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Annotation
This paper analyses solutions to scalar conservation law with generalized flux function.
For non-convex flux functions the nonclassical shock wave may arise and this solution
violates the classical Oleinik entropy condition, however we show, that also this solution
is admissible. We also introduce some numerical methods, that are able to detect these
nonclassical shocks.
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Preface

The aim of this paper is to introduce the theory for nonlinear conservation laws with gen-
eralized flux functions. The conservation law appears in many areas of physics, basically
anywhere, where some balance laws are formulated. Solutions of these hyperbolic con-
servation laws may contain singularities, which appear in finite time even from smooth
initial data. Such weak solutions are not unique and we have to impose some additional
condition to choose one of them. These conditions are usually called entropy conditions.
These fundamental concepts are given in Chapter 1.

In Chapter 2 we impose the Oleinik entropy condition on solutions and define classical
solutions of the Riemann problem for conservation law, first for convex flux functions and
later we generalize the classical solutions also for nonconvex fluxes. We will also show, that
for convex flux is the classical solution the only one admissible.

In the rest of the text we will concentrate on nonconvex flux functions, specifically on
concave-convex flux functions with one inflection point. We will define the entropy dissi-
pation function and based on its properties we will show, that for nonconvex flux function
there exists also another admissible solution and we will call it the nonclassical solution.
Existence and properties of these nonclassical solutions are the subject of Chapter 3.

The Chapter 4 is devoted to applying numerical schemes to our Riemann problem in
order to detect nonclassical behaviour.
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Chapter 1

Introduction

1.1 Hyperbolic System
Definition 1.1 (Hyperbolic system of equations). Consider the system

uuut + Auuux = 0, in R× (0,+∞), (1.1)

where uuu : R × (0,+∞) → Rm is a vector of unknown functions and A is a m ×m matrix
function of uuu, x and t. This system is called hyperbolic, if A = A(uuu, x, t) is diagonalizable
matrix with real eigenvalues λ1, . . . , λm for each x, t and uuu.

By adding the initial condition

uuu(x, 0) = uuu0(x), x ∈ R, (1.2)

to system (1.1), where uuu0 : R→ Rm is a given function, we get the Cauchy problem, i.e. a
problem to find a solution uuu ∈ C1, which satisfies the system (1.1) in R× (0,+∞) and the
initial condition in R.

It can be shown, that system (1.1) with initial condition (1.2) has a unique solution in
the class C1 in some finite time interval t ∈ [0, T ], see [1].

For nonlinear systems the solution does not have to exist for all time in classical sense,
i.e. after some time, as the solution evolves, discontinuities may appear. In further text
we will focus our attention on conservation laws, which are integral relations. Hence we
don’t need solutions, which are continuous or even differentiable. This will lead us to weak
formulation and generalized solutions, which may exist for all time. However, we will see,
that for one initial condition there can be many weak solutions, but not all physically
relevant.

1.2 Conservation laws
Let u(xxx, t) be some quantity with a flux f(u(xxx, t)). The quantity is conserved in a bounded
fixed domain Ω with a Lipschitz-continuous boundary ∂Ω, if total mass of this quantity
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1.2. CONSERVATION LAWS

changes inside the domain in time only due to the flux through the boundary ∂Ω, thus

d

dt

∫
Ω

u(xxx, t)dxxx = −
∫
∂Ω

f(u)nnndS, (1.3)

where nnn is the outward normal and dS the surface element on ∂Ω. If we suppose, that u
and f are sufficiently smooth functions, than by applying the divergence theorem and by
taking into account, that the domain Ω is arbitrary, we can rewrite the equation 1.3 as

ut + divf = 0, (1.4)

which is the differential form of the conservation law.

1.2.1 Weak solution

Let u be a classical solution of the problem 1.4 with initial condition u0 on RN and consider
φ ∈ C∞0 , where C∞0 denotes the space of all infinitely differentiable functions with compact
support in D = RN × [0,∞). Multiplying the equation 1.4 by φ, integrating over D and
using Green’s theorem we obtain∫ ∞

0

∫
RN

(uφt + f · gradφ)dxxxdt+

∫
RN

u0φ(xxx, 0)dxxx = 0. (1.5)

In this formulation we no longer demand existence of derivatives of u, so 1.5 makes
sense even if u is discontinuous. If the function u satisfies 1.5 for all φ ∈ C∞0 , we call it a
weak solution of 1.4. In the following text we will suppose the solution to be the weak one.

1.2.2 Scalar conservation law

Further we will consider only scalar case of conservation law, thus equation of the form

ut(x, t) + f(u(x, t))x = 0. (1.6)

If we suppose, that f(u) is differentiable, than by using chain rule, we can express (1.6) in
quasilinear form

ut + f ′(u)ux = 0. (1.7)

Curves x = x(t), which are given as solutions of ordinary differential equations

dx

dt
= f ′(u(x, t)), (1.8)

are called characteristics of the equation (1.7). It’s evident, that the solution is constant
along this characteristics,since

du(x, t)

dt
= ut + ux

dx

dt
= ut + f ′ux = 0. (1.9)
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1.2. CONSERVATION LAWS

This fact together with (1.8) implies, that characteristics are straight lines determined by

x = ξ + f ′(u0(ξ))t, ξ ∈ R. (1.10)

The solution is than given by
u = u0(ξ). (1.11)

Let us assume, that the flux function is strictly convex (or concave), i.e. f ′′ doesn’t
change sign, and that (1.7) is genuinely nonlinear, i.e. f ′′ 6= 0. Than, for f ′′ > 0, we may
consider two cases:

• u0
′ > 0 Since the slope of characteristics can be expressed as 1/f ′(u0), it’s obvious,

that because both f ′ and u0 are increasing functions, the slope is nonincreasing
function in x. It’s form is shown in Figure ??. Hence, characteristics cover whole
upper half-plane t ≥ 0 and the solution exist for every time in classical sense.

x

t

Figure 1.1: Characteristics for u0
′ > 0.

• u0
′ < 0 In this case the slope of characteristics is an increasing function in x. This

causes, that for every two points x1 and x2 characteristics issuing from these points
have to intersect in some time. At the point of intersection two values of u meet and
discontinuity appears. It’s form is shown in Figure 1.2. This also means that at this
point the derivative

ux =
u′0

1 + f ′′u′0t
(1.12)

becomes unbounded. The first time when this happens is

T =
−1

minx∈R(f ′′(u0)u′0)
. (1.13)
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1.2. CONSERVATION LAWS

x

t

Figure 1.2: Characteristics for u0
′ < 0.

So the classical solution exists on time interval [0, T ), where time T is given by (1.13).
This shows that also for smooth initial condition discontinuities may rise, but as we
suggested, the conservation law is in first place an integral relation and we don’t
need solution to be continuous. So let’s take a further look at weak solutions. Is the
resulting discontinuity arbitrary? Is the weak solution unique?

1.2.3 Rankine-Hugoniot jump condition

Let u be a weak solution of (1.7) with single discontinuity. This discontinuity will propagate
along some curve x = y(t) with speed

s(t) =
dy

dt
. (1.14)

The solution satisfies the equation (1.7) on each side of this curve in classical sense and
we will denote by ul and ur values of u on left and right side of the discontinuity. Let us
consider x from interval [a, b] so that it crosses the curve y in some time t, see Figure (1.3).
Over this interval the conservation law (1.3) has to hold,

d

dt

∫ b

a

u(x, t)dx = f(u(a, t))− f(u(b, t)). (1.15)

The left side of this equation may be expressed as

d

dt

∫ b

a

u(x, t)dx =
d

dt

(∫ y(t)

a

u(x, t)dx+

∫ b

y(t)

u(x, t)dx

)

=

∫ y(t)

a

utdx+ y′ul +

∫ b

y(t)

utdx− y′ur. (1.16)
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1.2. CONSERVATION LAWS

x

t

a b

y(t)
u

ur

l

Figure 1.3: The curve, along which the discontinuity propagates.

Since on both sides of discontinuity also holds the conservation law, moreover in differential
form, we may set ut = −fx and last expression may be rewritten as

d

dt

∫ b

a

u(x, t)dx = −f(ul) + f(u(a, t)) + sul +−f(u(b, t)) + f(ur)− sur, (1.17)

where notation (1.14) was used. This, together with (1.15), gives the relation

s(ur − ul) = fr − fl, (1.18)

which is called Rankine-Hugoniot jump condition. Hence, every weak solution has to satisfy
this jump condition and on the other hand, every piecewise function, which satisfies (1.6)
and this condition, is a weak solution.

1.2.4 Riemann problem

The simplest weak solution of (1.6) is a piecewise constant function with a single discon-
tinuity. The problem

ut + fx = 0 (1.19)

u0 =

{
ul, x < 0,
ur, x > 0

(1.20)

is called the Riemann problem. Since the solution of this problem is homogeneous, i.e. if
u(x, t) is a solution of the problem (1.19)-(1.20), than the function u(kx, kt), k ∈ R is also
its solution. Therefore it is reasonable to look for solution in form

u(x, t) = ũ(x/t), (1.21)

7



1.2. CONSERVATION LAWS

which is also called similarity solution. Denoting

ξ =
x

t
(1.22)

we obtain
ut = ũξ(−

x

t2
), ux = ũξ

1

t
. (1.23)

By inserting this into (1.19), we get

ũξ(f
′ − x

t
) = 0. (1.24)

Hence we find that either ũξ = 0, i.e. the solution is constant, or that f ′ = x
t
. Since we

suppose that f ′′ > 0, the function f ′ is increasing on interval [ul, ur] for ul < ur and hence
the inverse function (f ′)−1 is well-defined on [f(ul), f(ur)] and we can explicitly determine
the solution of (1.19)-(1.20) as

u(x, t) =


ul, x/t < f ′(ul),
(f ′)−1(x/t) f ′(ul) < x/t < f ′(ur),
ur, x/t > f ′(ur).

(1.25)

This solution is called centered rarefaction wave, for characteristics see Figure 1.4.

x

t

Figure 1.4: Characteristics of rarefaction wave.

However, the function

u =

{
ul, x < st,
ur, x > st,

(1.26)

where s is the speed of discontinuity determined by Rankine-Hugoniot jump condition,
is also a solution of problem (1.19)-(1.20) with ul < ur. Its characteristics are shown in
Figure 1.5.
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1.2. CONSERVATION LAWS

x

t

Figure 1.5: Characteristics for the solution 1.26.

We see, that the solution is not necessarily unique, but we are looking for the one with
physical meaning. To eliminate the non-uniqueness of solution, we need to impose some
additional condition to choose the solution which is physically admissible. These conditions
are called admissibility conditions, or entropy conditions.

1.2.5 Entropy

The notion of entropy is here motivated by thermodynamic considerations. In order to
keep the theory consistent with the second law of thermodynamics, we suppose, that the
entropy function is strictly convex. Interesting remarks about the convexity property of
the entropy are given in [15].

Definition 1.2 (Entropy function, entropy flux). Let U be a space of continuously dif-
ferentiable solutions of scalar conservation law (1.6). The strictly convex smooth function
U : U → R is called entropy and the smooth function F : U → R is called entropy flux, if
they satisfy the conservation law

U(u)t + F (u)x = 0. (1.27)

If we multiply the scalar conservation law (1.6) by U ′, than by comparing with (1.27)
we receive the relation for entropy flux

F ′ = U ′f ′. (1.28)

For scalar conservation laws there is no other restriction on entropy function, so any strictly
convex function U is an entropy with flux given by

F (u) = Fa +

∫ u

a

U ′(v)f ′(v), (1.29)
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1.2. CONSERVATION LAWS

where a ∈ U is fixed and Fa is arbitrary. The situation is different for systems of conser-
vation laws, see for example [12].

However, we are interested in solutions, which contain discontinuity. The sharp discon-
tinuities are rather mathematical model of some situations than reality. In the real world
are these jump more like smooth transitions over narrow regions. This can be expressed by
adding some regularization Rε on the right side of the conservation law, which corresponds
to viscosity, capillarity, oscillation, etc. depending on physical model. So we restrict our
attention to smooth solutions of the equation

uεt + fx(u
ε) = Rε, (1.30)

where the regularization Rε may depend on uε, εuεx, ε2uεxx, . . . and it is vanishing for ε→ 0,
so the solution u of the conservation law (1.6) is the limit

u = lim
ε→0

uε. (1.31)

Precisely, let us suppose, that the solution uε is bounded in L∞ norm and the limit (1.31)
holds almost everywhere. Hence, we need the limit u to be a weak solution of (1.6). For
every φ ∈ C∞0 we have∫

Ω

(uφt + fφx)dxdt = lim
ε→0

∫
Ω

(uεφt + f(uε)φx)dxdt =

= lim
ε→0

∫
Ω

Rεφdxdt, (1.32)

which has to be equal to zero. This gives us the first condition on Rε, see Definition
1.3.

The second condition we get by the same manipulations as we used previously to derive
the conservation law for entropy function: multiplying the equation (1.30) by U ′ we obtain

Ut(u
ε) + Fx(u

ε) = U ′(uε)Rε. (1.33)

Due to (1.31) the left-hand side of (1.33) converges in the weak sense to Ut(u) +Fx(u).
The second condition will than arrive from the physical demand on the equation, to be
entropy dissipative.

Definition 1.3 (Properties of Regularization). The regularization Rε introduced in (1.30)
is said to be

• conservative, if

lim
ε→0

∫
Ω

Rεφdxdt = 0, φ ∈ C∞0 , (1.34)

and
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1.2. CONSERVATION LAWS

• entropy dissipative, if

lim sup
ε→0

∫
Ω

U ′(uε)Rεφdxdt ≤ 0, φ ∈ C∞0 , φ ≥ 0. (1.35)

Now we can finally introduce the important entropy inequality.

Theorem 1.4 (Entropy inequality). Let uε be a solution of (1.30), which remains bounded
in L∞ norm and converges almost everywhere towards the limit u as ε→ 0. Also suppose,
that the regularization Rε on right-hand side of (1.30) is conservative and entropy dissipa-
tive for some strictly convex entropy function U of (1.6) with flux F . Than u is a weak
solution of (1.6) and satisfies∫

Ω

(U(u)φt + F (u)φx)dxdt ≥ 0, φ ∈ C∞0 , φ ≥ 0, (1.36)

which means in weak sense
Ut(u) + Fx(u) ≤ 0. (1.37)

It turns out, that for genuinely nonlinear flux functions (f ′′ > 0), the entropy inequality
(1.37) is sufficiently restrictive to choose the unique solution of (1.6), which will be described
in next chapter. In this case is the solution even independent on regularization Rε. We will
refer to these solutions as classical entropy solutions. However, many physical models fail
to be genuinely nonlinear and for such systems this does not have to be the truth, as wee
will also see later. But first, let us pay the attention to important properties of the entropy
inequality and classical entropy solutions for Riemann problem, after one last important
relation:

Theorem 1.5 (Jump condition for the entropy inequality). Let u be a piecewise smooth
function with discontinuity satisfying the Rankine-Hugoniot jump condition (1.18) with
speed s, than the entropy inequality (1.37) is equivalent to

−s(Ur − Ul) + Fr − Fl ≤ 0, (1.38)

where we used the notation

Ur := U(ur), Fr := F (ur), (1.39)
Ul := U(ul), Fl := F (ul). (1.40)

Proof of this theorem is analogous to derivation of the Rankine-Hugoniot jump condi-
tion.
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Chapter 2

Classical solution

2.1 Entropy condition
Consider again the Riemann problem

ut + fx = 0 (2.1)

u0 =

{
ul, x < 0,
ur, x > 0,

(2.2)

where f(u) is smooth function and ul, ur are constants. Recall, that we seek for weak
solutions satisfying the Rankine-Hugoniot jump condition and the entropy inequality.

Theorem 2.1 (Diffusive regularization). Let uε be a solution of the diffusion (viscous)
equation

uεt + f(uε)x = εuεxx, ε > 0, (2.3)

which is bounded in L∞ norm and the derivative uεx tends to zero at infinity. Than the
regularization Rε = εuεxx is conservative and entropy dissipative for any strictly convex
entropy U with entropy flux F (u) =

∫ u
U ′(v)f ′(v)dv.

Proof. First we will show, that the regularization is conservative. We have∣∣∣∣∫
R×R+

Rεφdxdt

∣∣∣∣ =

∣∣∣∣∫
R×R+

εuεxxφdxdt

∣∣∣∣ ≤ ∫
R×R+

ε|uε||φxx|dxdt

≤ ε‖uε‖L∞‖φxx‖L1

≤ Cε, (2.4)

which tends to zero as ε→ 0, for all φ ∈ C∞0 , hence the regularization Rε is conservative.
Further, by multiplying the equation (2.3) by U ′ we find

Ut(u
ε) + Fx(u

ε) = εUxx(uε)− εU ′′(uεx)2, (2.5)

12



2.1. ENTROPY CONDITION

since U ′uεxx = Uxx(uε)− U ′′(uεx)2. We have now∫
R×R+

U ′(uε)Rεφdxdt ≤ ε

∫
R×R+

|U(uε)||φxx|dxdt− ε
∫
R×R+

U ′′(uεx)
2φdxdt, (2.6)

for all φ ∈ C∞0 , φ ≥ 0. The first term on the right hand-side tends to zero as ε→ 0. In the
second therm we have U ′′ > 0, which means that the the right hand-side of the inequality
is non-positive and hence the regularization is entropy dissipative.

From the Theorem (2.1) we see, that the solution determined by the vanishing-viscosity
limit can only converge to the weak solution of (2.1) and the entropy inequality is satisfied
for all strictly convex entropy functions. As we mentioned earlier, the entropy inequality
will help us to find the unique solution of the problem (2.1-2.2). Let us recall, that the
solution may contain centered rarefaction wave or discontinuity, which has to propagate
with speed s determined by the Rankine-Hugoniot jump condition. We will refer to this
discontinuity as a shock wave.

Theorem 2.2 (Oleinik inequality). A shock wave solution of (2.1-2.2)

u =

{
ul, x < st,
ur, x > st,

(2.7)

satisfy the entropy inequality Ut + Fx ≤ 0 for all strictly convex entropies if and only if it
satisfies the Oleinik entropy inequality

fr − fl
ur − ul

≤ f(u)− fl
u− ul

(2.8)

for all u between ul and ur, or equivalently

f(u)− fr
u− ur

≤ fr − fl
ur − ul

(2.9)

for all u between ul and ur.

Proof. We will use the equivalent expression to the entropy inequality (1.38)

0 ≥ −s(Ur − Ul) + Fr − Fl

=

∫ ur

ul

U ′(u)(−s+ f ′(u))du

= [U ′(u)(−su+ f(u))]urul −
∫ ur

ul

U ′′(u)(−s(u− ul) + f(u)− fl)du. (2.10)

The first expression is equal to zero, since s = (fr − fl)/(ur − ul). Hence we have

−
∫ ur

ul

U ′′(u)(u− ul)
(
f(u)− fl
u− ul

− fr − fl
ur − ul

)
du ≤ 0. (2.11)

Since U ′′ is arbitrary and strictly convex, we get the Oleinik inequality (2.8). Geometrically
this condition means, that the graph of f lies below the line connecting points [ul, fl] and
[ur, fr], if ur < ul or above the line, if ur > ul. This is obviously equivalent to (2.9).

13



2.2. CLASSICAL ENTROPY SOLUTION

If we let u→ ul (u→ ur, respectively) in (2.8) (in (2.9), respectively), we get

f ′r ≤ s ≤ f ′l , (2.12)

which geometrically means, that characteristics must go into the shock.

Theorem 2.3 (Lax shock inequality). If the flux function is convex, the Oleinik inequality
is equivalent to Lax shock inequality

ur ≤ ul. (2.13)

Proof of this comes straightforward from (2.8).
The Oleinik inequality gives us the condition on uniqueness of solutions we were looking

for.
If we return to the problem of two solutions 1.25 and 1.26 of the Riemann problem, we

see, that the Oleinik condition excluded the solution with shock and left us with the only
one right solution - rarefaction wave.

We will refer to the solutions which satisfy this condition as the classical solutions and
the shock wave is said to be the classical shock or compressive shock.

For convex flux, the only admissible solution with shock wave is the one satisfying the
Lax condition. If ur ≥ ul, than the solution has to contain the rarefaction wave. In the
case of concave flux function the situation is completely analogous.

2.2 Classical entropy solution
Theorem 2.4 (Classical solution to Riemann problem with convex flux). Suppose that
flux function f is convex. Than the solution of the Riemann problem (2.1-2.2) is given by

• a shock, connecting ul and ur with shock speed s, if ur ≤ ul

u =

{
ul, x < st,
ur, x > st,

(2.14)

or by

• a rarefaction wave, connecting continuously and monotonically ul and ur, if ur ≥ ul

u(x, t) =


ul, x/t < f ′(ul),
(f ′)−1(x/t) f ′(ul) < x/t < f ′(ur),
ur, x/t > f ′(ur).

(2.15)

The Oleinik inequality, however, holds also for nonconvex flux functions and we will
now derive the classical solution for this more general case. The convexity of flux function
makes things easier, since the characteristic speed f ′ changes monotonically with u and
the solution than may contain eaither shock or rarefaction wave. On the other hand, if the

14



2.2. CLASSICAL ENTROPY SOLUTION

flux function is nonconvex, the solution may be more complicated and may contain both,
shock and rarefaction wave.

First, let us consider a flux function with one inflection point. Suppose the function is
concave-convex with the inflection point in u = 0 and consider the Riemann problem for
ul > 0. If ur > ul, the flux function is convex between those stages and so the solution
is given by rarefaction, as stated above. Therefore, let us concentrate on the case, when
ur < ul. The Oleinik inequality indicates, that the flux function has to lie below the line
connecting ur and ul. This is true up to the point, where this line becomes tangent of the
graph of f . Denote this point as ũl and in this point holds the relation

f ′(ũl) =
f(ũl)− fl
ũl − ul

, (2.16)

see Figures 2.1 and 2.2. When ur < ũl, the line connecting ul and ur crosses the graph of
f and the Oleinik inequality is violated (Figure 2.3). Hence, the solution must consist of
the shock satisfying the Oleinik inequality, connecting the stages ul and ũl, followed by a
rarefaction wave to ur. See Figure 2.4.

The situation is analogous for ul < 0. For ur < ul is the flux function concave and the
solution is rarefaction wave. For ur > ul the graph of f must lie above the line connecting
those two stages. The stage ũl is determined the same way as in previous case and for
ur > ũl is the shock wave again followed by rarefaction from ũl to ur.

o

o

ur ul

Figure 2.1: Oleinik condition.
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2.2. CLASSICAL ENTROPY SOLUTION

o

o

ul

ul

Figure 2.2: The limiting point for the Oleinik condition.

o

o

ur ul

Figure 2.3: Violating the Oleinik condition.

Theorem 2.5 (Classical solution to Riemann problem with concave-convex flux). Let the
flux function f be concave-convex with inflection point at u = 0. Then the solution of
Riemann problem (2.1-2.2) with ul > 0, satisfying the entropy inequality for all strictly
convex entropies U , consists of shock waves and rarefaction waves given as follows:

• If ur > ul, the solution is a rarefaction wave connecting ul and ur monotonically and
continuously.

• If ur ∈ [ũl, ul), where ũl is given by the relation ??, the solution is a shock wave
connecting ul and ur.

• If ur < ũl, the solution is composed of the shock wave connecting ul and ũl and a
rarefaction connecting ũl and ur.

The solution with ul < 0 is analogous:
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2.2. CLASSICAL ENTROPY SOLUTION

o

o

our

ul

ul

shockrarefaction

Figure 2.4: Oleinik condition for nonconvex flux.

• If ur < ul, the solution is a rarefaction wave connecting ul and ur monotonically and
continuously.

• If ur ∈ (ul, ũl], where ũl is given by the relation (2.16), the solution is a shock wave
connecting ul and ur.

• If ur > ũl, the solution is composed of the shock wave connecting ul and ũl and a
rarefaction connecting ũl and ur.

If we stick with the notation of fixed ul, than the solution for convex-concave flux is
given in Theorem 2.6. The difference here is only that the tangent to the graph f is passing
through the stage ur instead of ul. See Figure 2.5.

o

o

our
ul

ur

shock rarefaction

Figure 2.5: Oleinik condition for nonconvex flux.
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2.2. CLASSICAL ENTROPY SOLUTION

Theorem 2.6 (Classical solution to Riemann problem with convex-concave flux). Let the
flux function f be convex-concave with inflection point at u = 0. Then the solution of
Riemann problem (2.1-2.2) with ul > 0, satisfying the entropy inequality for all strictly
convex entropies U , consists of shock waves and rarefaction waves given as follows:

• If ur > ul, the solution is a shock wave connecting ul and ur.

• If ur ∈ [0, ul), the solution is a rarefaction wave connecting ul and ur monotonically
and continuously.

• If ur ∈ [ũ−l , 0), where ũ−l is given by

f ′(ul) =
f(ũ−l )− fl
ũ−l − ul

, (2.17)

the solution is composed of a rarefaction wave connecting ul and ũr and a shock wave
connecting ũr and ur. The stage ũr is given by

f ′(ũr) =
f(ũr)− fr
ũr − ur

. (2.18)

• If ur < ũ−l , the solution is a shock wave connecting ul and ur.

For convex-concave flux with ul < 0 would be the solution again analogous.
This basic idea of construction of the concave hull for ul > ur or the convex hull for

ul < ur can be generalized for any nonconvex flux function with finitely many inflection
points. For example for ul > ur would be the interval [ur, ul] decomposed by the hull
on several intervals, in which the flux function f either coincides with the hull, which
corresponds to rarefaction wave, or is strictly below the hull, which is on this interval
straight line, and this corresponds to shock wave. In the Figure 2.6 is the situation shown
for ul < ur, so here we are looking for the convex hull.

o

o

o

o

ur

ul

shock

rarefaction

rarefaction

Figure 2.6: Oleinik condition for nonconvex flux.
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2.2. CLASSICAL ENTROPY SOLUTION

Example 2.7 (Cubic flux). Consider the Riemann problem

ut + (u3)x = 0 (2.19)

u0 =

{
ul > 0, x < 0,
ur, x > 0.

(2.20)

We will distinguish between three cases, depending on the value of ur compared to the

ulo

o

f (u)

u

lu =
ul

2

Figure 2.7: Cubic flux function.

fixed value ul. For ur > ul we are looking for the convex hull, which in this case coincides
with the flux function. For ur < ul the flux function may change its convexity on interval
[ur, ul] and the situation is more interesting. In this case we are looking for the concave hull
and we need to find the point ũl, where the shock speed is equal to the speed of right-hand
wave. Using the relation (2.16) we have

3ũ2
l =

ũ3
l − u3

l

ũl − ul
, (2.21)

which gives us the value ũl = −ul/2. The solution of (2.19-2.20) is then given as follows:

• If ur > ul, the solution is a rarefaction wave

u(x, t) =


ul, x/t ≤ 3u2

l ,√
x
3t

3u2
l < x/t < 3u2

r,
ur, x/t ≥ 3u2

r.
(2.22)

• If ur ∈ [−ul/2, ul), the solution is classical shock wave

u =

{
ul, x < st,
ur, x > st,

(2.23)

with the shock speed s = u2
r + urul + u2

l given by the Rankine-Hugoniot condition.
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2.2. CLASSICAL ENTROPY SOLUTION

• If ur < −ul/2, the solution consists of the shock wave from ul to −ul/2 with shock
speed s = 3/4u2

l , immediately followed by a rarefaction wave to ur

u(x, t) =


ul, x/t ≤ 3/4u2

l ,
−
√

x
3t

3/4u2
l < x/t < 3u2

r,
ur, x/t ≥ 3u2

r.
(2.24)

The characteristics and solutions for all cases are shown in Figures 2.8a - 2.8f.
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2.2. CLASSICAL ENTROPY SOLUTION

x

t

(a) Characteristics for ur > ul.

3 2

o

o

ul

ur

ur3 2ul

u

xtt

(b) Solution for ur > ul.

x

t

(c) Characteristics for ur ∈
[−ul/2, ul).

ul

ur

urul t

o

o

S(     ,     )

u

x

(d) Solution for ur ∈ [−ul/2, ul).

x

t

(e) Characteristics for ur < −ul/2.

3 2

o

o

o

ul

ur

ur
3 2ul

ul
2

4

u

x
t t

(f) Solution for ur < −ul/2.
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Chapter 3

Nonclassical solution

In this chapter we will sill pay the attention to solving the Riemann problem (2.1-2.2),
however we will not impose the entropy inequality for all convex entropies, as we did in
previous chapter, but we suppose, that the inequality holds for one given entropy U . We
will also assume a flux function to be concave-convex with a single inflection point at u = 0
and to be non-degenerate at this point, i.e.

uf ′′(u) > 0 u 6= 0, f ′′′(0) 6= 0. (3.1)

We stick with the notation given in previous chapter, ul and ur are related to the
Riemann initial data, definitions of stages ũl, ũ−l also remains. For consistency of notation
it would be, however, useful to define those terms in more general way as functions of u,

f ′(ũ(u)) =
f(ũ(u))− f(u)

ũ(u)− u
, u ∈ R (3.2)

and the inverse function of ũ(u), ũ−(u)

f ′(u) =
f(ũ−(u))− f(u)

ũ−(u)− u
. (3.3)

Hence, obviously, ũl = ũ(ul) and ũ−l = ũ−(ul). Assume that the solution contains a
shock wave. The stages of this shock will be denoted as u− and u+ for x < st and
x > st, respectively, where s(u−, u+) is the speed of the shock. Moreover we will introduce
ũ− = ũ(u−) and ũ−− = ũ−(u−) for the stage u− and ũ+ and ũ−+ for the stage u+, that are
defined the same way.

3.1 Entropy dissipation
Recall, that the entropy condition for given entropy U holds across the shock (u−, u+), if

−s(U− − U+) + F− − F+ ≤ 0. (3.4)
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3.1. ENTROPY DISSIPATION

We will denote the left-hand side of (3.4) as entropy dissipation D(u−, u+), which than has
to be non-positive. In the following text we will consider fixed u− > 0 and concave-convex
flux function and we will present some properties of this function, through which we will
come to the concept of nonclassical solutions.

Theorem 3.1 (Entropy dissipation). Let u− > 0 be any fixed value of left-hand state of
Riemann problem (2.1-2.2) with given strictly convex entropy U and entropy flux F . The
entropy dissipation

D(u−, u+) = −s(u−, u+)(U+ − u−) + F+ − F− (3.5)

then has following properties:

• Sign. We have

D(u−, u+) > 0 u+ ∈ (−∞, ũ−−] ∪ (u−,+∞),

D(u−, u+) < 0 u+ ∈ [ũ−, u−). (3.6)

• Monotony.

∂u+D(u−, u+) < 0 u+ ∈ (−∞, ũ−],

∂u+D(u−, u+) > 0 u+ ∈ (ũ−, u−) ∪ (u−,+∞). (3.7)

• Zero entropy dissipation. For u− > 0 there exists a value ũ0
− ∈ (ũ−−, ũ−) satisfying

D(u−, ũ
0
−) = 0. Moreover, D(u−, u−) = 0.

Proof. The sign of entropy dissipation will be obvious from the formula

D(u−, u+) = −
∫ u+

u−

U ′′(u− u−)

(
f − fl
u− u−

− fr − fl
u+ − u−

)
du, (3.8)

which comes from the definition of D(u−, u+) by integrating.

• If u+ > u−, the graph of f lies below the line connecting stages u− and u+, so the
last expression inside the integral (3.8) is negative and D(u−, u+) > 0.

• If u+ ≤ ũ−−, the graph of f lies above the line connecting stages u− and u+, so we
have the last expression inside the integral (3.8) negative, however u+ < u−, which
leads to D(u−, u+) > 0.

• If u+ ∈ [ũ−, u−), the graph of f lies below the line and u+ < u−, so D(u−, u+) < 0.
This concludes the proof of the first property of the entropy dissipation.
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3.1. ENTROPY DISSIPATION

The property (3.7) comes directly from differentiating (3.5) with respect to u+

∂u+D(u−, u+) = (u− − u+ − U ′r(u− − u+))∂u+s, (3.9)

where
∂u+s =

f ′r − s
u+ − u−

. (3.10)

Since U is strictly convex, the first expression in (3.9) is strictly positive. The sign of
∂u+D(u−, u+) is than given by the sign of ∂u+s, which changes it when f ′r = s. This
satisfies the stage ũ−. Hence the entropy dissipation D(u−, u+) is decreasing for u+ < ũ−
and increasing for u+ > ũ−, with maximum negative entropy dissipation in ũ−.

Since in ũ− is the entropy dissipation negative and in ũ−− is positive, there has to exist a
point ũ0

− ∈ (ũ−−, ũ−) with zero entropy dissipation. The identity D(u−, u−) = 0 is obvious.
The whole situation is shown in figure 3.1.

D(     ,     )u u

uu
u0 u

u

Figure 3.1: Entropy dissipation.

For the case u− ≤ 0 a similar result holds, based on the fact, that entropy dissipation D
is skew-symmetric, i.e. D(u−, u+) = −D(u+, u−). Thanks to this we can define a function
of zero-entropy dissipation ũ0(u), so ũ0

− = ũ0(u−).

Definition 3.2 (Zero-entropy dissipation function). Let ũ0 : R → R be the function of
zero entropy dissipation, for which

D(u, ũ0(u)) = 0, (3.11)

where

ũ0(u) ∈ (ũ−(u), ũ(u)) if u > 0, (3.12)
ũ0(u) ∈ (ũ(u), ũ−(u)) if u < 0. (3.13)

(3.14)
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3.1. ENTROPY DISSIPATION

Lemma 3.3. The zero-entropy dissipation function ũ0(u) is monotone decreasing and

ũ0(ũ0(u)) = u, u ∈ R. (3.15)

Proof. From definition of ũ0(u) we have

D(u, ũ0(u)) = 0, u 6= ũ0(u), D(ũ0(u), ũ0(ũ0(u))) = 0, ũ0(u) 6= ũ0(ũ0(u)). (3.16)

Using the skew-symetry of D on the first equation we get

−D(ũ0(u), u) = D(ũ0(u), ũ0(ũ0(u))) = 0 (3.17)

and hence ũ0(ũ0(u)) = u.
Using the skew-symmetry property of D(u−, u+) again we have

∂u−D(u, ũ0(u)) = −∂u+D(ũ0(u), u). (3.18)

Differentiating the identity 3.11 and using 3.18 we obtain

dũ0

du
(u) = −

∂u−D(u, ũ0(u))

∂u+D(u, ũ0(u))
=
∂u+D(ũ0(u), u)

∂u+D(u, ũ0(u))
. (3.19)

From properties of D(u−, u+) we have

∂u+D(u, ũ0(u)) < 0, u > 0, (3.20)
∂u+D(u, ũ0(u)) > 0, u < 0. (3.21)

If we take u > 0, we have ũ0(u) < 0 and hence ∂u+D(ũ0(u), ũ0(ũ0(u))) > 0. Using
ũ0(ũ0(u)) = u we obtain ∂u+D(ũ0(u), u) > 0, which finally gives us dũ0/du < 0 for u > 0.
For negative u we obtain the same result.

Regularity at u = 0 can be proven by using the implicit function theorem and the
assumption f ′′′(0) 6= 0.

From the theorem 3.1 follows, that for the single entropy inequality is a shock admis-
sible, if u+ ∈ [ũ0

−, u−], for fixed u− > 0. Using similar procedure can be shown, that for
fixed u− < 0 is the interval of admissible right-hand state u+ ∈ [u−, ũ

0
−].

The interval [ũ0
−, u−] also contains [ũ−, u−], on which is the Oleinik entropy condition

satisfied and the shock is called classical or Lax shock. On the other hand for u+ ∈ [ũ0
−, ũ−]

the shock violate the Oleinik entropy condition, but satisfies the single entropy condition
and this kind of shocks is called nonclassical.

At the end of this section let us remark, that since the nonclassical shock violates the
Oleinik inequality, and hence the Lax inequality, characteristics do not come into the shock
on both sides, as they did in the case of classical shock (Figure 3.2), but they pass through
the shock, since f ′(ul,r) ≥ s, as shown in the Figure (3.3). These nonclassical shocks are
also called slow undercompressive.

For convex-concave function would be the approach entirely analogous by fixing the
right-hand state u+, however the nonclassical shock would be in this case fast undercom-
pressive, f ′(ul,r) ≤ s, see Figure 3.4. Therefore we will further consider only concave-convex
flux.
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S(     ,     )u u

f (     )u f (     )u

Figure 3.2: Classic shock.

S(     ,     )u u

f (     )u

f (     )u

Figure 3.3: Slow undercompressive shock.

3.2 Combination of wave fans
In previous section we have shown, that nonclassical shocks are also admissible in solutions
of (2.1-2.2). The question is, how the whole solution looks like.

For a wave to be physically realizable, is necessary that its speed si monotone increasing
function of self-similar variable x/t. In other words, if we have combination of two wave
fans, the speed of the left-hand wave must be less than or equal to the speed of the right-
hand one.

For further argumentation ti will be useful to define the function p(a, b) by relation

f(p(a, b))− f(a)

p(a, b)− a
=
f(b)− f(a)

b− a
. (3.22)
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S(     ,     )u u

f (     )uf (     )u

Figure 3.4: Fast undercompressive shock.

This simply means that the point [p(a, b), f(p(a, b))] is in aligned with points [a, f(a)] and
[b, f(b)]. see Figure 3.5.

o

o

o

o

o

o

o

u

u

u0

u

P(    ,    )u u

u

P 0

Figure 3.5: Important stages.

First, a rarefaction cannot be followed by any shock, because the shock wave would
be always slower. Thus, only a rarefaction wave can be continuously added after another
rarefaction.

Now, suppose we have a classical shock connecting u− > 0 to u+ ∈ [ũ−, u−). We cannot
add another classical shock nor a rarefaction, because it would be slower, except the case
u+ = ũ−, in which a rarefaction can follow the classical shock, since its speed is equal to
the speed of the shock. Consider next a nonclassical shock connecting u+ and some u1.
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3.2. COMBINATION OF WAVE FANS

For this nonclassical shock to be admissible one needs

u1 ≤ ũ0(u+) (3.23)

and it must be faster than the classical one, thus s(u+, u1) > s(u−, u+) and therefore
u1 > u− must hold. From Lemma 3.3 we know, that the function ũ0 is decreasing, so since
u+ > ũ0

−, we have
ũ0(ũ0(u−)) ≥ ũ0(u+). (3.24)

Using the identity ũ0(ũ0(u)) = u we get u− ≥ u1, which is a contradiction. Therefore the
nonclassical shock also cannot follow after the classical one.

Finally, consider a nonclassical shock connecting u− > 0 to u+ ∈ [ũ0
−, ũ−). It is possible

to connect any state u1 ∈ [u+, p(u−, u+)) from u+ by a classical shock, since its speed is
greater. If we would like to add another nonclassical shock after the first one, we would
have to take u1 ∈ (ũ+, ũ

0
+], but from properties of the function ũ0(u) we have ũ0

+ ≤ u−
and so any second nonclassical shock would be always slower than the first one. However
it is possible to add a rarefaction wave to u1 ≤ u+, which travel faster. From another
point of view, we can say, that stages u1in[ũ0

−, p(ũ
0
−, u−)] are attainable by combination of

nonclassical shock and classical one and furthermore stages u1in[ũ0
−, ũ−) are are attainable

by nonclassical shock followed by rarefaction.
If we now denote u− = ul and u+ = um, we can summarize the whole argumentation

given above in the view of ur as a solution to our Riemann problem.

Theorem 3.4 (Nonclassical solutions to Riemann problem for concave-convex flux). Let
the flux function f be concave-convex with inflection point at u = 0 (see 3.1). Then there
are admissible solutions of Riemann problem (2.1-2.2) with ul > 0, satisfying the single
entropy condition for given strictly convex entropy, consists of shock waves and rarefaction
waves given as follows:

• If ur > ul, the solution is a rarefaction wave connecting ul and ur monotonically and
continuously.

• If ur ∈ [p(ũ0
l , ul), ul), the solution is a classical shock wave connecting ul and ur.

• If ur ∈ [ũ0
l , p(ũ

0
l , ul)), there is infinitely many solutions depending on value um ∈

[ũ0
l , ũl]: It consists of a nonclassical shock connecting ul and the intermediate state

um followed by

a) a classical shock from um to ur if um < p(ul, ur) or

b) a rarefaction connecting um and ur if um ≥ ur.

• If ur ≤ ũ0
l , there is infinitely many solutions consisting of a nonclassical shock con-

necting ul and the intermediate state um ∈ [ũ0
l , ũl] followed by a rarefaction from um

to ur.
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Figures 3.6-3.8 illustrate the situation with nonclassical shock from the Theorem 3.4.
As we can see, the nonclassical shock caused nonuniquness of the solution, therefore we
need to impose some additional condition to solution in order to make it unique. This
problem will be discussed in the next chapter.

o

o

o

o

o

o

P(    ,    )u u

um

ul

ul

ur

u0

Figure 3.6: The case of nonclassical shock followed by the classical one.

o

o

o

o

o

um

ul

ul

ur

u0

Figure 3.7: The case of nonclassical shock followed by the classical one.

3.3 Diffusive-dispersive traveling waves
Consider the diffusive-dispersive model

ut + fx(u) = εuxx + δuxxx, u = uε,δ(x, t), (3.25)
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o
um

ul
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ur

Figure 3.8: The case of nonclassical shock followed by the rarefaction.

where the flux function f(u) is assumed to be concave-convex in the same sense like in
previous sections.

In order to obtain the original conservation law

ut + fx(u) = 0, u = u(x, t), (3.26)

we will be interested in the limit case ε → 0 in 3.25 with the ratio µ = ε/
√
|δ| kept

constant.
Now we will search for traveling wave solutions of 3.25. Let us recall, that the traveling

wave is a solution depending upon the rescaled variable

y :=
x− st√
|δ|

= µ
x− st
ε

, (3.27)

where s is considered to be a constant speed. The trajectory y 7→ u(y) than will correspond
to a traveling wave connecting fixed u− and some state u+. We denote η = sgn(δ).

If we express derivatives ut, ux, uxx and uxxx in terms of y, i.e.

ut = −sµ
ε
uy, ux =

µ

ε
uy (3.28)

uxx =
µ2

ε2
uyy, uxxx =

µ3

ε3
uyyy, (3.29)

we obtain the ordinary differential equation

−suy + fy = µuyy + ηuyyy, (3.30)

which is together with boundary conditions

lim
y→+∞

u(y) = u+, lim
y→−∞

u(y) = u−, (3.31)

lim
y→±∞

uy(y) = lim
y→±∞

uyy(y) = 0, (3.32)
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3.3. DIFFUSIVE-DISPERSIVE TRAVELING WAVES

satisfied by the traveling wave y 7→ u(y).
Integrating once the equation 1.8 over the interval (−∞, y] and using the boundary

condition we obtain
µuy + ηuyy = −s(u− u−) + f − f−. (3.33)

Denoting v = uy we can reformulate the equation 3.33 as a system of two differential
equations

d

dy

(
u
v

)
=

(
v

−ηµv + η(f − su)− η(f− − su−)

)
. (3.34)

For definiteness we will consider the left-hand state u− > 0 fixed and the speed s as
a parametr. Since we assume the flux function to be concave-convex, we will pay the
attention to the most interesting case s ∈ (f ′(ũ−), f ′(u−)), in which exist three equilibrium
points of the system 3.34. In these equilibrium points the identity v = 0 holds and we will
denote them as (u0, 0), (u1, 0) and (u2, 0), while

u2 < u1 < u0 = u− (3.35)

and values u1 and u2 satisfy

f(u1) + su1 = f− − su−, and f(u2) + su2 = f− − su−. (3.36)

This geometrically means, that all three points lie on the line passing through the point
(u−, f−) with the slope s.

This gives us a connection to the theory of classical and nonclassical shocks. If we take
the trajectory y 7→ u(y) leaving from u− at −∞, we want to know where it will reach +∞,
whether in u1 or in u2. It is obvious, that the point u1 is associated with the classical shock
and the point u2 with nonclassical shock, namely we have classical trajectory connecting
u0 with

u1 ∈ [ũ(u0), u0], s ∈ [f ′(u−(u0)), f ′(u0)] (3.37)

and nonclassical trajectory connecting u0 with

u2 ∈ [ũ0(u0), ũ(u0)), s ∈ (f ′(u−(u0)), s(u0, ũ
0(u0))]. (3.38)

The eigenvalues of the Jacobian matrix of the system 3.34 at any point (u, 0) are

λ1 =
−ηµ−

√
µ2 + 4η(f ′ − s)

2
, (3.39)

λ2 =
−ηµ+

√
µ2 + 4η(f ′ − s)

2
. (3.40)

First, we suppose δ < 0. At the point u2 we have f ′(u2) − s > 0 and so λ1 and λ2

are both positive. The situation is the same at the point u0, which means that both these
points are unstable. However, the u1 point is a saddle, so we can conclude, that, in the
case of negative δ, only classical trajectories exist.
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3.3. DIFFUSIVE-DISPERSIVE TRAVELING WAVES

If δ > 0, both u2 and u0 are saddle points, but the point u1 is stable, namely it is node,
if µ2 + 4(f ′ − s) > 0 and spiral, if µ2 + 4(f ′ − s) < 0. The nonclassical trajectory than
exists only if there is a saddle-saddle connection, which arise only when a special relation
between u0, u2 and µ holds.

We will now state here without proof an important result presented by Bedjaoui and
LeFloch in [11].

Theorem 3.5 (Kinetic function and shock set for general flux). Given a concave-convex
flux function (see 3.1), consider the diffusive-dispersive model 3.25 with the ratio µ =
ε/
√
delta fixed, δ > 0. Then, there exists a locally Lipschitz continuous and decreasing

kinetic function ũµ : R→ R satisfying

ũ(u) ≤ ũµ(u) < ũ0(u), u < 0, ũ0(u) < ũµ(u) ≤ ũ(u), u > 0, (3.41)

and such that the shock set generated by the model 3.25 is

S(u−) = {{ũµ(u−)} ∪ (p(u−, ũ
µ(u−)), u−]}, u− > 0. (3.42)

Moreover, there exists a function

A : R→ [0,+∞), (3.43)

called the threshold diffusion-dispersion ratio, which is smooth away from u = 0, Lipschitz
continuous at u = 0, increasing in u > 0, decreasing in u < 0 and such that

ũµ(u) = ũ(u) when µ ≥ A(u). (3.44)

Additionaly we have
ũµ(u)→ ũ0(u) as µ→ 0, ∀u ∈ R. (3.45)

The kinetic function from the theorem 3.5 plays very important role, since it completely
characterizes nonclassical shocks associated with the diffusive-dispersive model. For a
concrete un > 0 it gives us a value ũµ(u−) ∈ (ũ0

−, ũ−], which is the unique stage um in the
nonclassical solution and hence thanks to this we can solve the Riemann problem uniquely.

The shock set S(u−) given in the theorem 3.5 is a set of right-hand stages u+, that can
be connected by traveling wave from u−.

The threshold diffusion-dispersion ratio is also important, since it gives us qualitative
properties of the nonclassical shocks. The statement 3.44 tells us, that if the ratio µ is
chosen to be sufficiently large, the shock leaving from u− will be always classical. The
shock will be also always classical if u− is chosen to be sufficiently small. On the other
hand, by the statement 3.45 we see, that the shock will be always nonclassical, if the ratio
µ is sufficiently small.

We will demonstrate these ideas and statements on the example with concrete flux
function, namely on the cubic flow.
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Example 3.6 (Cubic flow). Consider the diffusive-dispersive model with cubic flux

ut + (u3)x = εuxx + δuxxx, u = uε,δ(x, t) (3.46)

with the ratio µ = ε/
√
δ kept constant and δ > 0. We search for traveling waves solutions

depending on the rescaled variable

y :=
x− st√

δ
= µ

x− st
ε

. (3.47)

The traveling wave y 7→ u(y) than has to satisfy

−suy + (u3)y = µuyy + ηuyyy, (3.48)

with boundary conditions

lim
y→+∞

u(y) = u+, lim
y→−∞

u(y) = u−, (3.49)

lim
y→±∞

uy(y) = lim
y→±∞

uyy(y) = 0. (3.50)

Integrating 3.48 we obtain

µuy + ηuyy = −s(u− u−) + u3 − u3
−. (3.51)

Also, taking the limit y → +∞ we have

s =
u3

+ − u3
−

u+ − u−
= u2

− + u−u+ + u2
+. (3.52)

Recall, that we assume u− > 0 fixed and we take s as a parametr. Since we have ũ− =
−u−/2, the range of speeds

s ∈ (
3

4
u2
−, 3u

2
−) (3.53)

gives us exactly three points in which the line passing through (u−, u
3
−) with slope s inter-

sects the graph f(u) = u3. We rewrite the equation 3.51 as a system

d

dy

(
u
v

)
=

(
v

−µv + (u3 − su)− (u3
− − su−)

)
. (3.54)

This system has got three equilibrium points (u0, 0), (u1, 0) and (u2, 0), where u0 = u− and
u1 and u2 are roots of

s = u2 + u0u+ u2
0. (3.55)

The eigenvalues of Jacobian of the system 3.54 are

λ1 =
−µ+

√
µ2 + 4(3u2 − s)

2
, (3.56)

λ2 =
−µ−

√
µ2 + 4(3u2 − s)

2
, (3.57)
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Since we have 3u2 − s > 0 at points u0 and u2, these points are saddles. At the point u1

we have 3u2− s < 0 and this point is stable. Now we want to derive a relation between u0,
u2 and µ for which a nonclassical trajectory would exist. Based on the fact, that v must
vanish at points u2 and u0 and that the expression u3 − su, which appears in the system
3.54, is cubic, we assume, that v is a parabola

v(y) = a(u− u2)(u− u0), (3.58)

where a is a constant we want to determine. Expressing vy from the system 3.54 we obtain

vy = v(−µ+
1

a
(u+ u0 + u2)), (3.59)

where we used 3.58 and 3.55 for the point u2. On the other hand, by differentiating 3.58
directly, we have

vy = av(2u− u0 − u2). (3.60)

Comparing those two expressions for vy, we get

1

a
= 2a and − a(u0 + u2) = −mu+

1

a
(u0 + u2). (3.61)

Hence, a = 1/
√

2 and we get the explicit relation

u2 = −u0 +

√
2

3
µ. (3.62)

Since the relation 3.55 must hold for both u1 and u2, than by comparing those two equations
we obtain

u0 + u1 + u2 = 0 (3.63)

and so u1 = −u0−u2. Since equilibrium points are ordered u2 < u1, we obtain immedientaly

u0 >
2
√

2

3
µ. (3.64)

We have shown, that for some fixed µ and any left-hand state u0 > 2µ̃, where µ̃ =
√

2
3
µ,

there exists a saddle-saddle connection from u0 to u2 = −u0 + µ̃. The kinetic function from
theorem 3.5 for u− > 0 takes the form

ũµ(u−) =

{
−u0 + µ̃, u− > 2µ̃
−u−/2, u− < 2µ̃.

(3.65)

Together with theory given in previous sections, we can express the nonclassical solution
to the conservation law with cubic flow for given diffusion-dispersion ratio µ̃ and ul > 2µ̃
as follows:

• ur > ul The solution si a rarefaction wave from ul to ur.
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• ur ∈ [−µ̃, ul) The solution is a classical shock wave connecting ul and ur.

• ur ∈ (−ul + µ̃,−µ̃) The solution consists of a slow nonclassical shock connecting ul
to um = −ul + µ̃ and fast classical shock from um to ur.

• ur < −ul + µ̃ The solution consists of a slow nonclassical shock connecting ul to
um = −ul + µ̃ and a rarefaction (not attached to the shock) from um to ur.

All of those cases are shown in Figures 3.9a-3.9h.
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Chapter 4

Numerical schemes

Having demonstrated the structure of nonclassical solutions of the Riemann problem for
nonconvex fluxes, we now test some numerical schemes in order to find some, that will
detect a nonclassical behavior. For the beginning we may say, that schemes for scalar
equations, that satisfy the TVD condition are excluded, since the nonclassical shock in-
crease total variation and those schemes then converge to classical solutions.

4.1 Finite difference schemes
Consider the diffusive-dispersive model with cubic flux

ut + (u3)x = εuxx + αε2uxxx, u = uε(x, t). (4.1)

Its limiting solution with ε→ 0 is the solution of the original conservation law ut+(u3)x = 0.
The parametr α ∈ R here is a measuring the ratio of the diffusion to the dispersion.
Comparing this to the ratio given in previous section we have α = 1/µ2.

Denoting uj(t) the approximation of u(xj, t), where xj = jh describes the mash of
the length h. If we use high-order accurate, centered finite differences for diffusion and
dispersion terms and the discretization of the flux term based on a numerical flux, we
obtain continuous in time, discrete in space difference scheme

duj
dt

+
gj+1/2 − gj−1/2

h
=

β

2h
(uj+1 − 2uj + uj−1) +

γ

6h
(uj+2 − 2uj+1 + 2uj−1 − uj−2), (4.2)

where gj±1/2 is a discrete flux and β > 0 and γ ∈ R are fixed parameters.
We will present a few difference schemes based on different approximation of the flux

term.

Scheme I. First order discretization of the flux:

gj+1/2 = u3
j . (4.3)
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4.1. FINITE DIFFERENCE SCHEMES

The equivalent equation for this scheme is

ut + (u3)x = h(
u3

2
+ β

u

2
)xx + h2(γ

u

3
− u3

6
)xxx +O(h3). (4.4)

We will pay the attention to the dispersive term. The linear term γu/3 and the
cubic term u3/6 are here with opposite sign, which leads to competition between
them. The linear term is responsible for producing nonclassical shock, while the
cubic one prevents them. Depending on the strength of the shock, one of them
wins. For sufficiently strong shocks it would be the cubic one and so the classical
behavior. We have done some numerical experiments on this scheme by changing
various parameters, however we were only able to detect classical behavior.

Scheme II. Second order discretization of the flux:

gj+1/2 =
1

4

u4
j+1 − u4

j

uj+1 − uj
. (4.5)

The equivalent equation for this scheme is

ut + (u3)x =
hβ

2
uxx +

h2

2
(
2γ

3
uxx − u2uxx − uu2

x)x +O(h3). (4.6)

The situation here is similar to the first case, there also appears to be a competition
between linear and nonlinear terms. This scheme is sensitive on choice of the parametr
γ. With different values both classical and nonclassical behavior appears.

Scheme III. Fourth-order flux:

gj+1/2 =
1

12
(−u3

j+2 + 7u3
j+1 + 7u3

j − u3
j−1). (4.7)

The equivalent equation for this scheme is

ut + (u3)x =
hβ

2
uxx +

h2γ

3
uxxx +O(h3), (4.8)

which coincides exactly with the original model 4.1 with

β = 2
ε

h
, γ = 3α

( ε
h

)2

. (4.9)

Thanks to this analogy the scheme mimic the solution of 4.1 very well. Recall, that
the nonclassical shock appears, only if

ul >
2
√

2

3
√
α
. (4.10)
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Figure 4.1: The case of nonclassical shock followed by the classical one.

0 5 10 15 20

−3

−2

−1

0

1

2

3

Figure 4.2: The case of nonclassical shock followed by the rarefaction.

Hence, for the shock corresponding to the traveling wave solution we have

um =

{
−ul

2
, 0 ≤ ul ≤ 2

√
2

3
√
α

−ul +
√

2
3
√
α
, ul >

2
√

2
3
√
α
.

(4.11)

In Figures 4.1 and 4.2 we plot the numerical solution computed by the third scheme
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with h = 1/200, ε = 1/50, α = 2/9 and we used the fourth-order Runge-Kutta
method for time stepping.
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Chapter 5

Conclusion

Let us conclude this paper with some practical remarks. As we have shown, classical
solutions are independent of regularization mechanisms and can be characterized by entropy
inequality. On the other hand, nonclassical solutions are very sensitive to the choice of
regularization. The entropy inequality does not characterizes them completly and we need
a special relation to select the unique solution.

Because of the sensitivity to reguralizations are nonclassical solutions fundamental in
nonlinear elasodynamics and phase transition dynamics with capillarity effects. There are
also many other physical models, where nonclassical behavior may occur, for example Thin
liquid film model or Magnetohydrodynamic model. It would be interesting to compare some
numerical solutions with real experiments.

Since we introduced here the theory of nonclassical solutions only for scalar conservation
laws with one inflection point, it would be nice to extend it to more general functions and
systems of equations.
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