
Light Vectors for a Moving Observer
Rodolphe Crespin Bernard Péroche

L.I.R.I.S : Lyon Research Center for Images and Intelligent Information Systems
CNRS / INSA de Lyon / Université Lyon 1 / Université Lyon 2 / Ecole Centrale de Lyon

Bâtiment Nautibus, 8 boulevard Niels Bohr
69622 Villeurbanne Cedex, FRANCE

rodolphe.crespin@liris.cnrs.fr bernard.peroche@liris.cnrs.fr

ABSTRACT
Interactive rendering is usually made with very simple illumination models. High quality rendering is too slow to

be interactive. In this paper, we extend the notion of light vector by computing it in 5D and we try to obtain an
interactive high quality rendering with global illumination by merging the notion of light vector with the render
cache approach.

Keywords
Global Illumination, Ray Tracing, Image Based Rendering, Interactive Rendering.

1 INTRODUCTION
In computer graphics, rendering is the final stage that
computes pixels’ color. Rendering has been greatly
studied since the sixties’ end; depending on the ap-
plication domain, it can be classified in the categories
wich follow:

• Interactive rendering is the most used technique
and is generally based on graphic cards abilities
and on a polygonal representation of the scene
to allow realtime rendering. A high quality of
generated images can be reached by using tex-
tures (environment mapping [BN76], bump map-
ping [Per85, Bli78], mapping [SA99], . . .). How-
ever, for a few years, ray tracing based techniques
have allowed interactive times on classical com-
puters using databases with several millions of
polygons [WBS+02].

• Photorealistic rendering tries to simulate light
and its behavior with materials. This simulation
allows effects such as refraction, shadows, inter-
reflections, caustics, spectral phenomena, . . .
For the last fifteen years, a lot of solutions have
been suggested in order to obtain this kind of pic-
ture: ray tracing [Whi80], path tracing [Kaj86],

Permission to make digital or hard copies of all part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3., ISSN 1213-6972
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

bidirectional ray tracing [VG94, LW93], radios-
ity [SP94], photon maps [Jen96, JC98], light vec-
tors [ZP98], . . . All these methods have a com-
mon drawback: computation is very expensive
and takes a lot of time (from several minutes to
several hours for one picture).

• Non-photorealistic rendering has appeared more
recently and took an interest in the artistic expres-
siveness; it seeks to simulate artistic techniques
such as engraving [Ost99], painting [Lit97] (im-
pressionism [Lit97], water color [CAS+97], . . .),
technical drawing [TDM99], . . .

These different types of rendering are not exclusive.
Actually, interactive rendering is to become more
and more realistic with the use of graphic cards po-
tential, using methods like multi-texturing [SA99],
graphic engines [LKM01] or pixel shaders [SA99].
Further propositions [DDM03] have been done to
accelerate photorealistic rendering: For example,
such techniques are caching based methods [LS99,
BDT99, WDP99] or hardware optimization based
methods [WBS+02].

The goal of this work is to compute photorealistic im-
ages in a nearly interactive time. In order to obtain
such a result, two rather different approaches have
been combined: the render cache’s approach and light
vectors. However, the concept of light vector was ini-
tially introduced for static scenes with a fixed view-
point. To overcome these limitations, we suggest to
extend light vectors to 5D, by introducing a caching
method for directions in addition to the spatial caching
method defined by the original concept.

The structure of the paper is made up by five sections:
Section 2 introduces the concepts on which our work
is based. Section 3 presents our extension of light vec-
tors. Some validity criteria for performing light vec-
tors interpolation and for computing the priority of a
pixel in the render cache approach are given in Sec-
tion 4. Some results are described in Section 5. A
conclusion and future work are discussed in Section 6.

2 PREVIOUS WORK
In this section, we will present the main concepts on
which our work is based: light vectors and the render
cache.

The Notion of Light Vector
2.1.1 Introduction
A light vector (LV) is a concept introduced by
Zaninetti et al.[ZP98], based on the work of
Ward[WRC88, WH92]. Its main purpose is to catch
radiances as vectors in a buffer. So, instead of com-
puting radiance at each point, the already computed
light vectors may be interpolated (if some criteria
are fulfilled) to produce a new light vector, from
which the radiance at the given point can be deduced.
Actually, it comes down to replace the complete scene
at a given point with a virtual light source; thus, a
light vector is defined by a direction −→D , calculated
with equation (2), and a magnitude M , calculated
with equation (3).

Equation (1), based on Kajiya’s one [Kaj86], shows
that the radiance reflected at point x of the scene in a
direction −→ωr depends on the incident radiances Li ac-
cording to all possible directions −→ωi, on the BRDF
associated to directions −→ωi and −→ωr and on emitted ra-
diance when the object is a light source.

Lr(x,−→ωr) = Le(x,−→ωr) (1)

+

∫

Ωi

fr(x,−→ωi → −→ωr)Li(x,−→ωi) cos θidωi

The light vector’s components can be defined from
equation (1) by:

−→
D =

∫

Ωi

Li(x,−→ωi)−→ωidσ(−→ωi) (2)

M =

∫
Ωi
fr(x,−→ωi → −→ωr)Li(x,−→ωi) cos θidωi

fr(x,
−→
D → −→ωr) cos(−→n ,−→D)

(3)

where dσ(−→ωi) is the solid angle associated to the inci-
dence direction −→ωi.
We may notice that the presence of the BRDF in

equation (3) introduces a viewpoint dependence.
Equation (1) may be decomposed into five indepen-
dent components:

Lr(x,−→ωr) = Le(x,−→ωr) + Lspec(x,−→ωr)
+Ldir(x,−→ωr) + Lind(x,−→ωr) + Lcaust(x,−→ωr) (4)

where Le(x,−→ωr) is the emitted radiance, Lspec(x,−→ωr)
the specular component, Ldir(x,−→ωr) the direct one,
Lind(x,−→ωr) the indirect one and Lcaust(x,−→ωr) the
caustic component.
This decomposition allows to be specific to each com-
ponent. Actually, the components have not the same
behavior. For example, the indirect irradiance changes
slowly whereas the direct one has more important
variations, with possible discontinuities. Thus, the
treatment can be optimized for each component.
If Le(x,−→ωr) exists, it is defined by the properties of
the object. Lspec(x,−→ωr) has too many variations, the
interpolation will fail; its value is computed with the
ray tracer.

The remaining three radiance components lead to three
types of light vectors:

• direct light vectors (DLV), for radiance coming
directly from the light sources;

• indirect light vectors (ILV), for radiance arriving
at a point after at least one non specular reflection
on an object;

• caustic light vectors (CLV), for radiance coming
to a non specular object after at least an interac-
tion with a non Lambertian surface.

Figure 1 illustrates this decomposition.

Computing indirect radiance is very expensive (in
general, a Monte-Carlo method is used). Thus, we
chose to work on indirect radiance in order to test
our method. Of course, the independence between the
three components allows our method to be applied to
the two other radiance components.

2.1.2 The Algorithm
The classical ray tracing algorithm [Whi80] is used for
computing the components of Equation (4) that do not
lead to a light vector computation.
A light vector’s seed has to be computed during the al-
gorithm’s initialization. As pixels are scan-line com-
puted, a systematic bias would be introduced if the
computation was done only in the scan-line order. The
problem can be avoided by using a random seed.

A sketch of the algorithm for the computation of a pic-
ture with light vectors is shown in Figure 2.

x

L_caustL_dir

Light Source

Specular Material

L_ind L_caust

Figure 1: Radiance Components

Create the seed
For each pixel do
Generate a primary ray
Intersect this primary ray with the scene
If an object is intersected then
Compute the nearest intersection point x
If there is no computed LV at point x then
Seek for LVs in the neighbourhood of x
If the number of LVs is greater than a threshold
And If criteria are fulfilled then
Interpolate these LVs
End If

Else Compute a LV at point x
End If

Compute radiance at point x
End For

Figure 2: Image computation algorithm with LVs

2.1.3 The Case of ILVs
If the space of directions is discretized, the indirect
part of the rendering equation can be written:

Lind(x,−→ωr) ≈ 2π

MN

M−1∑

j=0

N−1∑

k=0

[ρd(x,−−→ωj,k → −→ωr)

Li(x, θj , φk) cos θj] (5)

where M and N are the number of azimuthal and
zenithal regular splittings of the hemisphere centered
at point x, θj and φk are the angles defining vector
−−→ωj,k and ρd represents the diffuse part of the BRDF.
A random ray is shot through each cell to gather
coming in energy. After having recovered diffuse
information for each cell, the average radiance magni-
tude M0 emitted by point x can be computed, which

gives the fields of the ILV.

Each light vector is related to a location and a view-
point. We will study how to overcome this limitation
in Section 3 by extending light vectors to 5D.

During the evaluation of equation (5), an irradiance
gradient ∆I , inspired by Ward’s gradient[WH92],
may be computed. Let I(x) be the irradiance at point
x.

I(x) =

∫

Ωi

Li(x,−→ωi) cos θidωi

Let us discretize this irradiance equation and derive it
in a neighborhood of the point where an ILV has been
computed. If we denote d = x, y or z, then:

∂I

∂d
=

2π

MN

M−1∑

j=0

N−1∑

k=0

[
∂(Li(θj , φk) cos θj)

∂d

]

=
2π

MN

M−1∑

j=0

N−1∑

k=0

[
∂Li(θj , φk)

∂d
cos θj

+Li(θj , φk)
∂ cos θj
∂d

]

As the term ∂Li(θj ,φk)
∂d is not computable (because of

recursivity), the displacement in the neighborhood of
point x is supposed to be small enough to assume that
∂Li(θj ,φk)

∂d = 0. So, we obtain:

∂I

∂d
≈ 2π

MN

M−1∑

j=0

N−1∑

k=0

−Li(θj , φk) sin θj
∂θj
∂d

(6)

This gradient is not mathematically exact, but it shows
the perturbation degree of the region taken into ac-
count. It will be used during the computation of the
criteria of an ILV, in Section 4.2.

The Render Cache
The render cache [WDP99] is an Image Based Ren-
dering method [Kan99] that considers the picture as a
radiance buffer.

All pictures are computed using a reprojection of
the former picture, except the first one that must be
fully computed. The render cache can work with any
graphic engine that can compute individual pixels. In
our work, a ray tracer has been used as in the original
method. The render cache architecture is shown in

Asynchronous

GUI
Edit objects

Edit viewpoint

Render Cache

Depth Culling

Reprojection

Interpolation
Sampling

Display

Sample requests

Editions

Editions

Pixels

Ray Tracer

Global illumination

Communications

Pixels

Figure 3: Structure and interface of the render
cache

Figure 3, with asynchronous interactions between the
render cache and a ray tracer.

Orders are sent to the interface if a change is per-
formed. For example, if a user viewpoint modification
occurs, it is sent from the interface (named GUI in
Figure 3) to the render cache that uses the former
picture to compute the new one.
First, the former picture is reprojected with the
current viewpoint parameters, then a depth culling
is performed to remove occluded or doubly mapped
pixels. Simultaneously, a priority image is built.
After a thresholding and an error diffusion, the
priority image is used to choose the samples for which
a request to the ray tracer will be sent. This image
allows to recompute a limited number of pixels by
choosing the most relevant ones. The render cache
loops while waiting new editions; if there is none, the
image is gradually fully computed. Interactivity is
privileged in relation to quality, but with quality loss.
Actually, the number of pixels recomputed between
two displays depends on the power of the computer
used; this number is usually low. The new image
obtained by reprojection and calculation of a limited
number of pixels can have artifacts. For further infor-
mation, see Walter et al.’s papers [WDP99] [WDG02].

In this work, we have used the render cache approach
in order to try to reach an interactive rate for high qual-
ity images. But instead of sending requests about indi-

vidual pixels, we will use indirect light vectors (ILV)
as a kind of hierarchical caching. If some criteria are
fulfilled, then a simple vectorial interpolation will al-
low to compute several pixels in some area of the pic-
ture, either to a decrease of the time needed to compute
the required pixels or to a recomputation of more pix-
els.

3 MULTI-DIRECTIONAL
EXTENSION OF ILVS

In this section, we will propose a dynamic extension
of indirect light vectors.

Motivations
Initially, a light vector was related to an observer
location. In the dynamic case, where the viewpoint
can move, an extension of the light vector is needed.
The idea is to make a double caching method: one
for point locations and one for directions. Thus the
computation of an ILV will be performed by doing
a spatial interpolation and a directional one. This
means that an initial set of predefined directions will
be given, in addition to the initial seed of points
introduced for light vectors.

KD-Tree×Icosahedron Approach
The double caching method allows to split spatial and
directional components in order to optimize storage
and search.
The spatial component, which deals with point loca-
tions, is stored in a 3d-tree [Ben90].
The directional component is stored in a recursive
icosahedron. This regular polyhedron is inscribed in
the unit sphere and has 20 triangular faces. Each face
stores the indirect light vectors going through the solid
angle substained by the triangle. If a given threshold is
reached by the number of VEIs stored on a face, then
this face is replaced by four new faces, by creating the
points corresponding to the middle of each edge on the
sphere, as shown on Figure 4.

Results
To test this structure, a set of experiments has been
performed. Search neighborhood queries have been
done with several sets of directions and locations, first
by fixing the number of directions, then by fixing the
number of points and finally by varying both parame-
ters.
The number of directions was tested up to 1000 and
the number of points up to 100 000.
The execution time of the queries is nearly indepen-
dent of the number of points; it takes between 10 and

Figure 4: Subdivision of a face of the icosahedron

15 milliseconds per query. This phenomena can be ex-
plained by the small depth of the structure’s levels.

4 VALIDITY CRITERIA
For both the render cache and the ILV s, a cache is
used to avoid useless computations. Nevertheless, va-
lidity criteria are needed to know when the caches can
be used without leading to inaccurate computations.
In this section, we will first remind the heuristic crite-
ria suggested for the render cache and for the ILV s.
Then some criteria suitable for our new approach will
be introduced, together with a new priority for a 5D
ILV .

Criteria For The Render Cache
In Walter et al.’s original paper [WDP99], the main
criterion used to determine the priority of a pixel is its
age. Actually, the older the pixel is, the more it has
the chance to be erroneous. An error diffusion algo-
rithm [FS76] is used to propagate priorities and there-
fore to obtain a kind of smoothing.
The priority of a point missing in the cache is com-
puted during the interpolation process and depends on
the number of points re-projected in its neighborhood;
the fewer points there are, the higher the priority is.
Thus, reduced size zones can be focused to avoid in-
sulated erroneous pixels, because the eye is really per-
ceptible to high frequencies.

Criteria For ILVS
4.2.1 Spatial Criteria

To be valid at point A, an ILV computed at point B
must satisfy the following conditions:

• ‖−−→AB‖ is less than the average distance davgB be-
tween B and the other objects of the scene (this

is to avoid light escape by adapting the size of the
validity area).

• The changed value of irradiance must be lower
than a preset threshold IB (this is to allow a cer-
tain control on the smoothing produced by the in-
terpolation).

• The surface curvature must be lower than a fixed
threshold Scurve (this is due to the fact that only
the front surface part is used and the rear part
can have a very different radiance from the front
part).

If a ILV is valid, it is weighted according to the fol-
lowing formula:

wB =

(
1− ‖

−−→
AB‖
davgB

)
.

1

1 + ‖
−−→
AB‖.∆E
EB

.
cos(
−→
NA,
−→
NB)− Scurv

1− Scurv
We may notice that the spatial weights will be normal-
ized during interpolation.

4.2.2 Directional Criteria
While computing radiance at point x for a direction
−→ω , the face of the recursive icosahedron associated to
−→ω is searched. The valid directions are chosen among
those linked to this face.
An ILV computed for a direction −→σ is valid for a di-
rection −→ω if the difference between −→σ and−→ω is lower
than an arbitrary threshold Sdir. This threshold allows
to define a directional weight wσ = cos(−→ω ,−→σ)−Sdir

1−Sdir
for direction −→σ . As for the spatial case, these weights
will be normalized during interpolation.

4.2.3 Global Criteria
Let A be a point where a 5D ILV is needed for a di-
rection −→ω . If a 5D ILV has already been computed
at some point B for a direction −→σ and if both the spa-
tial and directional criteria of the ILV are valid, then
a global weight w is computed for this ILV . Its value
is the product of the spatial weight associated to point
B with the directional weight linked to direction −→σ .
Notice that 0 ≤ w ≤ 1 and that the interpolation is
more accurate if w is close to 1. If the number of valid
ILV s is less than a given threshold, then a new ILV
is computed at point A for direction −→ω (and stored in
the data structure). Otherwise, an ILV is computed by
doing a normalized weighted interpolation of the valid
ILV s found in the data structure.

Priority of a 5D ILV
We define a priority for a given pixel in the following
way: during the interpolation process leading to a new
ILV , a weight W is associated to this ILV by com-
puting a normalized average of the weights of all the
ILV s taken into account for the interpolation. Then, if
W is not null, the priority associated to the given pixel
is its priority for the render cache times 1/W . This
means that a low value of W increases the priority of
the pixel for the ray tracer. If W is null, the priority is
set to a high value to force the recomputation during
the sampling process.

5 RESULTS
Our implementation has been done on a personal
computer with an Athlon 1.2GHz, 512 Mo and no
graphic acceleration. Images have been computed
with a 512x512 resolution for the following scenes:
Scene A: Cornell Box 1. It is a room containing
two parallelepipeds made of diffuse materials and a
spherical light source.
Scene B: Cornell Box 2. It is the same scene as
scene A, but one of the parallelepipeds is made of a
transparent material.
Scene C: Sphere Flake level 1. It is a recursive
union of 10 transparent spheres (taken from the NFF
library[Hai87]) in a room with an area light source.
Scene D: Sphere Flake level 3. It is the same scene as
scene C, but with a higher level of recursion. There
are 820 spheres.

A global illumination ray tracer was used during our
tests. We compare rendering times for the ray tracer
alone (RT), the ray tracer with the render cache (RT
+ RC) and the ray tracer with our method (RC + 5D
ILV). Only the view point is currently moving.
As it can be seen in Table 1, time savings of around
66%, 55%, 34%, 25% are obtained for the scnes A,
B, C and respectively D. comparing to the use of the
render cache alone.

There are around 21000 pixels (8% of the picture) to
be recomputed by the render cache.

Artifacts related to the render cache remain present
(see the black pixels in the top of the images, which
correspond to pixels not seen in the former picture).

6 CONCLUSION AND FURTHER DE-
VELOPMENTS

The method presented in this paper is based on the
combination of the render cache (whose purpose is
interactivity) and of light vectors (designed for photo-
realistic rendering). The results shown in this paper are

RT RT + RC 5DVEI
+ RC

Cornell Box 1
1st picture 46” 46” 47”
next ones 46” 13” 4.4”
Cornell Box 2
1st picture 3’20” 3’20” 3’21”
next ones 3’20” 11” 4.96”
Sphere Flake 1
1st picture 8’6” 8’6” 8’7”
next ones 8’6” 16.2” 10.7”
Sphere Flake 2
1st picture 20’29” 20’29” 20’31”
next ones 20’29” 20.3” 15.4”

Table 1: Comparison of the methods

preliminary. They appear to be really promising, and
we plan to make further work on this topic in order
to extend and improve the method, as the objective of
photo-realism in interactive time has not been reached
yet.
In particular, we would intend to do more work on the
following themes:

• extension of the method to caustic and direct light
vectors;

• improvement of the definition of the priority used
for the pixels;

• replacement of the render cache by the shading
cache[TPWG02];

• presence of moving objects.

References
[BDT99] Kavita Bala, Julie Dorsey, and Seth Teller. In-

teractive ray traced scene editing using ray seg-
ment tree. In Dani Lischinski and Greg Ward
Larson, editors, Rendering Techniques ’99, Eu-
rographics, pages 31–44. Springer-Verlag Wien
New York, 1999.

[Ben90] J. L. Bentley. K-d trees for semidynamic point
sets. In ACM-SIGACT ACM-SIGGRAPH, ed-
itor, Proceedings of the 6th Annual Sympo-
sium on Computational Geometry (SCG ’90),
pages 187–197, Berkeley, CA, June 1990. ACM
Press.

[Bli78] J. F. Blinn. Simulation of wrinkled surfaces. In
Computer Graphics (SIGGRAPH ’78 Proceed-
ings), volume 12, pages 286–292, August 1978.

[BN76] James F. Blinn and Martin E. Newell. Texture
and reflection in computer generated images.
Communications of the ACM, 19(10):542–547,
October 1976.

[CAS+97] Cassidy J. Curtis, Sean E. Anderson, Joshua E.
Seims, Kurt W. Fleischer, and David H. Salesin.
Computer-generated watercolor. Computer
Graphics, 31(Annual Conference Series):421–
430, August 1997.

[DDM03] Cyrille Damez, Kirill Dmitriev, and Karol
Myszkowski. State of the art in global illu-
mination for interactive applications and high-
quality animations. Computer Graphics Forum,
22(1):55–77, March 2003.

[FS76] R. W. Floyd and L. Steinberg. An adaptive al-
gorithm for spatial grey scale. Proc. Soc. Inf.
Display, 17:75–77, 1976.

[Hai87] Eric A. Haines. A proposal for standard graph-
ics environments. IEEE Computer Graphics
and Applications, 7(11):3–5, November 1987.
also in SIGGRAPH ’87, ’88, ’89 Introduction
to Ray Tracing course notes, code available via
FTP from princeton.edu:/pub/Graphics.

[JC98] Henrik Wann Jensen and Per H. Christensen.
Efficient simulation of light transport in scenes
with participating media using photon maps.
In Michael Cohen, editor, Proceedings of SIG-
GRAPH 98, Annual Conference Series, Addi-
son Wesley, pages 311–320, 1998.

[Jen96] Henrik Wann Jensen. Global illumination us-
ing photon maps. In Xavier Pueyo and Peter
Schröder, editors, Eurographics Workshop on
Rendering, pages 21–30, New York City, NY,
June 1996. Eurographics, Springer Wien. ISBN
3-211-82883-4.

[Kaj86] James T. Kajiya. The rendering equation. Com-
puter Graphics, 20(4):143–150, August 1986.

[Kan99] Sing Bing Kang. A survey of image-based ren-
dering techniques. In Videometrics VI Proceed-
ings, volume 3641, pages 2–16. SPIE, 1999.

[Lit97] Peter Litwinowicz. Processing images and
video for an impressionist effect. Computer
Graphics, 31(Annual Conference Series):407–
414, August 1997.

[LKM01] Erik Lindholm, Mark J. Kilgard, and Henry
Moreton. A user-programmable vertex engine.
In Eugene Fiume, editor, SIGGRAPH 2001,
Computer Graphics Proceedings, volume 35
of Annual Conference Series, pages 149–158.
ACM Press / ACM SIGGRAPH, 2001.

[LS99] Gregory Ward Larson and Maryann Simmons.
The Holodeck interactive ray cache. In ACM,
editor, SIGGRAPH 99. Proceedings of the 1999
SIGGRAPH annual conference: Conference
abstracts and applications, Computer Graph-
ics, pages 246–246, New York, NY 10036,
USA, 1999. ACM Press.

[LW93] Eric P. Lafortune and Yves D. Willems. Bi-
directional Path Tracing. In H. P. Santo, editor,
Proceedings of Third International Conference
on Computational Graphics and Visualization
Techniques (Compugraphics ’93), pages 145–
153, Alvor, Portugal, December 1993.

[Ost99] Victor Ostromoukhov. Digital facial engrav-
ing. In Alyn Rockwood, editor, Siggraph 1999,
Computer graphics Proceedings, volume 33
of Annual Conference Series, pages 417–424.
ACM Siggraph, Los Angeles, 1999.

[Per85] K. Perlin. An image synthesizer. In B. A.
Barsky, editor, SIGGRAPH ’85 Proceedings,
volume 19, pages 287–296, July 1985.

[SA99] Mark Segal and Kurt Akeley. The opengl graph-
ics system: A specification (revision 1.2.1),
1999.

[SP94] Francois Sillion and Claude Puech. Radiosity
and Global Illumination. Morgan Kaufmann,
San Francisco, CA, 1994.

[TDM99] Osama Tolba, Julie Dorsey, and Leonard
McMillan. Sketching with projective 2D
strokes. In Proceedings of the ACM Sympo-
sium on User Interface Software and Technol-
ogy, Novel Output, pages 149–157, 1999.

[TPWG02] Parag Tole, Fabio Pellacini, Bruce Walter, and
Donald P. Greenberg. Interactive global illumi-
nation in dynamic scenes. ACM Transactions
on Graphics, 21(3):537–546, July 2002.

[VG94] Eric Veach and Leonidas Guibas. Bidirectional
Estimators for Light Transport. In Fifth Euro-
graphics Workshop on Rendering, pages 147–
162, Darmstadt, Germany, June 1994.

[WBS+02] Ingo Wald, Carsten Benthin, Philipp Slusallek,
Thomas Kollig, and Alexander Keller. Interac-
tive global illumination using fast ray tracing. In
Simon Gibson and Paul Debevec, editors, Pro-
ceedings of the 13th Eurographics Workshop on
Rendering (RENDERING TECHNIQUES-02),
pages 15–24, Aire-la-Ville, Switzerland, June
26–28 2002. Eurographics Association.

[WDG02] Bruce Walter, George Drettakis, and Donald P.
Greenberg. Enhancing and optimizing the ren-
der cache. In Simon Gibson and Paul De-
bevec, editors, Proceedings of the 13th Euro-
graphics Workshop on Rendering (RENDER-
ING TECHNIQUES-02), pages 37–42, Aire-la-
Ville, Switzerland, June 26–28 2002. Euro-
graphics Association.

[WDP99] Bruce Walter, George Drettakis, and Steven
Parker. Interactive rendering using render
cache. In Dani Lischinski and Greg Ward Lar-
son, editors, Rendering Techniques ’99, Euro-
graphics, pages 19–30. Springer-Verlag Wien
New York, 1999.

[WH92] Gregory J. Ward and Paul Heckbert. Irradi-
ance gradients. Third Eurographics Workshop
on Rendering, pages 85–98, May 1992.

[Whi80] Turner Whitted. An improved illumination
model for shaded display. In Communications
of the ACM, volume 23, pages 349–349, 1980.

[WRC88] G. J. Ward, F. M. Rubinstein, and R. D. Clear.
A ray tracing solution for diffuse interreflec-
tion. Computer Graphics, 22(4):85–92, August
1988.

[ZP98] Jacques Zaninetti and Bernard Péroche. A vec-
tor model for global illumination in ray tracing.
In Vaclav Skala, editor, WSCG ’98 (Sixth Eu-
ropean Conference in Central Europe on Com-
puter Graphics and Visualization), pages 448–
455, Plzen, Czech Republic, 1998. University
of West Bohemia.

Figure 5: Cornell Box 1 : ray tracing (RT)

Figure 6: Sphere Flake L1 : ray tracing (RT)

Figure 7: Sphere Flake L3 : RT

Figure 8: Cornell Box 1 : 5D ILV + RC

Figure 9: Sphere Flake L1 : 5D ILV + RC

Figure 10: Sphere Flake L3 : 5D ILV + RC

