
GDESK: Game Discrete Event Simulation Kernel

Inmaculada García
Computer Graphics Section

Technical University of Valencia
Camino de Vera S/N

 Spain (46022), Valencia, Valencia

ingarcia@dsic.upv.es

Ramón Mollá
Computer Graphics Section

Technical University of Valencia
Camino de Vera S/N

 Spain (46022), Valencia, Valencia

rmolla@dsic.upv.es

Toni Barella
Computer Graphics Section

Technical University of Valencia
Camino de Vera S/N

 Spain (46022), Valencia, Valencia

tbarella@dsic.upv.esl

ABSTRACT

Simulation has been used traditionally to solve other areas problems. Real time applications like videogames use

typically a continuous simulation scheme. That way of operation has disadvantages that can be avoided using a

discrete event simulator as a game kernel. This paper proposes the integration of a discrete event simulator into

real time applications to control the applications simulation. The use of a discrete methodology avoids disorderly

events execution or the execution of cancelled events. This implies to use events in order to model the system

dynamics, the objects interaction and the objects behavior. GDESK is a discrete event simulator prepared to be

used as a videogame kernel.

Keywords

Videogames, simulation, discrete events, kernel

1. INTRODUCTION

Videogames Simulation Model
Videogames follows a scheme of continuous

simulation that couples rendering phase and

simulation phase [Pau95]. A study of different

videogames has been made, from simple videogames

[Ziron] to complex ones. Among the videogames

studied are Doom v1.1 [Ids][Doom], Quake v2.3

[Quake] and Fly3D [Fly3D][Wat01][Wat03]. They

have been selected because of their importance in the

videogames history or the availability of their source

code.

The videogames main loop has typically three phases

[Pau95]:

1. Test the user interaction.

2. Simulate. Videogame objects use to be included

in a scene graph. The scene graph is used both to

simulate and to render the scene. Simulation is

done traveling the scene graph and asking to

each object if it has something to do. Compute a

time step (tick) of simulation supposes to ask the

scene graph objects for pending simulation

events: movement, shooting,...

3. Render the current scene.

This main loop supposes:

• Videogames use a continuous simulation scheme.

Because the entire scene graph objects are

sampled in a world evolution. Simulation cycle

(time slot) is defined as the time elapsed in a run

of the program main loop (continuous simulator

sampling period).

• Simulation and rendering are highly coupled

(each world evolution always requires a full

world rendering).

That mechanism has disadvantages. The rendering

and simulation coupling disadvantages are:

• The system is not sensitive to times lower than

the sampling period.

• The simulation events are artificially

synchronized to match the sampling period. They

are not executed in the very moment when they

happen.

• The sampling frequency depends on topics that

can change during the game, such as available

computer power, world complexity, other active

tasks in system, network overload or current

simulation and rendering load. So, the sampling

frequency is variable and not predefined.

• A new simulation cycle requires always an entire

world rendering, although the frame can be

shown on the screen or not.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3, ISSN 1213-6972

WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

• Time generating renderings is wasted since many

frames will never be appreciated on screen.

The continuous simulation model disadvantages are:

• All objects in the scene graph are accessed,

although many objects will never generate

events. Some videogames allow to access only to

the active objects. Access through the scene

graph when many objects will never generate

events, is quite inefficient.

• Events are not time ordered. Events are executed

in the order in which the objects management

structure is accessed.

• The objects priority for simulation depends on

the objects situation in the scene graph.

• It is just possible that the simulation be

erroneous because of: the disorderly events

execution and the execution of cancelled events.

• The sampling frequency is the same for all

objects, independently of their requirements: If

objects behaviors do not match Nyquist-Shannon

theorem, they will not be simulated properly,

loosing events, not detecting collisions,... That is

to say, objects will be undersampled. On the

other hand, objects with a very slow behavior

may be oversampled.

Discrete Event Simulation
A real-time graphic application, like a computer

game may be considered a system [Ban01]. As a

system, it can be represented using modeling and

simulation techniques [Ban01][Wai96]. Attending to

the systems classification, based on the way the

system evolves in time [Wai96], a real-time graphic

application could be considered as a hybrid system.

In that, the continuous system evolution in time may

be altered by events not associated to the sampling

period.

Discrete event simulation [Fis78][Ban01][Sch99]

have been used to solve problems consisting on the

system analysis using modeling or to design systems.

Simulation is a skill used to solve other areas

problems such as [Kul03]: military applications,

science and engineering, learning and training and

management. Attempts to integrate simulation

techniques in computer graphics applications have

been made [Lee99][Ter88][Ree83]. But, the

employing of simulation techniques in computer

graphics is restricted to the use of modeling methods

as Petri Nets or queues [Lee99].

A discrete event simulator copes with discrete

systems, continuous system and hybrid systems

[Ban01].

2. OBJECTIVES
The proposal is to use a discrete events simulator as a

computer game kernel in order to achieve the

following objectives:

• Increases the videogame quality:�

• Only those objects that generate events will

be checked, avoiding to access the

remainder objects.

• Events are executed ordered in time. There

is not disorderly events execution.

• Each object defines its own sampling

frequency. It is defined according to the

objects behavior.

• The level of detail of simulation increases:

unnoticed events are now simulated.

• The system is sensible to times lower than

the sampling period, since every object has

its own sampling period.

• Sampling period does not change depending

on topics as the system load or the model

complexity.

• Increase the videogame efficiency:�

• They make a better use of the computer

power. The released power can be used to

get better other game parts (such as game

artificial intelligence or kinematics).

• Games can be executed in machines with

lower power.

• Real-time distributed applications can be run

in machines with different computing power.

3. GDESK ORIGINS: DESK
GDESK is the adaptation of DESK [Gar00] to the

videogame kernel requirements.

DESK is a discrete event simulator kernel. It is a

universal object oriented package developed using

ANSI C++. It may be used both as a fast prototyper

and as a final model descriptor simultaneously.

DESK can simulate whatever model. Although it uses

dynamic memory to avoid computer or compiler

lacks, no penalty in performance is noticed due to a

client pool that avoids unnecessary calls to the

Dynamic Memory Manager (DMM). The main

DESK characteristics are:

• General purpose simulator.

• Powerful enough to manage whatever system.

• Flexible enough to allow fanciful behaviors.

• No restrictions to the simulation model.

• Support to real-time simulation.

• Support to external functions.

• Easy model definition and implementation. The

system model definition must be done defining

the simulation components and their

characteristics.

• Easy debugging and changing.

• Implemented as a C++ library to allow using in

the simulation other C++ libraries.

DESK Structure
The DESK basic entities are:

• Events: model the change of state of a client in

the system.

• Clients: are passive entities that support the

events data structure. They can be created,

destroyed or modified as convenience during the

simulation.

• Service stations: are the elements that give

service to clients during simulation.

Dinamyc Memory
Manager

System

Events

Pool

Events

Events

Events
Events

Dispatcher

Figure 1. DESK structure

The DESK key structures are (figure 1):

• Dispatcher: contains the events that are going to

happen in system, ordered by time.

• Events Pool: each time a new event is necessary

in system, the DMM must be called. When the

events finish its function and leaves the system,

the DMM must be called again to destroy it. This

is inefficient, because the DMM is constantly

being called. In order to minimize the DMM

calls, an events pool is used. The pool is a way to

maintain the events that are not actually in the

system. Events are being created during

simulation. In a given moment, they finish and

leave the system, and then they are inserted in

the pool instead of being destroyed. When a new

event is necessary in the system, the simulator

verifies if there are events in the pool and an

event will be extracted from the pool if the pool

is not empty. The DMM will be called if and

only if there are not available events in the pool.

DESK Suitability for Integration
DESK accomplishes the necessary conditions in a

discrete event simulator to the integration into a

videogame:

• It must have open source code:

• It is necessary to know how the simulator is

implemented in order to know if it is

efficient enough.

• It is necessary to modify the simulator

implementation.

• The discrete event simulator must be

implemented:

• As a library.

• In a general purpose language and

commonly used in the videogames

implementation and widely used by the

scientific community.

• It must support:

• Dynamic data structures.

• OpenGL, DirectX, … �

• Software engineering new technologies.

4. GDESK
GDESK is the adaptation of DESK to be used as

videogames kernel.

Using a discrete event simulator as a simulation

engine for computer games does not imply to change

topics as the structure of the scenes description files

or characters. It does not modify the file parser, the

scene graph, the rendering techniques applied or

videogame style. It only modifies the system events

management and introduces a discrete event scheme.

It only focuses on the videogame events management.

Therefore, it can be applied to any kind of video

game and rendering format (2, 2.5 y 3D).

Objects Interaction
GDESK treats any element that appears in a

computer game as an object, animated or unanimated.

A hierarchy of objects can be established whenever

the programmer defines it. The whole system is a set

of objects generating events. There are two objects

types in a videogame:

• Game components objects: all videogame

functional components must be modeled as

objects generating events. They are the objects

that control the game. Examples of system

objects are console, render, multi-user control or

server control. That category includes the object

that translates the user events into GDESK

events.

• Rendered game objects: avatars, missiles,

walls,...�

All objects in nature interact by means of particles

exchanging. So, objects in GDESK, interact by

means of events exchange. Objects in videogames

interact and evolve using the events generation

mechanism. Both objects types use the same

mechanism. An event in GDESK is modeled by

means of a client that contains the necessary

information to develop an adequate interaction. The

events mechanism in GDESK is similar to the

message passing mechanism.

Events
The system dynamic is controlled by events. Events

model the objects behavior. An object only acts when

an event is produced and sent to it. When the object

receives the event, it can change its behavior and it

can generate other events to other objects or to itself.

The change in the object behavior depends on topics

as the object that generates the event, the event kind

or the event content.

Events uses are:

• Objects communication: when the object A needs

a communication with the object B, A generates

an event addressed to B. The object B could act

or change its behavior as a consequence of the

event arrival. Only the object that receives an

event may generate more events.

• Model the object behavior: an object only acts as

an event arrival consequence. When an object A

must change its own behavior, A generates an

event addressed to itself. As a consequence of an

event arrival from itself, the object A modifies its

state as convenience.

When a projectile collides with a wall, the projectile

generates an event to the wall indicating the collision

in that very moment. This event includes also the

necessary parameters (mass, point of impact,

velocity, projectile kind,...). The wall reacts to the

event, establishing how to change its state (totally or

partially knocked down, to be performed, do

nothing...,). After that, the wall returns an event to the

projectile indicating how the event has modified the

projectile attributes. The projectile will determine

what should do with that new event: to be deformed,

fall to floor, change velocity (module and

direction),… The projectile will not accept this kind

of event if it does not comes from the wall the

projectile has collided with.

As a consequence of event, the behavior of the

receiving object depends on the object transmitter

and the kind of event sent. The receiving object will

determine if it is sensitive to that kind of event

coming from that specific object. If is it so, the object

will determine what kind of behavior is to be

presented. For example, if a small stone collides with

a wall, perhaps the wall attributes will not be affected

with that event (depending on the weight of the

stone). If the projectile is a missile, the wall can

disappear. The same event with different transmitting

object causes different behaviors in the same

receiving object; but also in the transmitter (the bullet

rebounds if the wall is made of concrete and it is

incrusted if the wall is made of clay). Different kinds

of objects have different behaviors.

The number of events generated in an interaction

depends on how programmer models the interaction.

Figure 2 shows another example of objects

interaction using events.

Pool

1. Dog initial state
2. Event A: user event

that indicates the dog

that changes its position

until it reachs the tree

3. Dog final state: it modifies

its position as the event A

consequence

4. The dog releases the

event A

6. Event B: the dog tells

to tree it has interacted

with it

5. The dog request an

empty event (event B) to

the pool

Figure 2. Events generation example

An event needs to include the following information:

• Source object: the object that generate the event.�

• Destination object: the object receiving the event

action.�

• Event time stamp. It is the given time when the

event must happen. It is a relative time. It defines

the time that must pass until the event will be

executed. A value cero in the time stamp

indicates the event is instantaneous, so the event

must happen in the actual time. The object time

does not depend on a local objects clock. The

object works with time intervals. The event time

stamp will be converted to a global simulation

time by the dispatcher.�

• Videogame information: the interaction between

objects or the object behavior modeling needs

some parameters to model that interaction. A

destination object A may behave into different

ways depending on the information associated to

the event sent by the source object B and the

object B itself. Videogame attributes are defined

by the programmer (kind and number), because

the videogames attributes are highly dependent

on the specific videogame. The programmer has

the responsibility to synchronize the data type

with the information required.

Obtain a client (event) from the

pool

Pool

Fill the event parameters

Send the event

Capture the event

Insert the event orderly in queue

Obtain next event from queue (if

event time has been achieved)

Send the event to the destiny object

Receive the event

Act consecuently: change state,

generate events,...

Throw away the event

event

event

Source Object

generates an

event

Dispatcher

Destiny object

receives an event

Figure 3. Event life cycle

Figure 3 show the full event life cycle. An object

wants to interact with other object. So, it generates an

event directed to other object. The event is really

caught by the discrete event simulator dispatcher

(figure 4). The dispatcher stores the event ordered by

time until the event time stamp is reached. At this

moment, the dispatcher processes the preceding

events.

Dispatcher

Event

Event

Event

Pool

Event

request

and

release

Event

request

and

release

Event

request

and

release
Event

request

and

release

Figure 4. Events communication mechanism

GDESK Structure
The main GDESK components are the dispatcher and

the events pool. They are similar to the DESK

structures. The differences are the queue structure to

maintain events ordered and the way the dispatcher

manages the simulation clock to match it with the real

time.

Events

Time Stamp Time Stamp Time Stamp Time Stamp

Event Event Event Event

7 56

1211
10

8 4

2
1

9 3 Simulation

clock

Dispatcher

Figure 5. GDESK dispatcher

The dispatcher (figure 5) manages the videogame

events. It catches the events sent from one object to

another and stores them ordered by time.

The dispatcher synchronizes the videogame objects

events. The videogame object event time is relative.

It defines an interval of time that will pass when the

event will be executed by the dispatcher. The relative

event time is converted to an absolute videogame

time using the global simulator clock. The dispatcher

stores the event ordered by that absolute simulation

time.

Once an event is stored, the dispatcher goes on

working, testing if the first stored event time stamp

has reached the real time. If it is, the dispatcher sends

the event to the destiny object.

The dispatcher main structures are:

• The global simulation absolute clock.

• The structure to store ordered events.

The main difference between a dispatcher in a

traditional discrete event simulator and the dispatcher

in the discrete event simulator integrated into the

videogame kernel is the time management. The time

management in a discrete event simulator does not

take care of real time. The simulator has an internal

clock that evolves each time an event happens. Event

time in videogames must match the real system time.

An event only happens if the event time stamp is

reached and exceeded by the real system time. At this

moment, the simulator clock is modified with the

event time.

The dispatcher uses two clocks:

• The simulation global clock: it is updated each

time an event is processed.

• The real time clock or the system clock: it is used

to test if the events time is reached or

overlapped.

The structure used to maintain events ordered by time

may be a heap, a queue,...

Event

Empty events

Event Event Event EventEvent

Figure 6. GDESK events pool

The events pool (figure 6) is used to store the events

that are not currently in the system. Its function is to

minimize the DMM calls. The objects ask the pool

for empty events. So, there is a direct communication

between the videogame objects and the simulator

pool.

System Dynamics
The system dynamic is shared by the objects and the

dispatcher. Events are passive entities that support the

objects communication. The whole process can be

seen in the figure 7.

Simulation Clock
Continuous system works using a global clock that

defines steps in the simulation process. For each step

the whole system is evolved and rendered (coupling).

The global clock in a continuous system has the

function to define a simulation step to synchronize

objects. But, discrete systems lack from steps for the

system evolution.

In a discrete system, objects act in response to events

received by other objects or by themselves. If an

object is stopped, it has no motion events, although it

can have other pending events (for instance, a

counting down bomb). A moving ball shows a

continuous behavior that has to be sampled matching

the Niquist-Shannon theorem. The ball implements

the sampling frequency (SF) by sending an event to

itself every 1/SF seconds.

Each videogame object step could be constant or

variable depending on the object behavior and other

objects interaction. In this case, the step may be

different for each object. To have a different step for

each object does not suppose necessarily to have a

clock for each object. The dispatcher synchronizes

the objects event time to match with the global

simulation clock. That global clock is modified each

time an event is processed by the dispatcher.

A continuous system is a discrete system where the

steps of all objects are constant and identical

(including the render object). The step value is highly

dependent on the system load and power.

Dispatcher stores the

event ordered by time

Pending events?

Pop-up an event

Send the event to the
destiny object

The object changes its
state

The object generates an

event

Yes

No

The user generates an
event

The user event is

translated to a simulator

event

System objects
initialization: initial events

generation
Objects

simulation

control

Dispatcher

simulation

control

Objects
simulation

control

Sleep until next event

Wake up

Figure 7. System dynamics

5. GDESK INTEGRATION
Any object in a videogame must inherit from the

GDESK basic object entity and to provide it with the

functions to generate events and to be sensitive to the

event arrival:

• Send event function: it takes a previously filled

event and it sends the event to another object

through the dispatcher. The videogame

programmer uses that function as the event

receptor was the destiny object. The simulator

dispatcher will send the event to the destiny

object when the event stamp will reach the real

time.

• Receive event function: it is a virtual function.

That function starts to work when an object

receives an event. As an object only acts as a

consequence of an event arrival, the receive

event function model the change of state and the

object response to an interaction. That function

implementation depends on the videogame

programmer. The function implementation

models the object behavior using the events

mechanism. That function is used each time an

objects interaction is needed.

6. THE RENDERING PROCESS

USING GDESK
GDESK allows the independence of the simulation

process from the rendering process (simulation phase

and rendering phase decoupling). If simulation and

rendering are decoupled, scenes are rendered more

quickly even when the higher-level animation

computations become complex [Sha92]. This

decoupling increases system performance [Dar95].

The render process is controlled by the render object.

The render object is similar to other videogame

objects. It models its behavior using the event

generation mechanism, so the rendering process must

be started using an event. When a render event is

generated the frame render is started.

In the system initialization, an event is sent to the

render object. That event starts the render

mechanism. Once that initial event is generated, the

render object has an autonomous behavior. When the

render object receives an event:

• The render object renders a frame.

• Once the frame N is rendered, the render object

sends an event to itself in order to perform the

next frame rendering (N+1). The render object

generates an event addressed to itself. The event

time is the time interval until the next frame

render. So, the render object will receive an

event from himself once the event time will pass.

The render object must decide the very moment to

generate a new render event, that is, the time when a

new frame is calculated. The screen refresh rate

depends on the number of events generated by the

render object.

The screen refresh rate can be fixed to the videogame

needs. The screen refresh rate is defined by the

videogame programmer:

• It can be defined by the programmer to have a

screen refresh rate constant during all videogame

execution. The render object events time stamp

is a constant value previously defined.

• It can be an “adaptable rendering”. The

programmer defines a mechanism to change the

render object events time stamp depending on

topics as the system load. That process is fully

defined by the programmer. So, that process

allows the videogame to adapt the render process

dynamically to the videogame characteristics.

Although the render process is fully defined and

controlled by the programmer, the render object

objectives must be:

• To generate only as many renders as screen

refreshes. If the number of frames generated is

higher, the computer power is wasted.

• The given moment of event generation must

allow to render a frame before the next screen

refresh. That supposes to show always the latest

frame.

Discrete decoupled system can avoid unnecessary

renderings in systems with low computer power

(simulation time and render time is bigger than the

refresh interval). The render object can decide to

generate a render event in a refresh interval if it

knows that there is a possibility that the frame will be

shown in the screen. Alternatively, it can decide to

put off the render to the next refresh interval and go

on simulating.

The render object is a common videogame object.

The event generation mechanism is similar to other

videogame objects. It only uses that mechanism to

model its behavior. But, that mechanism could be

used to interact with other videogame objects, in

order to adapt the system to more complex rendering

behaviors.

7. CONCLUSIONS
Current videogames follow a scheme of simulation

phase and rendering phase coupling. They use a

continuous simulation model. That way of operation

is inefficient and may produce erroneous simulations.

Using a discrete event simulation paradigm, those

problems can be avoided. That paradigm can be

achieved using a discrete event simulator as a

videogame kernel. GDESK is the adaptation of

DESK (discrete event simulation kernel) to

videogames kernel. GDESK allows the complete

system to work using discrete events. The videogame

is a set of objects interchanging events. The events

are managed by the GDESK dispatcher. It executes

the events ordered in time. The GDESK integration

into a videogame produces the change of the

videogame simulation paradigm. That produces a

more accurate simulation and saves computing power

due to the saves of unnecessary renderings.

8. ACKNOWLEDGEMENTS
This work has been funded by the Generalitat

Valenciana OCYT CTIDIB/2002/344.

9. REFERENCES
[Ban01] J. Banks, J.S. Carson II, B.L. Nelson, D.M.

Nicol. Discrete-Event System Simulation.

(Prentice Hall, 2001).

[Dar95] R. Darken, C. Tonnesen, K. Passarella. The

Bridge Between Developers and Virtual

Environments: a Robust Virtual Environment

System Architecture. Proceedings of SPIE 1995,

No. 2409-30

[Doom] Doom World. http://doomworld.com/

[Fis78] G.S. Fishman, Conceptos y Métodos en la

Simulación Digital de Eventos Discretos,

(Limusa 1978).

[Fly3D] FLY3D Main Page. http://www.fly3d.com.br

[Gar00] García, I. Mollá, R. Ramos, E. Fernandez,

M. D.E.S.K. Discrete Events Simulation Kernel.

Eccomas conf.proc. 2000

[Ids] Idsoftware Page.

www.idsoftware.com/archives/doomarc.html

[Kul03] J. Kuljis, R.J. Paul, Web-based discrete

event simulation models: current status and

possible futures, Simulation and gaming. v.34

no.1. (2003).

[Lee99] G.S. Lee, Towards an integration of

computer simulation with computer graphics.

Proceedings of the Western Computer Graphics

Symposium. (1999).

[Pau95] R. Pausch, T. Burnette, A.C. Capehart, M.

Conway, D. Cosgrove, R. DeLine, J. Durbin, R.

Gossweiler, S. Koga J. White. A Brief

Architectural Overview of Alice, a Rapid

Prototyping System for Virtual Environments.

IEEE Computer Graphics and Applications,

1995.

[Quake] Quake Developers Page.

www.gamers.org/dEngine/quake/

[Ree83] W. T. Reeves. Particle systems: A technique

for modeling a class of fuzzy objects. In

Computer Graphics, pages 59–376. ACM

Siggraph, July 1983

[Sch99] T.J. Schriber, D.T. Brunner. Inside discrete-

event simulation software: how it works and why

it matters. Winter Simulation Conference. 1999.

[Sha92] C. Shaw, J. Liang, M. Green, Y. Sun The

Decoupled Simulation Model for Virtual Reality

Systems. CHI'92, May 1992, pp. 321-328.

[Ter88] D. Terzopoulos, A. Witkin, Physically Based

Models with Rigid and Deformable Components.

IEEE Computer Graphics and Applications, p.

41-51. (1988).

[Wai96] G.A. Wainer. Introducción a la Simulación

de Sistemas de Eventos Discretos. Technical

Report: 96-005. Buenos Aires University.

[Wat01] A. Watt, F. Policarpo. 3D Computer Games

Technology: Real-Time Rendering and Software.

Addison-Welsey. 2001.

[Wat03] A. Watt, F. Policarpo. 3D Computer Games.

Addison-Welsey. 2003.

[Ziron] Ziron Page. http://www.ziron.com/links/

