected. Performance measurements are given in
Tab. 2.

Figure 6: Left, middle: Dynamic animation of a mouse with 15000 faces and a hat with 1500 faces.
The intersection volume (red) is shown. Right: Intersection volume with an LDI resolution of 64x64.
Performance measurements are given in Tab. 3.


