
Efficient Generation of Triangle Strips
from Triangulated Meshes

Oliver Matias van Kaick Murilo Vicente Gonçalves da Silva Hélio Pedrini
Department of Computer Science

Federal University of Paraná
81531-990 Curitiba-PR, Brazil

{oliver, murilo, helio}@inf.ufpr.br

ABSTRACT

This paper presents a fast algorithm for generating triangle strips from triangulated meshes, providing a compact

representation suitable for transmission and rendering of the models. A data structure that allows efficient triangle

strip generation is also described. The method is based on simple heuristics, significantly reducing the number

of vertices used to describe the triangulated models. We demonstrate the effectiveness and speed of our method

comparing it against the best available program.

Keywords
Triangle strips, mesh representation, rendering

1. INTRODUCTION

A crucial task in several scientific applications is the

development of methods for storing, manipulating,

and rendering large volumes of data efficiently. Un-

less compression methods or data reduction are used,

massive data sets cannot be analyzed or visualized in

real time.

Polygonal surfaces are probably the most widely used

representations for geometric models, since they are

flexible and supported by the majority of modeling

and rendering packages. A polygonal surface is a

piecewise-linear surface defined by a set of polygons,

typically a set of triangles.

A common encoding scheme is based on triangle

strips, which enumerates the mesh elements in a se-

quence of adjacent triangles to avoid repeating the

vertex coordinates of shared edges. Triangle strips

are supported by several graphics libraries, including

IGL [Cassi91], PHIGS [ISO89], Inventor [Werne94],

and OpenGL [Neide93].

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3., ISSN 1213-6972

WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.

Copyright UNION Agency - Science Press

The set of triangles shown in Figure 1(a) can be de-

scribed using the vertex sequence (1, 2, 3, 4, 5, 6, 7),
where the triangle ti is described by the vertices vi,

vi+1, and vi+2 in this sequence. Such triangle strip is

referred to as a sequential triangle strip 1, in which the

shared edges follow alternating left and right turns. A

sequential triangle strip allows rendering of t triangles

with only t + 2 vertices instead of 3t vertices. This

improves rendering, since its bottleneck is the vertex

sending [Chow97].

A more general form of strips is given by general-

ized triangle strips 2 (for simplicity, triangle strips),

where we do not have an alternating left/right turn, but

each new vertex may correspond either to a left turn

or to a right turn in the pattern (Figure 1(b)). To repre-

sent such triangle sequence with generalized triangle

strips, the two vertices of the previous triangle can

be swapped, and the sequence of vertices would be

(1, 2, 3, 4, 5, swap, 6, 7). This scheme is used in IGL.

A swap can also be seen as the repetition of a vertex

when two successive turns have the same orientation,

as used in OpenGL. Thus, the triangle sequence in

Figure 1(b) can be represented as (1, 2, 3, 4, 5, 4, 6, 7).
Note that the zero-area triangle ∆4,5,4 is simulating

the swap.

A crucial problem is to obtain the minimal partition

of a mesh into triangle strips. It is equivalent to the

Hamiltonian path problem in the dual graph of the tri-

angulation (that is NP-hard).

1It is called pure sequential tristrip in [Estko02].
2It is called sequential tristrip or sequential tristrip with swap

in [Estko02].

2

7

6

1

2 4 6

3 5 7

4

1 3 5
(a) (b)

3

2 4

1

7 6

5

(c)

Figure 1. Triangle strips.

The complexity of the related problem of computing

the minimal partition of the mesh into sequential tri-

angle strips has been recently shown in [Estko02].

Nevertheless, when vertex resending is used to sim-

ulate swap, the hardness of minimizing the number

of vertices is still an open problem, since neither the

minimal triangle strip partition nor the minimal se-

quential triangle strip partition is always the best en-

coding.

In Figure 1(b), the minimum number of sequential tri-

angle strips that cover the mesh is 2, then the number

of vertices required is 9. However, only 8 vertices

are necessary when using one triangle strip with ver-

tex resending. In Figure 1(c) is shown an example

where the minimum number of strips is 1, in this case

using 11 vertices. But if the strips (1, 2, 3, 4, 5) and

(5, 6, 3, 7, 1) were used then 10 vertices would be suf-

ficient to describe the mesh. Although it has not been

proved here, we conjecture that the problem of mini-

mizing vertices is also intractable.

In this paper, we present a heuristic method for

constructing triangle strips from triangulated mod-

els, which is an extension of the work presented

in [Silva02]. The main improvements on the new ap-

proach include an efficient data structure used to re-

duce the running time and a new strategy for generat-

ing the triangle strips. Instead of using simultaneous

strip construction, just a single triangle strip is created

at each time.

We have compared our method with FTSG [Xiang99],

the best known stripification program, and the exper-

imental results show that our method requires always

less running time and generates better results in one

of the two metrics used to compare the programs.

In Section 2, we summarize some relevant previous

work on triangle strips. Section 3 presents our method

for generating triangle strips, emphasizing the used

data structure. In Section 4, the proposed method is

applied to several data sets. Experimental results are

presented and discussed. Finally, Section 5 concludes

with some final remarks.

2. RELATED WORK

Several methods for compressing triangular meshes

have been proposed in literature. Akeley et

al. [Akele90] developed a program that creates tri-

angle strips for a given triangulated model, trying to

minimize the number of single triangle strips.

Speckmann and Snoeyink [Speck97] computed the

triangle strips for triangulated irregular networks by

creating a spanning tree of the dual graph, and then

extracting the strips from a depth-first traversal of the

tree.

Taubin et al. [Taubi98] also used strips to efficiently

compress polygonal meshes. A method for generating

and maintaining triangle strips in continuous level-of-

detail is presented in [Stewa01]. Chow [Chow97] de-

scribes an efficient method for decomposing geomet-

ric models into generalized triangle meshes.

In [ElSa99], a data structure called skip strip is used to

generate the triangles strips. The method also main-

tains a triangle-stripped progressive mesh during the

refinement and coarsening process, such that strips are

preserved. A method for building hierarchical gener-

alized triangle strips is described in [Velho99].

Deering [Deeri95] introduced the concept of ge-

ometry compression based on generalized triangle

meshes. The algorithm uses lossy compression for the

quantization of coordinate values, and a vertex cache

takes advantage of spatial coherence, decreasing ver-

tex transfers from the CPU to the graphics pipeline.

Bar-Yehuda and Gotsman [BarY96] showed that a

cache of size O(
√

n) is necessary to minimize vertex

transmission in a mesh of size n. Hoppe [Hoppe99]

described heuristics to construct triangle strips that

are optimized for a given cache size.

Isenburg [Isenb00] describes a scheme for encoding

the connectivity and the stripification of a triangle

mesh, exploiting the correlation between these two in-

formation.

Evans et al. [Evans96] developed a program called

STRIPE, which is based on a greedy algorithm, to

generate triangle strips from polygonal models. Our

method also uses a greedy heuristic, however, in-

cludes some significant differences. Whenever a new

strip is created, the initial triangle is chosen as that

one having fewer adjacent triangles (lower degree) in

the mesh. Furthermore, when swap minimization is

required, our algorithm combines a sequential trian-

gle strip construction and the strategy of the triangle

with lower degree.

A recent program, called FTSG, to create triangle

strips based on the construction of a spanning tree

in the dual graph of the triangulation is presented

in [Xiang99]. We compare our method to this one,

which is the best known publicly available program.

3. PROPOSED METHOD

The proposed method seeks to minimize the number

of vertices to be sent to the graphics pipeline. Two

heuristics were considerated. The first aims to mini-

mize the number of strips, generating output to a hard-

ware and a graphics library that support swap without

resending a vertex. The second heuristic minimizes

the number of vertices for models that simulate swap

resending a vertex. In the first approach, less strips

mean less vertices, while in the second approach there

is a tradeoff between few strips and few swaps.

3.1. Algorithms

The algorithm for choosing the next triangle to be

inserted in a strip is similar to other greedy algo-

rithms [Akele90, Evans96]. The proposed algorithm

analyzes the dual graph of the mesh, taking priority

for inserting triangles which have more adjacent trian-

gles in strips. In case of tie, our algorithm uses differ-

ent look-ahead strategies, depending on the heuristic

under consideration.

A triangle is referred to as free if it does not belong

to any strip, and the degree of a triangle is the number

of free triangles that are adjacent to it. It is worth

mentioning that the degree of the triangle can change

at each step of the algorithm.

The first heuristic is based on a greedy algorithm with

one level of look-ahead in case of tie. In order to im-

prove efficiency, the look-ahead was implemented it-

eratively, and triangles can be inserted immediately in

some cases, without finishing the look-ahead search.

These cases are: a triangle with degree 0 is found; if

there are no triangles with degree 0 and a triangle with

degree 1 with a free adjacent with degree 1 is found.

Note that in the two cases the algorithm still behaves

like an ordinary greedy algorithm, such that they were

implemented only for efficiency purpose.

The second heuristic is a combination of the greedy

algorithm described above and an algorithm that tries

to construct sequential triangle strips. The choice for

the next triangle is performed as follows: it is used the

greedy algorithm and, in case of tie, the triangle that

does not generate swap is chosen. Note that the two

cases of immediate insertion described previously af-

fect the result not only in terms of performance. The

two cases avoid strips with one and two triangles, re-

spectively.

The reason for choosing the next triangle not only

avoiding swap is motivated by the fact that a new strip

pays two vertices of penalty and a swap pays only one

vertex. Of course, the strips should not have many

swaps, but sometimes when reducing the number of

strips, even having swaps, the number of vertices is

decreased.

In both heuristics, when it is necessary to start the

construction of a new strip, the triangle with the low-

est degree in the mesh is chosen. This simple consid-

eration has a great impact in the results, motivating

the construction of an efficient data structure.

Before describing the data structure, it will be pre-

sented the adopted approach to constructing it from a

list of vertices and triangles.

3.2. Dual Graph

It was used a modified Triangle [Shewc96] data struc-

ture to represent the dual graph of the triangulation,

which is implicitly given by the adjacency list of each

triangle. This list is updated by searching for adja-

cent triangles only if they have at least one vertex in

common, which is described as follows.

First it is created a main vertex list with one entry for

each vertex. This entry will be a second list that holds

the information of which triangles are linked to this

vertex (see Figure 2). Each entry of this second list

is an item that keeps a pointer to a triangle associated

with this vertex and the index to the other vertex that

forms an edge in the triangle. The index in the main

vertex list and the index in the second list item im-

plicitly form the information of a triangle edge. For

example, in Figure 2, the index a in the main list and

the index b in the list item form the edge ab. Only

three of such items are inserted, which represent the

three edges of the triangle, ordered by the vertex in-

dices.

For each triangle, it is checked if there exists a refer-

ence for any of its edges. If so, one adjacency of the

triangle is updated with the pointer to the triangle of

the item, and one adjacency of the pointed triangle is

also updated with the current triangle. If there is no

such edge, then the edge items of the current triangle

are inserted in the vertex list. In this way, the adjacen-

cies will be updated. At the end of the triangle loop,

only items of the boundary edges will remain in the

main vertex list, if there is any.

...

Main vertex list

c

T

a

c

a b c

b c

T

T

T

Triangle

a < b < c

b

Second list

Figure 2. Dual graph construction.

3.3. Data Structure

In conjunction with our simple heuristic, another rea-

son for the algorithm efficiency is the design of an ef-

ficient data structure (Figure 3), that allows direct tri-

angle indexing in an array of triangles and allows tri-

angle access through a list of triangle pointers sorted

by degree. Furthermore, the data structure was con-

ceived in such a way that the reordering of this list

can be done in constant time.

Besides the pointers to the adjacent triangles and the

triangle vertices, each triangle of the dual graph holds

its degree, a reference to the strip (if there is) in that

it is inserted, and a pointer to the node of the list that

points to the triangle under consideration. This infor-

mation is directly accessed from the array of triangles

during the heuristic execution. Whenever is necessary

to start the construction of a new strip, a search for the

minimum degree triangle in the mesh is desirable. For

this, it is used a list of indices to the triangles.

This list is sorted by the degree of the triangles

pointed by its nodes. Since that the possible degrees

range from 0 to 3, the list has a pointer for each first

node with a given degree. By doing that, the list re-

ordering (that occurs at each triangle insertion step)

is trivial. It is only necessary to remove the node, for

instance with degree k > 0, and reinsert it in the list

using the pointer to the first node with degree k − 1.

In the example shown in Figure 3, the nodes T1 and

T2 of the sorted list point to triangles with degree 0.

The node T3 and T4 point to a triangle with degree 2

and the nodes T5...Tm point to triangles with degree 3.

Since there are no triangles with degree 1, deg1 points

to null. If the degree of the triangle tk+1 changes from

3 to 2, the node T6 will be removed and reinserted be-

tween T2 and T3 and will be pointed by deg2. On the

other hand, if the degree of the triangle tk+j changes

from 2 to 1, T3 will be removed and reinserted in the

same position and will be pointed by deg1 while deg2
will point to T4.

4. RESULTS

Our algorithm for generating triangle strips has been

tested on a number of data sets in order to illustrate its

performance. The experiments have been performed

on a PC Pentium III 866 MHZ with 1 Gbyte RAM,

running Linux operating system.

We compared our program (Strip) against

FTSG [Xiang99], which is the best known publicly

available program. Our algorithm generated lower

number of strips in less running time, however, it

generated higher number of vertices in the OpenGL

model. This implies in less rendering time for

swap-based models.

Table 1 shows the number of vertices and triangles for

eleven data models used in our tests. It also reports the

execution times required to generate the results (time

for stripification, and total time for construction plus

stripification).

The results of comparison between our method and

FTSG are summarized in Table 2, which shows the

total number of vertices and number of strips required

to represent the models using two different heuris-

tics, one that seeks to minimize the number of strips

and other that seeks to minimize the number of ver-

tices when vertex resending is used as swap. Figure 4

presents the results for three different data sets.

5. CONCLUSIONS AND FUTURE

WORK

This paper presented an efficient method for gener-

ating triangle strips from triangulated models. The

method is fast and significantly reduces the number

of vertices used to describe a given triangulation, al-

lowing lower memory bandwidth for real-time visual-

ization of complex data sets.

T 1

T
2

T 3

T 4

T 5

T 6

T m

v31v

v2

first

last

deg1

deg3

NULL

k+1
t

t

t
1

k+2
t

k+j
t

t
n

k−r

k+j

k+2

adjacent

Triangle

deg2

k

k
ptr

Array of TrianglesList of Triangle Pointers Sorted by Degree

Figure 3. Data structure: in the sorted list the pointers deg1, deg2 and deg3 are the pointers to the first node

with degree one, two and three, respectively. The adjacent triangles to triangle tk are the triangles tk−r, tk+2

and tk+j . The pointer ptrk in the triangle tk points to T1. The triangle tk has degree 0, tk+2 and tk+j degree

2, and tk+1 degree 3. In this example, no triangle has degree 1. Note: only some pointers are indicated for

readability purpose.

Model Vertices Triangles Strips time Total time

FTSG Strip FTSG Strip

buddha 543652 1087716 3.63 1.73 6.78 5.06

bunny 35947 69451 0.26 0.11 0.49 0.29

canyon 47088 93980 0.35 0.16 0.64 0.44

champlain 100000 198996 0.74 0.33 1.36 0.98

crater 107903 214808 0.77 0.36 1.44 1.05

dragon 437645 871414 2.92 1.39 5.47 4.14

emory 36500 72712 0.27 0.12 0.50 0.34

hand 327323 654666 2.10 0.98 3.85 2.77

mars 8971 17820 0.06 0.03 0.12 0.07

rice lake 200000 399166 1.47 0.69 2.74 2.06

roseburg 40343 80423 0.28 0.14 0.53 0.37

Table 1. Model characteristics and execution times

in seconds.

Model Strips Vertices

FTSG Strip FTSG Strip

buddha 25576 19640 1398464 1421420

bunny 618 563 81412 81908

canyon 2297 1738 120884 123152

champlain 4357 3339 255236 260369

crater 4563 3468 278565 283208

dragon 20571 15943 1121151 1140173

emory peak 1744 1325 93403 95060

hand 10394 8493 806855 816202

mars 462 369 23010 23383

rice lake 9668 7322 514734 523862

roseburg 1802 1400 102920 105108

Table 2. Comparison of triangle strip algorithms.

Future work includes an investigation of the impact of

the buffer size on transmission cost, when hardware

has additional buffer space, beyond the usual storage

for two vertices.

6. ACKNOWLEDGEMENTS

The authors would like to thank the Stanford 3D Scan-

ning Repository, United States Geological Survey,

Georgia Institute of Technology, and Nasa’s Planetary

Data System for the models.

7. REFERENCES

[Akele90] K. Akeley, P. Haeberli, and D. Burns.

tomesh.c: Program on SGI Developer’s

Toolbox CD, 1990.

[BarY96] R. BarYehuda and C. Gotsman.

Time/space trade-offs for polygon mesh

rendering. ACM Transactions on Graphics,

15(2):141–152, April 1996.

[Cassi91] R. Cassidy, E. Gregg, R. Reeves, and

J. Turmelle. IGL: The Graphics Library for

the i860, 1991.

[Chow97] M.M. Chow. Optimized geometry com-

pression for real-time rendering. In Proceed-

ings of IEEE Visualization’97, pages 347–354,

1997.

[Deeri95] M. Deering. Geometry compression. In

SIGGRAPH’95 Conference Proceedings, An-

nual Conference Series, pages 13–20, Los An-

geles, California, USA, 1995.

[ElSa99] J. ElSana, E. Azanli, and A. Varshney. Skip

strips: Maintaining triangle strips for view-

dependent rendering. In Proceedings of IEEE

Visualization, pages 131–138, San Francisco,

California, United States, 1999.

[Estko02] R. Estkowski, J.S.B. Mitchell, and X. Xi-

ang. Optimal decomposition of polygonal

models into triangle strips. In Proceedings of

the 18th annual symposium on Computational

geometry, pages 254–263, Barcelona, Spain,

2002. ACM Press.

[Evans96] F. Evans, S. Skiena, and A. Varshney. Op-

timizing triangle strips for fast rendering. In

Proceedings of IEEE Visualization’96, pages

319–326, 1996.

[Hoppe99] H. Hoppe. Optimization of mesh local-

ity for transparent vertex caching. In Proceed-

ings of the 26th annual conference on Com-

puter Graphics and Interactive Techniques,

pages 269–276. ACM Press/Addison-Wesley

Publishing Company, 1999.

[Isenb00] Martin Isenburg. Triangle strip compres-

sion. In Graphics Interface, pages 197–204,

May 2000.

[ISO89] ISO. Information Processing Systems -

Computer Graphics - Programmer’s Hierar-

chical Interactive Graphics System (PHIGS).

Technical Report ISO/IEC 9592, International

Organization of Standardization, 1989.

[Neide93] J. Neider, T. Davis, and M. Woo. OpenGL

Programming Guide: The Official Guide to

Learning OpenGL. Addison-Wesley, New Jer-

sey, 1993.

[Shewc96] J.R. Shewchuk. Triangle: Engineering a

2D Quality Mesh Generator and Delaunay Tri-

angulator. In Lecture Notes in Computer Sci-

ence, volume 1148, pages 203–222. Springer-

Verlag, May 1996.

[Silva02] M.V.G. da Silva, O.M. van Kaick, and

H. Pedrini. Fast mesh rendering through ef-

ficient triangle strip generation. Journal of

WSCG, 10(1):127–134, February 2002.

[Speck97] B. Speckmann and J. Snoeyink. Easy

triangle for TIN terrain models. In Cana-

dian Conference on Computational Geometry,

pages 239–244, 1997.

[Stewa01] A. J. Stewart. Tunneling for triangle

strips in continuous level-of-detail meshes. In

Graphics Interface, pages 91–100, June 2001.

[Taubi98] G. Taubin and J. Rossignac. Geomet-

ric compression through topological surgery.

ACM Transactions on Graphics, 17(2):84–

115, 1998.

[Velho99] L. Velho, L. H. de Figueiredo, and

J. Gomes. Hierarchical generalized triangle

strips. The Visual Computer, 15(1):21–35,

1999.

[Werne94] J. Wernecke. The Inventor Mentor.

Addison-Wesley, 1994.

[Xiang99] X. Xiang, M. Held, and J.S.B. Mitchell.

Fast and effective stripification of polygonal

surface models. In Proceedings of ACM

Symposium on Interactive 3D Graphics, 1999.

http://www.ams.sunysb.edu/∼xxiang/strip.html.

(a) Bunny

(b) Dragon

(c) Mars terrain

Figure 4. Results for three data sets. Each colored area is covered by one strip.

