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ABSTRACT 

We present an accurate, interactive silhouette extraction mechanism for texture-based volume rendering. 

Compared to previous approaches, our system guarantees silhouettes of a user controlled width without any 

significant preprocessing time. Our visualization pipeline consists of two steps: (a) extraction of silhouettes with 

a width of one pixel, and (b) image post-processing for broadening of silhouettes. Step (a) is a mixture of 

object- and image-based- silhouette extraction models, maximally exploiting the screen resolution. This hybrid 

approach is neither sensitive to accuracy in gradient representation nor to the precision of the depth-buffer, as in 

earlier procedures. Step (b) is accomplished via smoothing and applying a threshold to the temporary result 

obtained in (a). To keep the latter process efficient, we perform fast convolution using FFT. Our silhouette 

extraction is conceptually similar to the corresponding method for polygonal representations, checking the front- 

and back facing property of adjacent triangles.  
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1. INTRODUCTION 
Volume rendering has become an important tool for 

scientific visualization in the last decade. The major 

focus in this area lies in the exploration of datasets as 

obtained from Computer Tomography (CT), 

Magnetic Resonance Imaging (MRI) or simulations. 

Iso-surface extraction and direct volume rendering 

(DVR) have proved themselves as interactive 

exploration methods for input data in texture-based 

volume rendering. These two methods are alike in 

their objectives to approximate the look of the 

analyzed objects as they would appear in reality: iso-

surface extraction describes an opaque-like look, 

whereas DVR visualizes a semi-transparent 

appearance. 

 

Only recently, researchers have recognized the 

impact of combining the two areas of (i) volume 

rendering and (ii) non-photorealistic rendering 

(NPR). NPR leaves freedom to guide the attention of 

the observer to special features of the object, like 

silhouettes, creases, cusps, or material edges. For an 

overview of this topic and the terms mentioned 

above, we refer to [StSc02], [MöHa02] and 

[GoGo01].  

This work deals with the question of how to detect 

and illustrate silhouettes in volumetric datasets 

efficiently and robustly. We address the problem of 

capturing silhouettes with a guaranteed width of one 

pixel and broadening of silhouettes either by a user-

defined, fixed width -or adaptively, depending on the 

distance to the viewer. 

Our paper is organized as follows. In section 2, we 

review related work. In section 3, we describe our 

method of finding silhouettes in the dataset from a 

particular view. Section 4 explains how the 

silhouettes can be broadened for advanced 

stylization. The remaining sections summarize results 

and conclude our work. 
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2. PREVIOUS WORK 

2.1 Polygonal Models 
Detecting silhouettes for polygonal representations is 

most simple. A well-established criterion is used, 

which we call the front/backface property of two 

adjacent polygons: an edge is called silhouette edge, 

if exactly one of two triangles sharing an edge faces 

the viewer [MöHa02], i.e. 

(n0 · v > 0) ≠ (n1  · v > 0) (1), 

must hold, where n0, n1 are the respective triangle 

normals and v is the viewing vector.  

The union of silhouette edges forms the silhouettes. 

Raskar and Cohen [RaCo99] and Raskar [Ra01] used 

this criterion for real-time silhouette rendering. Their 

system is capable of illustrating silhouettes of 

predefined width by enlarging back-facing triangles 

by a depth-dependent factor. Although other 

techniques, like e.g. the shell (or halo) method 

[HaDa01] exist to render silhouettes in real-time, 

Raskar and Cohens method is currently regarded as 

being best concerning speed and robustness. As 

mentioned above, this criterion cannot be used 

directly for volumetric representations; however, we 

shall exploit the robustness of the front/backface 

property in our approach in a different way. 

2.2 Surface Angle Silhouetting 
For surface representations, where the criterion above 

cannot be applied, often the right-angle criterion is 

used: a point is called silhouette point, if the 

inequality |<v,g>| < ε holds, where 0<ε<1 denotes a 

threshold value and v and g are the normalized local 

viewing direction and the gradient on the surface, 

respectively [GoSl99]. Despite its applicability for 

arbitrary shape representations, a drawback is that 

silhouette lines are drawn with variable width, 

depending on the curvature of the surface [MöHa02]. 

Csébfalvi et al. [CsMr01] and Rheingans and Ebert 

[RhEb01] improved this formula by introducing a 

constant k and checking the relation (1- |<v,g>|) 
k
 < ε, 

where k serves the purpose of controlling the contour 

sharpness. By this means, above mentioned effects 

get lessened, but not removed, since the curvature of 

the surface still influences the silhouette width. 

Kindlmann et al. [KiWh03] try to incorporate 

curvature information in their model, but their 

method is still not robust in general, e.g. in regions 

where curvature is too low to be measured accurately.  

2.3 Silhouettes by Image Processing 
The methods mentioned so far operate on object 

level, i.e. the object geometry is used for silhouette 

detection. Discontinuities in screen-space, however, 

can also be used for detecting boundaries. Saito and 

Takahashi [SaTa90] first picked up this idea, 

followed by Decaudins [De96] extension towards 

toon rendering. Based on the simple idea that 

silhouettes tend to be located rather at pixels where 

discontinuities in the neighborhood in the Z-buffer 

occur, the method works fairly well, even for non-

polygonal representations. Card and Mitchell 

[CaMi02] and Mitchell [Mi02] improved this method 

by taking normal discontinuities in image space into 

account. There are some flaws with this technique 

making it disadvantageous for volume rendering. 

First, for nearly edge-on surfaces, the z-depth 

comparison-filter can falsely detect silhouette edge 

pixels. Second, if the differences in z-depth 

comparison are minimal, then silhouette edges can be 

missed [MöHa02]; in other words, the depth-

comparison is sensitive to the resolution of the depth-

buffer. Deussen and Strothotte [DeSt00] use the same 

z-buffer trick to generate pen-and-ink trees, therefore 

it is related to our silhouette extraction technique. 

Their algorithm however, uses a fixed threshold to 

determine discontinuities in z-space. Our algorithm  

is not restricted to an arbitrarily chosen value, but 

uses object-precision information to adaptively locate 

the outlines.  

2.4 Volumetric Models 
Surface angle silhouetting has been approved in 

volume rendering in various applications. Csébfalvi 

et al. [CsMr01] used it for visualizing contours, 

Rheingans and Ebert [RhEb01] for volume 

illustrations, Lu et al. [LuMo02] for point-stippling 

techniques, Svakhine and Ebert [SvEb03] for feature 

halos, Nagy et al. [NaSc02] for hatching and Lum 

and Ma [LuMa02] in parallel applications. 

A very elegant method for extracting silhouettes, 

tailored to volumes, was proposed by Schein and 

Elber [ScEl02], who used a trivariate tensor product 

B-spline representation of their data to obtain highly 

accurate boundary renderings. Their method 

however, demands tremendous amounts of memory 

and disk space, with preprocessing times of more 

than 20 minutes and about 10 seconds for a particular 

view on a 800 MHz Pentium III for a dataset with 

about 315.000 voxels. Our approach, in contrast, 

requires no significant preprocessing, and allows for 

interactivity.  

3. ALGORITHM OUTLINE 
Our algorithm takes the regular volumetric dataset as 

input, without any additional information, like e.g. 

gradients. The rendering of the dataset is 

accomplished by using 3D texturing under the 

constraint of slicing the polygons in front-to-back 

fashion using iso-surface extraction. 

Figure 1 summarizes the rendering process. In the 

first stage the program renders the single slices, 



detects the contours and propagates them through the 

slices in order to capture silhouettes. This is 

explained in the following subsections. Afterwards, 

the content of framebuffer is read back to main 

memory to broaden silhouettes. This is an optional 

stage explained in section 4. Finally, the result is 

output to the framebuffer.  

Figure 1: Survey of the rendering pipeline. G 

denotes the Fourier-transformed Gaussian kernel. 

 

In the following subsection, we describe the idea of 

the first stage of our algorithm first for the 2D case, 

afterwards we elevate the method to 3D. 

 

3.1 Basic Idea 
The main trick of our silhouette detection mechanism 

is depicted in figure 2. First, we fix two terms. We 

define a pixel to be a contour pixel, if the fragment 

survives the α-test during rasterization, but not all 

pixels in the 8-neighbourhood. A contour pixel is 

called propagated, if a contour pixel was already 

detected on the previous slice at the same screen 

position. 

Suppose we have a single visible contour pixel ck on 

slice si+1 detected at a particular screen position (fig. 

2, top left). To decide, whether ck is a silhouette 

pixel, we check whether a pixel is rendered for slice 

si+2 at the same screen position. If this is not the case, 

we can assume to have a silhouette pixel detected. If 

multiple contour pixels are found on successive slices 

at the same screen position (i.e. we have propagated 

contour pixels), the local viewer direction is 

orthogonal to the iso-surface normal and we come to 

a decision by means of the contour pixel found 

farthest from the viewer at the same screen position 

(fig 2, top right and bottom left). If a survived 

fragment is found on the next slice at the 

corresponding position, we do not have a silhouette, 

otherwise we do.  

Figure 2: Examples for silhouette pixel 

determination. si, si+1 and si+2 are screen-parallel slices 

after surviving the α-test. f, ck and i denote  the 

framebuffer, the regarded contour pixel and the iso-

surface, respectively. We color code passed 

fragments bright grey, contour pixels grey and 

silhouette pixels black. Top left: ck in si+1 is detected 

as silhouette pixel, since it is visible and the 

successor fragment in si+2 does not pass the α-test. 

Top right: similar situation, where ck is a propagated 

(see text for definition) contour pixel. Bottom left: ck 

is not recognized as silhouette pixel, since the 

subsequent fragment in si+2 passes the α-test. Bottom 

right: importance for the decision of the definition on 

the bottom left: if we would define a contour pixel to 

be a silhouette pixel only because it is propagated, we 

would get multiple silhouettes on the boundary of 

highly curved surfaces (here: 2
nd

 and 3
rd

 row). 

 

Premature classification of two successive contour 

pixels at the same screen position as silhouette pixel 

would lead to multiple silhouettes near to boundaries 

of curved objects, which we want to prevent (fig. 2, 

bottom right). This special case is not properly caught 

by conventional methods, like by the z-buffer trick 

(sec. 2.3) or the right-angle criterion (see figs. 7 left 

and 8 and sec. 6). Figure 3 shows a simple example 

for silhouette tracking in 3D. It remains now to 

clarify the tracking of contour pixels through the 

single slices. 

3.2 Contour Propagation 
The algorithm itself works like a standard front-to-

back iso-surface extraction pipeline, with extended 

operations applied on a single slice. Since these rules 

require an access to temporarily obtained results, we 

keep three textures in the texture units (TU) of the 

graphics board containing copies of the framebuffer 

(see table 1).  
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Figure 3: Silhouette determination in 3D. An object 

(here: two melted spheres) is rendered in a front-to-

back (here: from top-to-bottom) fashion. Fragments 

surviving the α-test are opaque and shown in gray. 

When rendering the active slice, we assure not to 

alter passed pixels in the framebuffer f. If a contour 

pixel in slice si corresponds to an empty pixel in the 

subsequent slice si+1 (at the same window position), 

then it is considered a potential silhouette pixel (bold 

outline). Due to this construction, only two 

silhouettes appear in the framebuffer after rendering 

all slices in the shown example. 

 

TU Content Dim. 

0 Volume Data 3D 

1 Footprint 2D 

2 Contour 2D 

3 Intermediate Result 2D 

Table1: Texture setup. 

Initially, we clear texture units 1-3 with the 

background color. We thereafter perform the 

following steps, each associated with its own 

fragment program, in a front-to-back manner (during 

rendering we have depth-testing and depth-writing 

disabled): 

1. Render the active volume slice with the α-test 

enabled. Store the content of the framebuffer in TU 1 

and call it footprint. This way, we naturally obtain 

two classes of pixels, defined here as empty ( ) and 

filled ( ). 

2. Render a screen-filling quad, textured with the 

footprint in TU 1. A filled pixel is altered here to a 

contour pixel ( ), if not all pixels in the 8-

neighbourhood are filled. We store the result in TU 2 

and call it contour.  

3. Finally, we render a screen-filling quad, textured 

with the contour in TU 2 and the intermediate result 

in TU 3. The decision table shown in table 2, with  

denoting a silhouette pixel, tells us how to combine 

two pixels at the same texture (here: (yet) screen) 

coordinate from TU 2 and TU 3 to a new one, using 

the operator :  (see fig. 4 for an example).  

 

Table 2: Decision table defining how single color 

values in TU 2 and TU 3 are combined to a new one, 

stored as a new intermediate result in TU 3. The color 

coding used here is defined in the text. 

Figure 4: Example for tracking of silhouettes. 

The idea behind the decision table (tab. 2) is the 

following: 

• 1
st
 column: Since empty pixels in si are 

transparent, they are always overdrawn by pixels 

in si+1. 

• 2
nd

 column: Since filled pixels in si are opaque, 

they are never overdrawn by pixels in si+1. 



• 3
rd

 column: Here we actually detect silhouette 

pixels the first time, if existent. 1
st
 row: detection, 

as explained on top of fig. 2. 2
nd

 row: no 

silhouette pixel, as explained on bottom of fig. 2. 

3
rd

 row: contour pixel propagation. 

• 4
th

 column: Silhouette pixels determined on si are 

unconditionally propagated to all subsequent 

slices. 

The new result after step 3 is stored in TU 3 as the 

new intermediate result t’. We repeat steps 1-3 until 

all slices are processed. We may render an additional 

empty slice, if the iso-surface of the object cuts the 

parametric domain of the volume to ensure that 

contours on the last slice are discovered as 

silhouettes, if necessary. Due to the decision table 

(see first row), the final result in TU 3 contains only 

empty, filled and silhouette pixels, which are finally 

swapped into the front buffer. 

Using this procedure, artifacts can occur if the 

interslice distance is chosen too high, emanating from 

places, where the slope of the surface over the image 

plane is too high. These artifacts can be removed by 

increasing the slicing density completely or 

adaptively; latter issue is not integrated in our 

framework yet. 

We might also shorten the rendering cycle by using 

fewer steps than the described three. This would 

result in much longer fragment programs, which we 

wanted to circumvent in our current implementation 

for reasons of clarity and implementation ease. Even 

more, fewer fragment programs would not guarantee 

better performance, since a workaround would lead to 

a massive increase of fragment instructions executed 

per pixel. 

So far we have discussed how we can precisely locate 

and extract silhouettes with a thickness of exactly one 

pixel. With a slight modification in the fragment 

program and by extending the rendering pipeline on 

the CPU, this method can be expanded to process 

more sophisticated silhouettes. 

4. SILHOUETTE BROADENING  
In the previous section, we have generated silhouettes 

with a guaranteed width of exactly one pixel. For 

many types of illustrations, especially in stylization, it 

is required to have silhouettes with a thickness either 

predefined, or depending on the distance to the 

viewer, to create exact controllable depth-cues or 

atmospheric effects [StSc02]. In this section, we 

insert a post-processing filtering step into the 

rendering pipeline, which accomplishes this task. 

After rendering steps 1-3 in the previous section, the 

content of the framebuffer is low-pass filtered. This 

leads to a diffusion of silhouette lines by a clearly 

defined amount, in direction of the image-space 

gradients of the silhouettes. This can be done simply 

by applying a Gaussian filter on the source image 

using convolution: 

'( , ) : ( , ) ( , )f x y f x y g x y= ⊗  (2), 

where f’ is the new smoothed version of f using the 

two-dimensional Gaussian kernel  

2 21
( )

2
1

( , )  
2

x y

g x y eπ
+=  (3). 

The resulting image f’ is not a bi-level image any 

more. By carefully converting the grayscale image f’ 

back into a bi-level one, we can exploit the 

continuous run of the co-domain in f’ to query the 

width of the silhouette at a particular pixel position. 

Since (3) is radial symmetric, we can rewrite it in 

polar coordinate representation as 

21
( )

2
1

( )  
2

r

g r eπ=  (4). 

Furthermore, g(r) is monotonically decreasing (and 

thus invertible with inverse function g
-1

) in the 

respective intervals (0,±∞), so we can retrieve the 

distance r of a pixel with gray tone h from the center 

of a silhouette by testing the relation 

1= ( ) < thr g h r−
 (5), 

where rth is half of the width of the silhouette. This 

solution is appealing for two reasons. 

First, due to the convolution, we can accomplish the 

filtering process fast, and independently of the size of 

the convolution kernel using the well-known identity 

1( ( ) ( ))f g f g−⊗ = iF F F  (6), 

where F and F 
–1

 denote the Fourier transform and 

its inverse, respectively. In this way, we can low-

pass-filter the image with a performance independent 

of the size of the (discretized) Gaussian kernel. This 

proceeding clearly outperforms the 

glConvolutionFilter2D function of OpenGL, 

which permits interactivity for yet small kernel sizes. 

For small kernel sizes (like e.g. 8x8), however, 

hardware-based filters -as described e.g. in [ViKa03] 

or [HaBe03] - might perform better. 

Second, we can control the thickness of the 

silhouettes adaptively, depending on the distance of 

the fragment to the viewer, producing the desired 

atmospheric effects. Thus, we abandon the idea that 

f(x,y) is bi-level and code the aforementioned 

distance of a fragment to the viewer in grayscale. The 

convolution process therefore induces a faster 



decrease of intensity in direction of the screen-space 

gradient in f’(x,y), where the original silhouette pixel 

color in f(x,y) resembles more the background color. 

Applying a constant threshold over the whole image 

f’(x,y) gives the desired atmospheric effect. 

5. IMPLEMENTATION DETAILS 
Our implementation is based on the OpenGL, GLUT 

and FFTW [FFTW98] libraries in C/C++. 

Since rasterization remains the main bottleneck in our 

application (see also table 3), we do not lay special 

emphasis on experimenting with a hardware 

implementation of the FFT, as e.g. done in 

[MoAn03], but use FFTW instead, which is a 

convenient and sophisticated substitute. By 

comparing our approach with [MoAn03], we found 

that a pure hardware implementation is not 

necessarily a gain, especially if a powerful CPU used 

in combination with large screen sizes. The 

performance measurements below show further, that 

post-processing plays only a negligible role in 

rendering speed. Furthermore, we can smoothly 

integrate zero-padding [PrTe92] in the filtering 

process without special implementation efforts. Zero-

padding is required to prevent wrap-around and thus 

periodic filtering of the image signal using Fourier-

based, fast convolution. This is especially important 

when the rendered result of the object with its 

broadened silhouettes is not fully contained in the 

window.  

6. RESULTS AND DISCUSSION 
We have tested typical datasets (most of them 

available from [VoRe]) on our target platform, a 

Windows XP PC with a 3 GHz Pentium P4, 1 GByte 

RAM and an ATI Fire GL X1 graphics card. Table 3 

shows performance evaluations of our method, 

comparing traditional right-angle criterion (RA) with 

our method for one-pixel width (OPS) and with post-

processed, broadened silhouettes (BS). We can 

observe a performance loss of factor >6 on average, 

compared to the traditional method (last column).  

We recall that our goal is to extract and visualize the 

exact position of the silhouettes on a given object and 

viewpoint. We do not intend to include additional 

clues into the rendition, like e.g. half-toned shading, 

etc. The bonsai tree in the left of figure 7 might 

convey the curvature of the local surface in a superior 

manner, but it does not have an exact controlled 

width.   

Figures 5 and 6 show the Engine and the NegHip 

datasets, respectively, rendered (i) with the 

conventional right-angle criterion, (ii) with our 

method and (iii) with additional silhouette 

enhancement. Figure 7 shows the Bonsai and Skull 

datasets, rendered using the right-angle criterion and 

our method, respectively.  

Dataset Size 
Win. 

Size 

RA 

(fps) 

OPS 

(fps) 

BS 

(fps) 

RA/

OPS 

2562 39.37 5.82 3.24 6.76 
Bonsai 2563 

5122 10.00 1.60 1.04 6.25 

2562 54.13 8.47 4.27 6.39 
Engine 

2562·

128 5122 13.78 2.30 1.27 5.99 

2562 39.37 5.98 3.51 6.58 Hydrog. 

Atom 
1283 

5122 9.84 1.60 1.02 6.15 

2562 19.95 3.05 2.26 6.54 
NegHip 643 

5122 9.85 1.58 1.07 6.23 

2562 39.41 5.82 3.61 6.77 
Skull 2563 

5122 9.85 1.58 1.06 6.23 

2562 44.0 5.41 3.37 8.13 
Teddy 

1282·

64 5122 11.12 1.47 0.94 7.56 

Table 3: Performance measurements for various 

datasets. 

 

The results for the conventional method show also 

that undesired effects (non-silhouette areas) appear in 

the images. These artifacts appear as we are not able 

to determine the exact position of silhouettes due to 

the limitations of discrete gradient representation. 

This is especially perceivable in figure 8, where the 

gradient-method fails at near-silhouette positions on 

the nose of the teddy. The arrows on the right of 

figure 8 indicate the viewing direction and show that 

silhouettes must not be drawn around the nose of the 

teddy. The example also demonstrates the resistance 

of our method against inaccuracy due to coarse 

discretization of the dataset. The examples confirm 

the robustness of the special case explained in fig. 2 

bottom right. 

Based on the results we found our method to be more 

appealing as the silhouettes appear exactly at the 

positions we expect them to be. Furthermore, since 

the silhouettes initially have a width of one pixel, 

with the extension presented in section 4 the user can 

exactly control the thickness. In figure 9 we show 

how the widths of the silhouettes of the Hydrogen 

Atom dataset alter as the viewer moves closer to the 

object. Since broadening of silhouettes works in 

image-space, silhouettes can be washed out, as their 

density increases, e.g. when the distance of the object 

to the viewer becomes high. 

7. CONCLUSIONS 
In this paper, we have introduced a new methodology 

of silhouette extraction for texture-based volume 

rendering. It serves the purpose of visualizing 

silhouettes with an accurate width of one pixel. In a 

subsequent step, we can optionally broaden 



silhouettes, either by a fixed pixel width, or 

depending on screen-space depth using image-

processing. Our algorithm is in particular insensitive 

to coarse discretization in the dataset. 

Silhouette detection is solved using a new paradigm, 

which combines accuracy at object- and screen-space 

resolution. We can perform silhouette enhancement 

in a subsequent image processing step and illustrate 

even exaggerated thick silhouettes –independently of 

their width at constant, interactive framerates. 

The proposed method helps to illustrate iso-surfaces 

of scientific datasets in a fast fashion, allowing high 

degree of interactivity in rendering and modification 

of iso-values.  
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Figure 5: Engine dataset. Left: Right-angle method. Middle: our method. Right: our method with silhouette enhancement 

 

Figure 6:NegHip dataset. Left: Right-angle method. Middle: our method. Right: our method with silhouette enhancement 

 

Figure 7: From left to right: bonsai tree with right-angle- and our method, same comparison for the skull dataset. We recall 

that the thick silhouette on the lower portion on the bonsai tree on the left is an unintended feature here (see text above). 

  

Figure 8: From left to right: teddy with right-angle- and our method; side view illustrating that silhouettes around the nose 

must not be drawn when the teddy is viewed from front.  

 

Figure 9: Effect of depth-cueing on close-up, exemplified on the Hydrogen Atom dataset. Note the silhouettes becoming 

thicker as the object gets magnified. 


