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ABSTRACT

This paper compares various techniques for compressing floating point distance fields. Both lossless and lossy

techniques are compared against a new lossless technique. The new Vector Transform technique creates a pre-

dictor based upon a Vector Distance Transform and its suitability for distance field data sets is reported. The new

technique produces a lossless encoding at a third of the file size of entropy encoders, and equivalent to lossy wavelet

transforms, where around 75% of the coefficients have been set to zero. The algorithm predicts each voxel value

linearly based upon two previous voxels chosen from one of 13 directions which have been previously computed.

Those that cannot be predicted are explicitly stored.
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1 INTRODUCTION
Although there has been much work on the topic

of compressing volume data [Mur93, FY94, IP98,

ILRS03], little or no research has been published on

the compression of distance fields. Distance fields

have gained a wide appreciation in the graphics com-

munity recently as they have been found useful for

many applications, from contour connection [JC94],

object representation [Jon96, FPRJ00, JS01], object

reconstruction [CL96], interactive modelling [BC02],

skipping over empty space during ray-tracing [SK00]

to alternative data structures for the geometry simpli-

fication process. The common element for distance

fields is that they should enable the query of distance in

three-dimensional space to an object contained within

that space. The main approaches for achieving this

are to calculate the distance for each requested point,

the full distance field [JS01], an adaptive distance

field [FPRJ00] or a piecewise linear approximation

[WK03]. Broadly, the first involves a costly query of
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the object to calculate the closest distance and is only

suitable for objects with low primitive count, or cases

where few queries are required. The full distance field

calculates a discrete grid of distances, and the distance

to query points are calculated using interpolation from

known points. The adaptive distance field provide dis-

tances in a similar manner, but these are interpolated

from octree nodes. Finally the piecewise linear ap-

proximation method approximates the distance field

with linear functions, and distance queries are handled

by determining and evaluating the appropriate func-

tion.

Each approach has its own benefits and disadvantages

(most notably a trade-off between accuracy, storage re-

quirements and computational effort), and are there-

fore suited to different applications. The analysis of

the most appropriate approach is not the topic of this

paper, but rather methods for the compression of full

distance fields will be considered and evaluated.

Section 2 will describe some of the methods used for

compression of volume data. Their use on distance

fields will be evaluated and the compression ratios will

be reported.

Section 3 will show how a vector distance transform

can be used as a predictor of voxel values in a distance

field in order to aid the compression process. It will

derive the predictor, and give details of the implemen-

tation, including consideration to numerical accuracy

and space required.

Section 4 will examine and compare the various loss-

less and lossy techniques with the new Vector Trans-

form method, and Section 5 will conclude the paper



and suggest some future work.

2 PREVIOUS WORK
The compression of distance fields offers its own chal-

lenges when compared to image compression or stan-

dard volume compression. Images or volumes usually

represent data using an integer format of a certain bit

length - for example the hydrogen data (from AVS)

uses an 8 bit unsigned integer format, and the UNC

CThead uses a 12 bit signed integer format. Lossless

compression techniques can take advantage of some

values appearing more frequently than others (for ex-

ample, bone in CT data sets), and employ a codebook

approach to compression. Lossy techniques can quan-

tize the data further, use the DCT, or wavelets.

Distance fields, D, represent the distances as n bit

floating point numbers, where usually n=16, 32, or 64.

Each value represents the minimum distance from that

voxel, p, to the surface S:

D(p) = sgn(p) · min {|p − q| : q ∈ S}
sgn(p) =

{

−1 if p inside

+1 if p outside

where || is the Euclidean norm

(1)

Simple lossless compression may be achieved by en-

tropy encoding, or lossy compression can be achieved

by reducing accuracy in the form of quantizing the

original values, and then a lossless encoding may be

applied to achieve further compression. The next sec-

tions look at applying existing methods for lossless

and lossy compression to floating point distance fields.

2.1 Lossless techniques

Entropy encoding techniques such as Huffman coding,

run-length-encoding and arithmetic coding [Sal01]

have been developed with regard to text or integer

based data representations. Such methods perform

poorly on representations based upon real numbers be-

cause the bit patterns are too random for entropy en-

coding to work well (Table 1). Matters can be im-

proved by observing that the 64 bit IEEE floating point

representation is divided into 1 bit for sign, followed

by 11 bits for the exponent, and 53 bits for the man-

tissa (in practise 52 are stored, and the most significant

is implied to be 1). By rearranging the bits such that

all the sign bits occur first, followed by all the expo-

nent bits, and finally followed by the mantissa bits, it

is possible for entropy coding to take advantage of the

coherency in the sign, exponent, and the first few bits

of the mantissa (Table 2) (previously applied to image

data in [CM95] amongst others).

The lossless Lorenzo predictor [ILRS03] (which was

developed for scalar data) is not suited to floating point

distance field data sets (exactly predicting only 0.6%

Distance Field Original Entropy

64 bit IEEE f.p. size in bytes encoding

AVS Hydrogen 16777216 13156273

128 × 128 × 128 (100%) (78.42%)

CThead 67108864 61014252

256 × 256 × 128 (100%) (90.92%)

Table 1: Entropy encoding of 64 bit floating-point dis-

tance fields.

Distance Field Original Entropy

64 bit IEEE f.p. size in bytes encoding

AVS Hydrogen 16777216 13220415

128 × 128 × 128 (100%) (78.80%)

CThead 67108864 53505457

256 × 256 × 128 (100%) (79.73%)

Table 2: Entropy encoding of 64 bit floating-point dis-

tance fields after rearrangement of the bit-planes.

of voxel values in the CThead distance field). Another

predictor [FY94] performs similarly. Both predictors

have been designed with scalar data in mind, and work

well with such data.

Existing lossless techniques do not offer large com-

pression ratios for floating point distance fields, and so

lossy techniques, as discussed in the next section, may

be used to improve the compression ratio, but at the

expense of introducing variable amounts of error. As

shall be seen in Section 3, the method presented in this

paper offers a lossless encoding of floating point dis-

tance fields at a substantially improved ratio compared

to existing lossless techniques, and at a ratio compara-

ble to lossy compression methods.

2.2 Lossy Techniques

Wavelet transforms have been investigated extensively

for the compression of volume data [Mur93][IP98]

[Rod99][KS99]. Wavelets implement a hierarchical

approach to compression whereby each level in the hi-

erarchy is an interpolation of previous levels. Detail

coefficients are stored and, for lossy encoding, are set

to zero where they are less than a predefined thresh-

old. The coefficients are quantized and then entropy

encoding or zero-trees [Sha93] are employed for fur-

ther compression. For lossless encoding all detail co-

efficients are retained, and no quantization takes place.

Wavelet transforms can be suited to floating point dis-

tance field data by not using the quantization step.

Simple transforms, such as Haar, offer a means of gen-

erating good compression ratios whilst controlling the

overall error of the data set. Table 3 shows the Haar

transform used in both the lossless and lossy modes,

and the resulting error and data sizes for the CThead



Wavelet Coefficients Max

Transform set to zero Error

59858717 (89%) 0% 0.000

33667571 (50%) 49% 0.046

10863320 (16%) 85% 0.540

Table 3: Wavelet compression using Haar transform.

data set (original size 67108864 bytes). Entropy en-

coding rather than zero-tree encoding was used on the

detail coefficients. It can be seen from the table that

substantial savings in storage can be achieved if some

error is allowed in the data set. Approximating dis-

tance fields using piecewise linear functions has en-

abled a large compression at the expense of introduc-

ing some inaccuracy into the distance values [WK03].

This compression is particularly suited to situations

where distance values at, or around, the surface are

more important – e.g. during geometry processing.

The lossless method presented in this paper is suited

to situations where error is undesirable.

3 METHOD
The lossless method presented in this paper relies upon

the observation that Distance Transforms generally

produce good approximations to true distances. A

more accurate Vector Distance Transform will be used

as the basis for the predictor used in this method.

3.1 Vector Distance Transforms

The 3 × 3 × 3 Chamfer Distance Transform (CDT)

[Dan80] propagates distances throughout a volume,

D, by calculating the distance for the current voxel by

adding unit distance to each face neighbouring voxel,√
2 distance to each edge neighbour, and

√
3 distance

to each vertex neighbour, and then taking the mini-

mum of all those distances:

D(x, y, z) =

min(D(x + i, y + j, z + k) +
√

i2 + j2 + k2)
∀i, j, k ∈ {−1, 0, 1}

(2)

For implementation, the CDT is carried out in two

passes – forwards using previously calculated neigh-

bours, and backwards using the remaining neighbours.

CDTs suffer from poor accuracy as the distance from

the surface increases. This problem is overcome by

using Vector Distance Transform (VDT) techniques

[Mul92, SJ01] which enable accurate distance fields to

be generated quickly. VDTs store the vector v to the

closest point p to the surface at each voxel in a vol-

ume V such that V (p) = v, and add (or subtract) the

appropriate unit distance from each dimension based

upon the direction of the neighbour (again taking the

minimum):

D(x, y, z) =
min(|V (x + i, y + j, z + k) − (i, j, k)|)
∀i, j, k ∈ {−1, 0, 1}

(3)

VDTs propagate distances more accurately than CDTs,

but there are certain configurations which prevent

VDTs from being completely accurate. As these cases

are the exception rather than the majority case, the

VDT can be used as a predictor for a voxel value in

a distance field data set, and hence may be used as a

basis for a compression technique.

3.2 Derivation of the Predictor

In this section, a distance predictor will be derived,

which uses the known distances (d2 and d1) from 2

previous voxels, to calculate the distance for the cur-

rent voxel (d0). For derivation purposes, assume three

consecutive voxels v2, v1 and v0 in the x-axis with

v2 being the leftmost and distances to the surface at

each voxel d2, d1 and d0 respectively, with d2 and d1

known. Assuming the vector to the surface at v2 is (x,

y, z), then using a vector transform in the forward x

direction would result in v1 having a vector (x + 1, y,

z) to the surface, and v0 would have (x + 2, y, z).
We have:

x2 + y2 + z2 = d2

2
(4)

(x + 1)2 + y2 + z2 = d2

1
(5)

and

(x + 2)2 + y2 + z2 = d2

0
(6)

From Equations 4 and 5 we obtain:

y2 + z2 = d2

2
− x2 = d2

1
− (x + 1)2 (7)

so

d2

2
− x2 = d2

1
− x2 − 2x − 1 (8)

giving

x =
d2

1
− d2

2
− 1

2
(9)

Substituting into Equation 6 and using Equation 5 we

obtain

d2

0
= 2(d2

1
+ 1) − d2

2
(10)

Equation 10 also can be derived in the y and z axes.

This gives 3 forward directions from which a voxel

distance may be calculated (the already computed face

neighbours of the current voxel).

In one case where v2, v1, and v0 form a diagonal

within the xy-plane we have

x2 + y2 + z2 = d2

2
(11)

(x + 1)2 + (y + 1)2 + z2 = d2

1
(12)



and

(x + 2)2 + (y + 2)2 + z2 = d2

0
(13)

From Equations 11 and 12 we obtain:

z2 = d2

2
− x2 − y2 = d2

1
− (x + 1)2 − (y + 1)2 (14)

which gives

x + y =
d2

1
− d2

2
− 2

2
(15)

Similarly, substituting into Equation 13 and using

Equation 12 we obtain

d2

0
= 2(d2

1
+ 2) − d2

2
(16)

Equation 16 also can be derived in the yz-plane and

xz-plane. This gives 6 forward directions from which

a voxel distance may be calculated (the already com-

puted edge neighbours of the current voxel).

Similarly the 4 already computed vertex neighbours

of the current voxel lead to 4 forward directions from

which a voxel distance may be calculated using Equa-

tion 17 which is derived in a similar manner to above.

d2

0
= 2(d2

1
+ 3) − d2

2
(17)

In summary, the distance at the current voxel may be

predicted from the distances at two previous voxels, in

any of 13 already considered (previously calculated)

directions. Each direction can be tested in turn until

the predicted distance is equal to the distance stored

at the voxel. In the case that a prediction succeeds, a

4 bit code can indicate the direction. If the prediction

is not successful, the 4 bit code can indicate this, and

the correct distance may be stored. The sign of d0 is

predicted using the sign of d1. All other distances are

removed. Entropy encoding may be applied to the 4

bit codes, and the stored distances to further compress

the data.

3.3 Implementation

The implementation uses a distance predictor which

requires the distance at the current (d0) and two pre-

vious voxels (d1 and d2), the number of axes, n, the

distances are from (n = 1, 2 or 3), and the bit code to

be stored if the distance can be predicted:

Predictable(d2, d1, d0, n, dir)
if (d2

0
= 2(d2

1
+ n) − d2

2
) ∧ (sgn(d0) = sgn(d1))

then

addbits(dir)
return true

else

return false

To compress the distances of a distance field D, the

predictor is called with distances from each direction

until one succeeds. If all fail, the distance is stored

explicitly, and an appropriate bit code is added. Only

four calls are shown, and a test to check the voxels are

inside the distance volume D is omitted for clarity

CompressDistances(D)
if Predictable(Di−2,j,k, Di−1,j,k, Di,j,k, 1, 0)

return

if Predictable(Di,j−2,k, Di,j−1,k, Di,j,k, 1, 1)
return

if Predictable(Di,j,k−2, Di,j,k−1, Di,j,k, 1, 2)
return

if Predictable(Di−2,j−2,k, Di−1,j−1,k, Di,j,k, 2, 3)
return

...

addbits(stored)
store(d0)

Once the distance predictor has been carried out on

the distance field, entropy encoding is carried out on

the bit store. The distance store is transformed using

bit-plane encoding before further compression using

entropy encoding.

3.4 Further Considerations

Numerical accuracy Due to the fact that distances

may be predicted over large numbers of voxels during

the vector transform, and each prediction is based on

a previous prediction, some errors may be introduced

due to numerical inaccuracies in the internal represen-

tation of floating point numbers. This has been over-

come in the implementation by using 128-bit doubles

for some of the intermediate calculations and by us-

ing a separate quality check. The quality check tests

uncompression during the prediction stage, using the

previously predicted voxel values. If the quality check

indicates the uncompressed value will differ from the

original value due to numerical accuracy problems, the

predictor is said to have failed, and the original dis-

tance value is stored. This solves the problem, but

reduces the number of predictable voxels by around

10% from the number that could be theoretically pre-

dicted. Future work will investigate the possibility of

minimising the prediction path in an attempt to reduce

the numbers of voxels that could be predicted, but can-

not, due to numerical accuracy problems.

Time and Space Distance field data sets can be quite

large – the CThead distance field example is around

64MB. Using wavelet compression would result in the

need to have the data set present in memory during

the whole operation, as the wavelet transform makes

several passes through the voxel values on each axis.

The algorithm presented here is linear, and makes just

one forward pass through the data during both com-

pression and uncompression. As a result the algo-

rithm needs at most just three slices of the data set in



memory at anyone time (the furthest voxel used during

prediction will be two slices above the current voxel).

This linear traversal of the data rather than the several

passes used to traverse the hierarchical data resulting

from the wavelet transform also results in this method

being faster than wavelet transforms – the Haar com-

pression takes about 12 seconds, and this method takes

about 3 seconds (on a P4 2.5GHz).

4 RESULTS
Two distance field data sets were used for the com-

parison. The first is a distance field data set produced

from the UNC CThead (Figure 1). Extra slices were

added at the top and bottom to make the distance field

256 × 256 × 128 (to make the size more convenient

for the wavelet transform). Distances were calculated

at sub-voxel accuracy to the skull. The second is a dis-

tance field data set produced from the AVS Hydrogen

data set (Figure 2). Extra slices were added around the

data set to make the distance field 128 × 128 × 128.

Distances were calculated at sub-voxel accuracy to a

value of 128 (the original data is 0 to 255). Lossless

and lossy compression techniques were carried out on

both data sets. Entropy encoding, this vector trans-

form, and entropy encoding after rearranging the bit-

planes were used as lossless methods. Tables 4 and 5

show that this vector transform method produces sub-

stantially better compression than entropy encoding

methods, resulting in a file which is a third of the size

of the next best method. It is also interesting to note

the size of error introduced by using a lossy method

(Haar transform) to create a file of the same size. In

the case of the AVS Hydrogen data set, the low error

produced by the Haar transform is due to the fact that

voxels have only 0–255 values in the original data set,

and therefore the distance field for 128 contains dis-

tances to integer voxel positions or a restricted number

of positions within the voxel, which compresses well.

5 CONCLUSION
This paper has compared various techniques for com-

pressing floating point distance fields. Both lossless

and lossy techniques were compared against a new

lossless technique. The new Vector Transform tech-

nique creates a predictor based upon a Vector Distance

Transform which was demonstrated to be most suit-

able for distance field data sets. The new technique

produces a lossless encoding at a third of the file size

of entropy encoders, and equivalent to lossy wavelet

transforms, where around 75% of the coefficients have

been set to zero. The error introduced by the wavelet

transforms was reported, although the lossless wavelet

transform should be used as the main comparison as

this Vector Transform technique is lossless.

Figure 1: CThead distance field (various distance off-

sets).

Figure 2: AVS hydrogen distance field (various dis-

tance offsets).

The algorithm predicts voxel values based upon two

previous values. The algorithm is memory efficient

as only three slices are necessary in main memory for

the algorithm to operate. It is time efficient as each

voxel is computed once (unlike hierarchical wavelet

methods).

Future work will concentrate on increasing the num-

ber of voxels that can be predicted by careful con-

sideration of the prediction path, and by examining if

a backward pass may be introduced. It may also be

possible to create a hierarchical method which would

allow lossy encoding and hence provide even better

compression ratios, but with controlled loss.
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