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Abstract

In this paper we report recent developments and results concerning validation of the homogenization approach
applied in modeling waves in strongly heterogeneous elastic media. The homogenization limit model is obtained
for stationary waves, but can also be used to estimate dispersion properties for long guided waves propagation.
Band gaps distribution depends on the material contrast and on the geometrical arrangements in the microstruc-
ture. Similarity between discrete structures and heterogeneous continua is used to demonstrate the dispersion
phenomena. The modeling approach has been extended to the piezo-phononic materials, which may be useful in
designing smart materials. Also problems of optimal shape design at the microscopic level were pursued.
c© 2007 University of West Bohemia. All rights reserved.
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1. Introduction

Heterogeneous media with periodic structure gained growing attention in engineering com-
munity due to vast applications in design of smart materials. In the context of wave propagation,
thephotonic crystalsform important parts of devices for controlling electromagnetic wave prop-
agation, cf. [10, 4]. In analogy, the acoustic waves can be handled using thephononic crystals
constituted by elastic materials with large difference in their material parameters; modeling this
type of media was developed in the framework of the Bloch wave description. Recently in [2, 3]
an alternative approach based on the two-scale homogenization theory was presented.

The homogenized model reported here was obtained by asymptotic analysis in the frame-
work of the unfolding method [5] applied to thestrongly heterogeneous medium; it is character-
ized by scale-dependent elasticity in one of the composite constituents. The aim of this paper is
twofold: firstly, using a simple model of discrete mass-spring periodic structure, to provide an
asymptotic analysis illustration of the dispersion phenomenon, as represented by theband gaps
which result from the stiffness scaling; secondly, having in mind modeling of real composite
materials, to study the effect of the material contrast and the microscale size parameter (the
scale) on themodeling approximationfor the case of long guided wave propagation.

2. Dispersion in strongly heterogeneous mass-spring structures

Discrete mechanical structures of the mass-spring type are convenient to demonstrate disper-
sion properties of structures with large heterogeneity in material coefficients. Here we illustrate
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Fig. 1. (a): the scheme of the model. (b): Dispersion curves (lower and upper branches) for the modified
scalingε (long waves). Horizontal axis: fixed range of wave numbers for allε considered. Different
colors correspond to different scales:ε = 2 ... black,ε = 0.1 ... magenta. The limit dispersion branches
displayed in green.

how the dispersion phenomenon depends on the scaling of structural parameters.

2.1. Simple homogeneous chain with small branches

We consider a simple mass-spring 1D structure according to fig. 1a which is formed as a
single chain consisting of concentrated massesm1 connected by springsk1. Another masses
m2 are attached to each massm1 by a springk2. We consider wave propagated in the chain,
such that itsj-th mass undergoes motionu(j)

fig − bgu(t, x(j)) = u(j) = U exp{i(ωt+ jaκ)} , j = 1, 2, . . . ,

u(j+1) = u(j) exp{iaκ} ,

u(j−1) = u(j) exp{−iaκ} ,

(1)

wherea is the distance between two consecutive masses of the chain,x(j) = ja is the geomet-
rical position,κ is the wave number,ω is the frequency. The momentum equations written for
both parts of the structure (the chain and the branches) yield

−ω2m1u
(j) + k1(u

(j) − u(j−1))− k1(u
(j+1) − u(j))− k2(v

(j) − u(j)) = f
(j)
1 ,

−ω2m2v
(j) + k2(v

(j) − u(j)) = f
(j)
2 ,

(2)

wherev(j) is the motion of the attached massesm2. Eigenfrequency of the superimposed motion
(represented byv(j)) is

λ =
k2
m2

, hencev(j) =
λ

λ− ω2
u(j) +

f
(j)
2

(λ− ω2)m2
. (3)
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This substituted in (2)1 with applied (1)2,3 leads to the following equation

−ω2M(ω2)u(j) +K(κ)u(j) =
∑

α

f (j)α − ω2

ω2 − λ
f
(j)
2 (4)

where

M(ω2) = m1 +m2 −m2
ω2

ω2 − λ
, K(κ) = 4k1 sin

2(
a

2
κ) . (5)

So, the dispersion relationshipω = ω(κ) is obtained by solving the bi-quadratic equation

m1ω
4 −

[
λ(m1 +m2) + 4k1 sin

2(aκ/2)
]
ω2 + 4λk1 sin

2(aκ/2) = 0 . (6)

2.1.1. Scaling of the structural parameters

We shall now consider a sequence of models characterized by different length scalesε →
0+, so that the characteristic length of the microstructure isaε = εā. As the consequence, the
actual masses and spring stiffnesses are related to scale parameterε as follows

aε = εā ⇒ kε
α = ε−1k̄α , mε

α = εm̄α , α = 1, 2 . (7)

Also we consider magnitudes of the applied forces proportional to masses, thusf ε
α = εf̄α.

However, in order to evoke thestrongly heterogeneous propertieswe shall modify the scale
dependent stiffnesskε

2 := ε2ε−1k̄2, so that the eigenfrequencyλε = λ̄ is independent ofε, i.e.

kε
2 = εk̄2 ⇒ λε = λ̄ =

k̄2
m̄2

. (8)

so that (6) is rewritten as

εm̄1ω
4 −

[
ελ̄(m̄1 + m̄2)− 4k̄1ε−1 sin2(āκ/2)

]
ω2 + 4λ̄k1ε

−1 sin2(āκ/2) = 0 . (9)

Although this equation can be analyzed for both long and short waves modes, we are interested
in the long one. So, we assume low frequency and bounded wave number, i.e. bothω andκ
independent ofε. This option results in the following momentum equation

−ω2
[
m̄1 + m̄2 − m̄2

ω2

ω2 − λ̄

]
u(j) + 4ε−2k̄1 sin

2(
εā

2
κ̄)u(j) =

∑
α

f̄ (j)α − ω2

ω2 − λ̄
f̄
(j)
2 . (10)

One can pass to the limitε → 0+ in the second term, thus, obtaining the limit momentum
equation

−ω2
[
m̄1 + m̄2 − m̄2

ω2

ω2 − λ̄

]
u(j) + k̄1(āκ̄)2u(j) =

∑
α

f̄ (j)α − ω2

ω2 − λ̄
f̄
(j)
2 . (11)

This model exhibits the dispersive behaviour;ω(κ) is obtained by solving the bi-quadratic equa-
tion (see (6))

m̄1ω
4 −

[
λ̄(m̄1 + m̄2) + k1(āκ)2

]
ω2 + λ̄k̄1(āκ)2 = 0 , (12)

which yields two dispersion branches and, correspondingly, two phase velocities:

ωε
1,2 → ω01,2 , V ε

1,2 → V 01,2 . (13)

There is theband gapbetween the two branches of the dispersion curves, so that for frequencies
spanning]ω01, ω

0
2[ no waves of any wavelength can propagate, see fig. 1(b).
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Fig. 2. Scheme of the structure with two interconnected parallel chains;n = 5, ns = 2, the soft
substructureis involved in the lower chain (displacement magnitudeVk).

2.2. Parallel heterogeneous chains

We consider two parallel chains with nonuniform structural parameters (masses and stiff-
nesses) which vary peridically; the heterogeneous “microstructure” is constituted by periodic
distribution of two parallel sub-chains, see Fig. 2. Let each of the substructural chains consist of
n nodes (masses) interconnected by springs,j be the substructure index andk be the local mass
label relevant to the local substructure, so that the global positionx of the mass with labels(j, k)
is expressed asx(j,k) = jL + ka, whereL is the period length anda is the distance between
two neighbouring masses in chains. The waves propagating in both the chains are described in
terms of the displacementu(j,k) andv(j,k), thus

u(j,k) = Uk exp{iωt+ i[jL+ ka]κ} , v(j,k) = Vk exp{iωt+ i[jL+ ka]κ} , (14)

The momentum equations written for both chains of the structure (their parameters are labelled
with A, B, respectively)

−ω2mA
k Uk + kA

k,k+1(Uk − Uk+1 exp{iaκ}) + kA
k−1,k(Uk − Uk−1 exp{−iaκ}) + ck(Uk − Vk) = 0 ,

−ω2mB
k Vk + kB

k,k+1(Vk − Vk+1 exp{iaκ}) + kB
k−1,k(Vk − Vk−1 exp{−iaκ}) + ck(Vk − Uk) = 0 ,

(15)

wherekA
k,k+1 is the stiffness of the spring connecting massesmA

k , mA
k+1 andck is the stiffness of

the “transverse” spring connecting the two chains at positionx(j,k). Eq. (15) is supplemented
by the periodicity conditions

U0 = Un , V0 = Vn ,

Un+1 = U1 , Vn+1 = V1 .
(16)

In analogy with the structure treated above, we shall now pursue the scale dependence of
structural parameters, namely dimensionsaε, Lε = naε and spring and mass parameters. We
consider sequence of the scale-dependent models (15)-(16). By choosing the modified rescaling
of some stiffness parameters we account for soft substructures in each period, so that these
substructures will be analogous to disconnected inclusions in solid materials. In particular, we
define

kB,ε
i,i+1 =


εk̄B

i,i+1 , for 1 ≤ i ≤ ns + 1

1
ε
k̄B

i,i+1 , for ns + 2 ≤ i ≤ n
cε
l =


εc̄l , for 2 ≤ l ≤ ns + 1 ,

1
ε
c̄l , for l 6∈ [2, ns + 1] ,

kA,ε
l,l+1 =

1
ε
k̄A

l,l+1 , l = 1, . . . , n ,

(17)
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whereas all masses are scaled naturally w.r.t. the length, i.e.mA,ε
k = εm̄A

k andmB,ε
k = εm̄B

k for
k = 1, . . . , n.

Example

We considern = 5 and the soft substructure comprisingns = 2 nodes, labelled by indices
i = 2, 3, see Fig. 2. The balance of momentum in the substructure reads as

−ω2
(

m̄B 0
0 m̄B

) [
V2
V3

]
+ k̄B

(
2 − exp{iaεκ}

− exp{−iaεκ} 2

) [
V2
V3

]
−k̄B

(
− exp{−iaεκ} 0

0 − exp{iaεκ}

) [
V1
V4

]
+

(
c̄ 0
0 c̄

) [
V2 − U2
V3 − U3

]
=

[
0
0

]
.

(18)

VariablesV2, V3 can be eliminated from the global system on expressing them in terms ofV1, V4
andU2, U3; this can be done on solving the eigenvalue problem(

2k̄B + c̄ −k̄B exp{iaεκ}
−k̄B exp{−iaεκ} 2k̄B + c̄

) [
wr
1

wr
2

]
= λrm̄B

[
wr
1

wr
2

]
, (19)

which gives two eigenfrequencies

ω̄1 =
√

λ1 =

√
k̄B + c̄

m̄
, ω̄2 =

√
λ2 =

√
3k̄B + c̄

m̄
. (20)

These frequencies bound the region of thestop band(band gap). In Fig. 3 we display the
dispersion curves for different scales,ε ∈ {1, 0.5, 0.1, 0.05}; For clarity of interpretation of the
results we consider̄kA

l,l+1 = 1.5, m̄A
l = 1.5, m̄B

l = 1 for all l = 1, . . . , 5, c̄j = k̄B
i,i+1 = 2 for

j = 2, 3 andi = 1, 2, 3, whereas̄cj = k̄B
i,i+1 = 1.5 for all otherj, i, i.e. j 6= 2, 3 andi 6= 1, 2, 3.

From these figures it can be deduced, that for differentε small enough (less than 0.1 in our
case) the dispersion curves as functions of the measureless wavenumber (in the Brillouin zone)
are just rescaled:ωε2(κ̃) =

ε1
ε2

ωε1(κ̃), whereκ̃ = εκε. In Fig. 4 we compare the low-frequency
dispersion modes revealing existence of the band gap the width of which isε-independent forε
sufficiently small.

3. Waves in strongly heterogeneous elastic continuum

We consider an elastic medium whose material properties, being attributed to material con-
stituents vary periodically with position; throughout the following text all quantities varying
with this microstructural periodicity are denoted with superscriptε.

The heterogeneous elastic body occupies open bounded domainΩ ⊂ R3, its microstructure
is specified by reference cellY =]0, 1[3 perforated by inclusionY2 ⊂ Y , whereby the matrix
part isY1 = Y \ Y2. The decomposition ofΩ is generated as follows

Ωε
2 =

⋃
k∈Kε

ε(Y2 + k) , whereKε = {k ∈ Z| ε(k + Y2) ⊂ Ω} ,

Ωε
1 = Ω \ Ωε

2 .

Properties of the elastic body are described by the standard elasticity tensorcε
ijkl, where

i, j, k = 1, 2, . . . , 3. We assume that inclusions are occupied by a “very soft material” in such
a sense that there the material coefficients are significantly smaller than those of the matrix
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(a) (b)

(c) (d)

Fig. 3. Dispersion for the 10 node structure for: a)ε = 1, b) ε = 0.5, c) ε = 0.1, d) ε = 0.05.

(a) (b)

Fig. 4. Dispersion for the 10 node structure. First two modes displayed which are associated with the
“soft substructure”; the yellow region bounded byω̄1, ω̄2 for ε ∈ {1, 0.5, 0.1, 0.05, 0.01}: a) the same
relative wave number for all cases, b) fixed range of wave numbers.
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compartment, howeverthe material densityis of the same order of magnitude in both the com-
partments; as an important feature of the modeling, thestrong heterogeneityis related to the
geometrical scale of the underlying microstructure by coefficientε2:

ρε(x) =

{
ρ1 in Ωε

1,
ρ2 in Ωε

2,
cε
ijkl(x) =

{
c1ijkl in Ωε

1,
ε2c2ijkl in Ωε

2.

3.1. Problem formulation

We consider stationary wave propagation, assuming a harmonic excitation of a single fre-
quencyω (stationary waves)

f̃ (x, t) = f (x)eiωt ,

wheref = (fi), i = 1, 2, 3 is the magnitude field of the applied volumic force. In general, we
should expect a dispersive displacement field with magnitudeuε

ũε(x, ω, t) = uε(x, ω)eiωt .

This allows us to study the steady periodic response of the medium, as characterized by dis-
placement fielduε which satisfies the following problem: Finduε ∈ H10(Ω) such that

−ω2
∫
Ω

ρεuε · v+
∫
Ω

cε
ijklekl(uε)eij(v) =

∫
Ω

f · v ∀v ∈ H10(Ω) . (21)

3.2. Homogenized model

In [3], the unfolding method of homogenization [5] was applied to obtain a limit model
whenε → 0. We just record the resulting system of coupled equations which describe the
structure behaviour at two scales, the “macroscopic” one and the “microscopic” one.

First we define the homogenized coefficients involved in the homogenized model of wave
propagation. The “frequency–dependent coefficients” are determined just by material properties
of the inclusion and by the material densityρ1, whereas the elasticity coefficients are related
exclusively to the matrix compartment.

Frequency–dependent homogenized coefficientsinvolved in the macroscopic momentum
equation are expressed in terms of eigenelements(λrϕr) ∈ R × H10(Y2), r = 1, 2, . . . of
the elastic spectral problem which is imposed in inclusionY2 with ϕr = 0 on∂Y2:∫

Y2

c2ijkle
y
kl(ϕ

r) ey
ij(v) = λr

∫
Y2

ρ2ϕr · v ∀v ∈ H10(Y2) ,
∫

Y2

ρ2ϕr ·ϕs = δrs . (22)

To simplify the notation we introduce theeigenmomentummr = (mr
i ),

mr =
∫

Y2

ρ2ϕr.

We recover the following tensors, all depending onω2:

• Mass tensorM∗ = (M∗
ij)

M∗
ij(ω

2) =
1
|Y |

∫
Y

ρδij −
1
|Y |

∑
r≥1

ω2

ω2 − λr
mr

i m
r
j ; (23)
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Fig. 5. Low band gap distribution for elliptic inclusion (2D problem). dark grey (green) strips – propa-
gation zone, light grey (yellow) strips – strong band gap, white strips – weak band gaps. As a rule, the
strong band gap is always separated from the propagation zone by the “white zones” of the weak band
gaps in “anisotropic cases”. The curves illustrate eigenvalues of mass tensorM∗(ω).

• Applied load tensorB∗ = (B∗
ij)

B∗
ij(ω

2) = δij −
1
|Y |

∑
r≥1

ω2

ω2 − λr
mr

i

∫
Y2

ϕr
j . (24)

The elasticity coefficientsare related to the perforated matrix domain, thus being indepen-
dent of the inclusions material:

C∗
ijkl =

1
|Y |

∫
Y1

cpqrse
y
rs(w

kl +Πkl)epq(wij +Πij) , (25)

whereΠkl = (Πkl
i ) = (ylδik) andwkl ∈ H1#(Y1) are the corrector functions satisfying∫

Y1

cpqrse
y
rs(w

kl +Πkl)ey
pq(v) = 0 ∀v ∈ H1#(Y1) . (26)

The global equation– the macromodel – involves the homogenized coefficients. We find
u ∈ H10(Ω) such that

−ω2
∫
Ω
(M∗(ω2) · u) · v+

∫
Ω

C∗
ijklekl(u) eij(v) =

∫
Ω
(B∗(ω2) · f ) · v , ∀v ∈ H10(Ω) . (27)

3.3. Band gaps of stationary waves

The acoustic band gaps are frequency intervals ofdisabled or restrictedwave propagation.
For the homogenized model they are determined by analyzing eigenvaluesµk of mass tensor
M∗

ij(ω),
det(M∗

ij(ω)− µkδij) = 0,

for any interval spanned by two consecutive eigenvalues, i.e.ω ∈]
√

λr,
√

λr+1[. The following
band types are distinguished; frequencyω falls into (see Fig. 5):
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• strong gap, if allµk < 0, so that no wave can propagate;

• weak gap, if there is(k, l): µkµl < 0; in this case local wave propagation is confined in
the manifold determined by eigenvectors associated with positive eigenvalues;

• propagation zone, if allµk > 0, waves of any polarization can propagate.

4. Dispersion of guided waves in periodic media

4.1. Non-homogenized medium

For a finite scale of heterogeneities, guided waves can also be described in terms of the
unfolding operator, which allows us to compute the response using thesingle reference periodic
cell that represents the periodic structure. We consider

◦ macroscopic scalex (relevant to global position)

◦ microscopic scalez (relevant to local position – scale of heterogeneities)

For a given finite scaleε > 0 of heterogeneities we introducez = εy ∈ Z := εY . Using the
unfolding operation, the following decomposition is defined

x = x̄+ z̃ wherex̄i = εji , j ∈ ZN , x− x̄ =: z̃ ∈ Z . (28)

Each point inZ oscillates with amplitudẽu(z̃); the phase shift between different points depends
on their mutual distancēx+ z̃, so that

u := ũ(z̃) exp{iκ · (x̄+ z̃) + iωt}, (29)

whereũ is Z-periodic. Accordingly, the strain is computed asex
ij = ex̄

ij + ez̃
ij, where

eij(u) =
[
eij(ũ) +

1
2
(κiũj + κjũi)

]
exp{iκ · (x̄+ z̃) + iωt}

= [eij(ũ) + gij(ũ)] exp{iκ · (x̄+ z̃) + iωt} .

(30)

Propagation of guided plane waves in periodic medium are analysed using the following spectral
problem: Given awave vectorκi = κni, |n| = 1, find eigenfunctions{wr}, wr ∈ H1#(Z) and
eigenfrequenciesωr, r = 1, 2, . . . , such that∫

Z

Dε
ijklekl(wr)eij(v) +

∫
Z

Dε
ijklgkl(wr)gij(v)

−i
∫

Z

Dε
ijklekl(wr)gij(v) + i

∫
Z

Dε
ijklgkl(wr)eij(v) = (ωr)2

∫
Z

w · v ∀v ∈ H1#(Z) ,
(31)

wherewr are amplitudes of the eigenmodes andDε
ijkl ≡ cε

ijkl are the elastic coefficients, defined
piecewise inZ.
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4.2. Homogenization based analysis

Usually the band gaps are identified from thedispersiondiagrams. For the homogenized
model the dispersion of guided plane waves is analyzed in the standard way, using the following
ansatz:

u(x, t) = ū e−i(ωt−xjκj) , (32)

whereū is the polarization vector (the wave amplitude) and, again,κj = njκ, |n| = 1, i.e. n
is the incidence direction. The dispersion analysis consists in computing nonlinear dependen-
cies ū = ū(ω) andκ = κ(ω); for this one substitutes (32) into the homogenized model in its
differential Fourier-transformed form

−ω2M∗
ij(ω

2)uj − C∗
ijkl

∂2uk

∂xj∂xl

= 0 , thus obtaining − ω2M∗
ij(ω

2)ūj + κ2 Γikūk = 0 ,

(33)

whereΓik = C∗
ijklnjnl is the Christoffel acoustic tensor. The dispersion is analyzed in terms of

the following problem:

• for all ω ∈ [ωa, ωb] andω 6∈ {λr}r compute eigenelements(ηβ, wβ):

ω2M∗
ij(ω

2)wβ
j = ηβΓikw

β
k , β = 1, 2, 3 ; (34)

• if ηβ > 0, thenκβ =
√

ηβ,

• elseω falls in anacoustic gap, wave number is not defined.

4.3. Validation of the homogenized model by dispersion analysis

We propose the homogenized model as a tool for estimating the dispersion properties of
the heterogeneous solids, however, for this it is necessary to investigate for whichmaterial
contrastsand for whichscalesthe homogenized model can be employed. It is important to
note, that scaleε determines the ratio between the microstructure size and the wave length;
in turn, the homogenization based analysis is relevant forlong wavesonly, thereby the whole
Brillouin zone can hardly be identified.

We introduce the contrast in elasticity of the two components:0 < r < 1, so that (see (28))

r = |D2ijkl|/|D̄refijkl| << 1 ,

Dε
ijkl(z̃) =


D2ijkl = ε2c2ijkl = rD̄refijkl z̃ ∈ Z2

D1ijkl ≈ D̄refijkl z̃ ∈ Z1 = Z \ Z2 ,

(35)

whereD̄refijkl is the reference elasticity tensor. Hence, givenε > 0 we obtainc2ijkl = D2ijkl/ε
2 =

Drefijkl r/ε2 and we can compute eigenfrequenciesλk
(r,ε) defined by (22) where the clamped

inclusion isY2 = 1
ε
Z2. Alternatively, we may introduce “reference eigenvalues”λ̄k defined also

by (22), however with the elasticity therein replaced byD̄refijkl. Thus, for any combination(r, ε)
of the contrast and scale the “rescaled eigenvalues” are

λk
(r,ε) =

r

ε2
λ̄k , k = 1, 2, . . . ,

these are used to compute the actual mass matrixM∗(r,ε) by (23). Consequently, for(r, ε) we
can compare the dispersion response computed for the heterogeneous model (31) or for the
homogenized one (34):
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Fig. 6. Dispersion curvesκ — ω for the homogenized model (left) and for the FE heterogeneous model
(right); above:elliptic inclusions, below:circular inclusions; contrast and scale parameters:r = 0.01
andε = 0.01. In the right-hand-side figures the weak and strong band gaps, as indicated by white and
yellow (grey) strips, respectively, were computed by the homogenized model for stationary waves. The
strong band gapsdo not appearin the “anisotropic case”, as here represented by the elliptic geometry.

• Heterogeneous model(31). Givenκ ∈]0, κ[, compute frequencies{ωk(κ)}k, wherek =
1, 2, . . . , k; assumingωk ≤ ωk+1, only low modes (k small) is needed, since we are
interested in low band gaps.

• Homogenized corrected model(34). Given a (low) frequency rangeω ∈]ω, ω[\{λk
(r,ε)}k

(resonance modes excluded), compute wave numbers{κβ(ω)}, β = 1, 2, 3 (for 3D prob-
lems).

According to our observations, whenr = 0.01 (larger contrast), the homogenization based
approximation is accurate sufficiently, as demonstrated in Fig. 6.

5. Conclusion

This study has proved a great potential in modeling phononic materials (crystals) using the
homogenization approach which was elaborated rigorously in [3] by the unfolding method of
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homogenization [5, 6], although a formal treatment by the asymptotic expansion was discussed
much earlier in [1]. Here we focused on some practical aspects of the model applicability to
real structures with a given material composition. The homogenized model, which must be cor-
rected for given material contrast and geometrical scale, serves as an easy-to-use computational
tool for an approximate prediction of the low band gap distribution. Thus, it can be very in-
teresting to follow this approach in development of optimum designed phononic materials, see
[7]. Recently the model has been extended to the piezo-phononic materials [8, 9] featured by
coupling strain and electric field.
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