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Abstract  

Vibration and acoustic requirements are becoming increasingly important in the design of mechanical 

structures. The need to vary the structural behaviour to solve noise and vibration problems occurs at design or 

prototype stage, giving rise to the so-called structural modification problem. Structural dynamic modification 

(SDM) as an application of modal analysis is a technique to study the effect of physical and geometrical 

parameter changes of a structural system on its dynamic properties which are mainly in the forms of natural 

frequencies and mode shapes. The fundamental approaches and formulations to SDM of vibrating systems are 

introduced. The changes of dynamical behaviour of a structure by modification of mass, damping and stiffness 

parameters of the structure are presented. The SDM of the real engineering structures is demonstrated. For these 

structures, it is more important to determine the structural modification in terms of physical and geometrical 

parameter changes related to mass, damping and stiffness parameters of vibrating structure. In this paper, the 

design and technological treatments are considered to achieve suitable vibration and acoustical properties of 

vibrating system. The modal properties of selected structures under physical parameters modification are studied.    
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1. Introduction  

Structural modification within the frame of vibration analysis technology refers to a 

technique to modify physical properties of a structure in order to change or optimize its 

dynamic properties. Enhancement of the structural or acoustic response is one of the common 

goals of structural modification processes and can be related to any of the following elements: 

the source, the transmission path or the noise radiating component. This differs from 

structural modification for static analysis, where the changes are made to satisfy criteria of 

static design such as the reduction of stress concentration.  

The dynamic characteristics of a structure usually referred to as its modal properties -

natural frequencies and mode shapes, are determined by its mass, stiffness and damping 

distributions. The properties outlined by these distributions are called the spatial properties of 

the structure. The spatial properties are often quantified by a mathematical model of structure, 

such as a finite element (FE) model. This model translates the physical properties of the 

structure, such as its geometrical parameters and material properties, into distributed mass, 

stiffness and damping properties. For structural modification using an FE model, it is possible 

to determine the modification in terms of mass, stiffness and damping changes. However, for 

a real-life structure, it is more important to determine the structural modification in terms of 

geometrical parameter (such as thickness, length, diameter, etc.) changes or material property 

(such as damping coefficient, density, Young modulus, etc.) changes. 
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There are two main reasons for structural modification. First, an existing structure may 

exhibit unsatisfactory dynamic characteristics. This is not unusual, since it is customary for 

design engineers to consider static loading and balance when designing a structure or a 

component, even if the structure may eventually work in an environment with dynamic 

loading. As we all are aware, a dynamic response can be many times greater than the static 

one, causing an excessive dynamic stress concentration that dwarfs any static stress 

concentration. Second, the design of a structure which is known to experience a dynamic 

working environment needs to satisfy some defined criteria such as averting vibration 

resonances. Generally, it can be said that the main objective of SDM techniques is to reduce 

vibration levels, shift resonances [8], improve dynamic stability, place optimally the modal points, 

perform modal synthesis, and optimize the weight and cost subject to dynamic constraints. 

With exceptions, theoretically any physical or spatial change of a structure should result in 

modal property changes. This implies that for a proposed modal property change, almost any 

structural change of sufficient extent may realize it. Therefore, it seems to have numerous 

possible solutions of physical changes for a structural modification problem. The reality is 

different from this optimistic notion. Firstly, practical design and performance requirements 

often impose restrictions on structural modification. There are only limited modifications that 

are practical or feasible. Secondly, for a simple proposition of modal property change such as 

a natural frequency change to avert excitation frequency range, there are restrictions on 

changes brought unintentionally on other modal properties. Thirdly, other physical constraints, 

such as minimum total mass change to the structure, may be required. Many practical structural 

modification cases have very simple objectives. Most of the structural modification methods 

[1-3], [6], [7], [9] aim to change a structure’s modal properties by modifying the existing 

physical or spatial properties. However, structural modification can also be carried out by 

adding a substructure to the original structure. 

Two different problems are usually considered for structural modification - the direct 

problem and the inverse problem. The direct problem consists in determining the effect of 

already established modifications. This is a verification problem aimed at establishing the 

efficiency of performed changes on the dynamic behaviour of the considered system. 

The inverse problem identifies, in the framework of a given set of possible modifications, 

the most appropriate changes required to obtain the desired dynamic behaviour. Therefore this 

is a typical design problem, consisting in specifying the required tools to obtain an 

improvement of the structural or acoustic response. The properties describing the original 

vibrating structure, whose dynamic behaviour is modified, are obtained either from an 

experimental database or from theoretical analysis using a finite element model of the system. 

The problem of SDM techniques is very wide. The assumption of this article is to 

present a short summary of the structural dynamic modification techniques and the general 

mathematical theory of the modification process. The structural modifications of selected 

real-life structures are presented. The changes of modal properties of modified structures are 

studied in dependency on changes of spatial and physical properties. 

2. Theoretical formulation of SDM 

2.1. Vibrating systems with proportional damping  

The dynamic behaviour of a proportionally damped structure which is assumed to be 

linear and discretized for n degrees of freedom can be described by the equations of motion 

 fKxxBxM =++ , (1) 
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where M, B = αM + βK and K are mass, damping and stiffness matrices, x , x  and x  are 

acceleration, velocity and displacement vectors of the structural points and f  is force vector. 

The undamped homogeneous equation  

 0KxxM =+ , (2) 

provides the eigenvalue problem 

 0MK =λ− φφφφ)( . (3) 

The solution of (3) yields the matrices eigenvalues Λ Λ Λ Λ and eigenvectors ΦΦΦΦ 

 

ω

ω

=
2

2
1

n

ΛΛΛΛ ,         ],...,,[ nφφφφφφφφφφφφΦΦΦΦ 21= . (4) 

The eigenvectors satisfy the orthonormal conditions 

 IM =ΦΦΦΦΦΦΦΦT ,    ΛΛΛΛΦΦΦΦΦΦΦΦ =KT ,    IB =β+α= ΛΛΛΛΦΦΦΦΦΦΦΦT , (5) 

Using the transformation qx =  in the equation of motion (1), and premultiplying by ΦΦΦΦ
T
 

one obtains 

 fqKqBqM
TTTT ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ =++  (6) 

and after arrangement 

 fqqq
TΦΦΦΦ=++ . (7) 

The structural modifications cause changes in the parameter matrices of the spatial model 

of the structure and the above equations get modified as 

 fxKKxBBxMM =∆++∆++∆+ )()()( , (8) 

where ∆M, ∆B and ∆K are changes in the parametric matrices due to modification. 

Using again the coordinate transformation x = ΦΦΦΦq, premultiplying equation (8) by ΦΦΦΦ
T
 and 

after arrangement, we obtain 

 fqKqBqMI
TTTT ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ =∆++∆++∆+ )()()( . (9) 

It is important to note, that the matrices 

 ΦΦΦΦΦΦΦΦ MM ∆=∆ Tˆ ,      ΦΦΦΦΦΦΦΦ BB ∆=∆ Tˆ ,       ΦΦΦΦΦΦΦΦ KK ∆=∆ Tˆ , (10) 

are not usually diagonalised by the eigenvectors of the original structure. Then, the equations 

of motion expressed in the modal coordinates of the original structure are coupled 

 fqKqBqMI TΦΦΦΦ=∆++∆++∆+ )ˆ()ˆ()ˆ( . (11) 

From this reason, it is required to study undamped homogenous problem 

 0qKqMI =∆++∆+ )ˆ()ˆ(  (12) 

and to solve the eigenvalue problem of undamped modified structure in the form 

 0MIK =∆+λ−∆+ mm φφφφ)]ˆ()ˆ[( . (13) 
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Using the new transformations mmqq =  and premultiplying by T
mΦΦΦΦ , the equations of 

motion are uncoupled, the new eigenvalues m  and the new eigenvectors mΦΦΦΦ  are determined 

and following ortonormal conditions are held 

 IMI =∆+ mm ΦΦΦΦΦΦΦΦ )ˆ( ,  mmm B =∆+ ΦΦΦΦΦΦΦΦ )ˆ( ,  mmm K =∆+ ΦΦΦΦΦΦΦΦ )ˆ( . (14) 

Then, the uncoupled form of equations motion (11) has the form 

 fqqq mmmmmm ΦΦΦΦΦΦΦΦ=++ . (15) 

The natural frequencies of the modified structure can be obtained from the eigenvalue 

matrix ΛΛΛΛm. The new mode shapes of the modified structure are a linear combination of the 

original structure and they are generally expressed by ΨΨΨΨ = ΦΦΦΦΦΦΦΦm. Then the physical 

coordinates can be written as  mmm qqqx ΦΦΦΦΦΦΦΦΦΦΦΦ === . 

2.2. Vibrating systems with hysteretical damping  

The dynamic behaviour of linear multi-degrees of freedom structure with structural 

(hysteretic) damping can be described by the equation of motion 

 fxHKxM =++ )( i  (16) 

where M is the mass matrix, H is the hysteretic damping matrix, K is the stiffness matrix of 

the system. The vectors x , x  and f are the displacements, accelerations and forces 

respectively and 1−=i  is imaginary unit. 

Phenomenologically, the hysteretic damping is defined on the base of harmonic motion of 

the structure. Then, for harmonic excitation, it is necessary to consider that the force vector f 

and the displacement vector x are as follows 

 ti
e

ω= Ff ,   ti
e

ω= Xx . (17) 

 After substituting (17) into (17), the equation of motion has the form  

 FXHMK =+ω− ])[( i
2 , (18) 

or 

 FXD =ω)( , (19) 

where HMKD i+ω−=ω 2)(  can be defined as a dynamic stiffness matrix (DSM). 

If a modification in the hysteretically damped structure has to be incorporated through 

changes in its parameters, the equation (18) can be rewritten as 

 FXHHMMKK =∆++∆+ω−∆+ mi )]()()[( 2 , (20) 

where ∆M, ∆H and ∆K are changes in the parametric matrices, Xm is new vector of 

displacement of the modified structure. 

The equation (20) can be arranged as follows 

 FXHMKHMK =∆+∆ω−∆++ω− mi )]()[( 22 , (21) 

or 

 FXDXDD =ω=ω∆+ω mmm )()]()([ , (22) 
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where 

 HMKD ∆+∆ω−∆=ω∆ 2)( , (23) 

is the change in DSM due to the changes in geometrical parameters and material properties 

and )(ωD  is DSM of the modified structure. 

From equation (23) it is clear that the construction of modifying DSM ( )(ω∆D ), for the 

modifying element, is required. It is also obvious that the modifying DSM should be such that 

it can be directly added to the unmodified DSM ( )(ωD ) to get the modified DSM ( )(ωmD ). 

The construction of the modifying DSM depends on specific possibilities different modifying 

elements – pure mass modification, pure stiffness modification, pure damping modification or 

mutual combination of these modifications. 

Generally, the extraction of the natural frequencies and related mode shapes can be 

performed using real part of the complex DSM (18), i.e. 

 MKR
2ω−=ω)( . (24) 

The matrix R(ω) is a function of the forcing frequency ω. The determination of natural 

frequencies and mode shapes corresponds to the solution of eigenvalue problem (3). Using 

this procedure required set of natural frequencies and related mode shapes are determined. 

3. Numerical examples 

3.1 Structural modification of cantilever beam by the constraining viscoelastic layers 

The dynamical properties of cantilever beam embedded into constraining layers (Fig. 1) 

are studied. For this structure the elastic properties of beam element are considered and for 

isotropic linear viscoelastic material of constraining layers, energy dissipation under harmonic 

vibration is taken into account with complex Young modulus of elasticity. 
 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Cantilever beam partially embedded into constraining layers.  

Finite element formulation for beam element embedded into constraint damping layers 

was carried out following the standard procedure of finite element method. The element 

matrices for this type of structure were derived in detail in [5]. 

Let us consider an clamped beam uniform thickness h, width b and length L, partially 

embedded into constraint layers. The beam is bilaterally covered by constraining layers 

uniform thickness h1, resp. h2 which are embedded into foundation.  

lc 

l 

h1 

h2 

h 

constraining damping layers 
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The main assumptions we make are concerned with the cross sectional behaviour of the 

beam, resp. cross sectional behaviour of constraint layers during deformation. The behaviour 

of cross section of beam is assumed in framework of classical beam theory. The point 

displacements of constraining layers are assumed as linear functions of point position of 

constraining layer to the reference plane [5]. The contact between structural element and 

constraint layers is assumed without friction. The assumption of perfect adhesion of layers 

and structural element is considered, i.e. no relative motion of interface points are occurred 

during deformation of structure. The normal to the neutral axis undeformed structure 

represented by a straight line could be for deformed structure represented by a set of three 

straight lines  

The total strain energy of structure is supposed in the form   

 Ω+Ω=+=
= ΩΩ=

2

1

2

1

dd
2

1

j

bjbj
T
bjbb

T
b

j

bjb

bjb

UUU εεεεσσσσεεεεσσσσ , (25) 

where Ωb  is domain occupied by beam, Ωbj  is domain occupied by jth constraining layer. 

The total kinetic energy is expressed as 

 Ωρ+Ωρ=+=
= ΩΩ=

2

1

2

1

dd
2

1

j

bjbj
T
bjjbb

T
bb

j

bjb

bjb

TTT uuuu , (26) 

where ρb , resp. ρbj  are density of the beam, resp. density of the constraining layers and bu , 

resp. bju  are velocities of the beam points, resp. velocities of the constraining layer points. 

The work of external forces is defined by   

 

Γ

Γ=

tp

tpb
T

W dqp , (27) 

where tpΓ  is the portion of the boundary where the tractions are described and p
T
 is a vector 

of external surface distributed load and bq  is displacement vector of points on the neutral axis. 

To develop the equations of motion of a beam element embedded into constraint layers, 

Hamilton's variational principle is used. According to Hamilton's variational principle, the first 

variation must be fulfilled 

 0d
2

1

=δ+δ−δ

t

t

tWUT )( . (28) 

The hysteretic damping in material of the constraining layers is considered. The damping 

properties of the constraining layers are taken into account in the form of complex modulus  

 )( β+=+= i1EiEEE
irc , (29) 

where EE
R =  is real part of complex modulus - Young modulus, I

E  is imaginary part of 

complex modulus (loss modulus) and RI
EE=β is material loss factor. 

Using the hysteretic damping model defined above in material of constraining layers, we 

obtain the finite element equations of motion in the matrix form 
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 fqHKKqMM =∆+∆++∆+ c
llb

c
lb i ])[()( , (30) 

where Mb and Kb are the mass and stiffness matrix of the beam without constraining layers, 

∆Mb and ∆Kb are the changes of the mass and stiffness structural matrix caused by 

constraining layers and ∆Hl is the hysteretic matrix considering the hysteretic damping of 

constraining layers. The vector of nodal displacement q
c
 is also complex. 

The equation (30) is used to finite element formulation of the eigenvalues problem. The 

damping model of constraining layers is defined only for structures under harmonic vibrations 

(17). The vector of nodal displacements and force vector is supposed in the form 

 ticc
e

ω= Xq ,     ti
e

ω= Ff , (31) 

where irc
iXXX +=  is complex eigenvector, while rX  and iX  are real part and imaginary 

parts of complex eigenvectors, respectively. 

Then, eigenvalue problem of the equation of motion (30) can be written in the following 

matrix form 

 0XHMMKK =∆+∆+λ−∆+ c
illb

c
ilb i ])()[( , (32) 

where c
iλ  is i-th complex eigenvalues of the structure and c

iX  is related complex eigenvector. 

Equation (32) gives the i-th natural frequency ωi and i-th modal loss factor ηi  for mode as 

follows 

 ]Re[ c
ii λ=ω ,        

r
i

i
i

c
i

c
i

i
λ

λ
=

λ

λ
=η

]Re[

]Im[
, (33) 

where )( ii
i
i

r
i

c
i i η+ω=λ+λ=λ i12  is complex eigenvalue, ]Re[ c

i
r
i λ=λ  and ]Im[ c

i
i
i λ=λ  are real 

and imaginary parts of i-th complex eigenvalue, respectively. 

After introducing of the following  non-dimensional parameters: 

 non-dimensional density of j-th constraining layer 
ρ

ρ
=ρ

j
j ,  

 non-dimensional Young modulus of j-th constraining layer 
E

E
E

j
j = ,  

 non-dimensional thickness of j-th constraining layer  
h

h
h

j
j = ,  

 non-dimensional length of layers  
0l

l
l c= , 

the natural frequencies and loss factors of the cantilever beam (Fig. 1) which is embedded into 

constraining damping layers are determined.  

The objective of this section is to present some interesting results obtained by numerical 

analysis of beam embedded into viscoelastic environment. The natural frequency and modal 

loss factor of this structure are in the spotlight of presented numerical analysis. In order to 

provide integrate summary about properties of beam structure created using this manner, the 

dependencies of natural frequencies and modal loss factors vs. geometrical parameters and 

material properties are presented. The following parametric studies show the influence of 

non-dimensional parameters on the resonance frequency and modal loss factor of beam 

structure. The considered material properties and geometry parameters of the beam structure 

(Fig. 1.) are as follows: 
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 beam structural element 

 E = 70 GPa;  ρ = 2700 kgm
-3

; h = 0,01 m; l = 0,3 m; b = 0,05 m; 

 constraining layers (the same material properties and geometry for both layers) 

E1 = E2 = 0,07 GPa; ρ1 = ρ2 = 1000 kgm
-3

; h1 = h2 = 0,01÷ 0,1 m; l = 0 ÷ 0,3 m; b = 0,05 m; 

β1 = β2 = 0,2 
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Fig. 2. Dependencies of the natural frequency ωi and modal loss factor ηi of the first three modes  

on non-dimensional length of layers l  (for 52,=h ). 
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Fig. 3. Dependencies of the first natural frequency ω1 and the first modal loss factor η1  

on non-dimensional length of layers l and for different h . 
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The effects of the geometrical parameters and material properties of the structure on the 

natural frequencies and modal loss factors of beam structure are studied. The results show that 

the geometrical parameters and material properties of the layers have very important effect on 

dynamical characteristics. It can be said that the structural mass and stiffness properties 

depending on parameters of layers ( l  and h ) have the influence on the resonance frequency 

and modal loss factor of structure.  

This example presents a suitable manner to change of the modal properties by introduced 

structural modification of beam structure. These formulations and results can be used to 

vibrational tuning of hysteretically damped mechanical systems as well as a starting point for 

determination of required quantity of modal loss factor. This approach to modelling of mechanical 

structures provides the possibility to create of effectively damped mechanical structures. 

3.2  Structural modification of circular disc by in-plane residual stresses  

The circular discs are structural elements widely used in the structural and processing 

applications. One of the most used geometric shapes for processing and cutting operation 

material is thin circular disk - circular saw blade. Circular saw blades are widely used for 

cutting and forming metal and non-metal materials. Dynamical properties of circular saw 

blade are investigated in this part.  

One of the techniques of the structural modifications of disc to achieve the required 

dynamic properties is to initiate pre-stress in disc plane. This is concerned primarily with 

“tuning” of dynamical properties of vibrating circular discs by technological treatments 

inducing the residual in-plane stresses. There are more possibilities to obtain the disc in-plane 

stresses. One of them is rolling of disc surface. In the roll-tensioning process, the disc is 

compressed within a certain annular contact zone between two opposing rollers. Plastic 

deformations in the contact zone of circular disc result residual in-plane stresses in whole disc.  

 

 

 

 

 

 

 

 

 

 

Fig. 4. The circular disc with plastically deformed zone. 

The effects of residual stresses induced by roll-tensioning on dynamical properties are 

analysed. The natural frequency characteristics for various rolling position and various rolling 

depth of the annulus are obtained by modal analysis using finite element method (FEM). The 

role of residual stresses obtained by rolling is assessed from the changes in natural 

frequencies and modal shapes. 

Generally, the stress-strain relations with initial stress and initial strain are given by 

 00 σσσσεεεεεεεεσσσσ +−= )(D ,  (34) 

where σσσσ and  εεεε are stress and strain vector; σσσσ0 and εεεε0 are initial stress and initial strain vector; 

D is elasticity matrix. 

r0 

r2 

R0 

r1 

h 

plastically deformed zone 

M. Naď / Applied and Computational Mechanics 1 (2007) 203  214

211



M. Na  / Applied and Computational Mechanics X (YYYY) 123-456 

Using the finite element formulation, the equation of motion for a free vibration of disc 

without of in-plane stressed disc is described by expression 

 0KxxM =+ , (35) 

and after structural modification (with in-plane residual stress) made by rolling 

 0xKKxM =∆++ σ )( , (36) 

where M is mass matrix; K is stiffness matrix, ∆Kσ is the change of stiffness matrix 

following from stress distribution induced by rolling; x  and x are nodal accelerations and 

nodal displacements. 

From equation (35) follows that after rolling the mass distribution is not changed, but 

stiffness characteristics vary greatly. The natural frequencies and modal shapes of a circular 

disc with rolling induced residual stress distribution can be obtain from the following 

eigenvalue problem 

 0qMKK =ω−∆+ σ )( 2 , (36) 

where ω is eigenvalue frequency. 

In order to calculate the variation of disc stiffness ∆Kσ after rolling, we must know the 

residual stress distribution in a disc plane. To determine the residual stress distribution, the 

method of thermal stress loading is used [4]. The thermal expansion induces a stress 

distribution, which is analogous to the stress distribution initiated by rolling. The dependence 

between temperature and depth of roll-tensioning is approximately described by equation 

 z
h

T ∆
α

µ
≈∆ , (37) 

where  µ is Poisson number, α is temperature expansion coefficient, h is disc thickness and ∆z 

is depth of roll-tensioning. 

The natural angular frequencies and modal shapes of circular disc with residual stress 

distribution for different position, depth and width of roll-tensioning can be determined from 

equation (36). To obtain appropriate dynamical properties of circular disc, it is necessary to 

determine the natural frequency curves for the various position of mean radius of the roll-

tensioning annulus rc = (r2 + r1)/2. 

We consider a circular disc (Fig. 4.) of the outer radius R0 = 120 mm, inner radius (flange 

radius) r0 = 25 mm, thickness h = 1,8 mm. The width of plastically deformed annulus is 

assumed r2 − r1 = 10 mm. This width was selected arbitrarily and it was considered as a 

representative value for planned experimental verification of investigated phenomenon. The 

disc is assumed to be perfectly fixed in region r ≤ r0. The outer edge of circular disc is free. 

The influence of mean rolling radius rc and depth of rolling ∆z on the natural frequencies 

for mode shapes 0/1, 0/0, 0/2, 0/3 (number of nodal circles/number of nodal lines) is 

presented on Fig. 5. The trend of frequency curves for modal shapes 0/1 and 0/0 differs from 

the trend of frequency curves for modal shapes 0/2 and 0/3. The natural frequencies of the 

modal shapes 0/2 and 0/3 increase with rc until the maximum values near rc ≈ 60 mm. For 

radius rc > 60 mm, they decrease. Contrary to this, the natural frequencies of the modal shapes 

0/1 and 0/0 are decreasing with rc  and for rc ≈ 50 mm reach the minimum; then they increase. 

The influence of mean rolling radius rc and depth of rolling ∆z of plastically deformed 

annulus on the natural frequencies for individual modal shapes is shown on Fig. 6. 

 

M. Naď / Applied and Computational Mechanics 1 (2007) 203  214

212



M. Na  / Applied and Computational Mechanics X (YYYY) 123-456 

0,00 0,03 0,06 0,09 0,12

0

100

200

300

400

500 ∆z = 1 µm

N
a
tu

ra
l 
fr

e
q

u
e
n

c
y
  

[H
z
]

Center of rolling  r
c
 [m]

 0/1  

 0/0 

 0/2 

 0/3 

    

0,00 0,03 0,06 0,09 0,12

0

100

200

300

400

500 ∆z = 2 µm

N
a

tu
ra

l 
fr

e
q

u
e
n

c
y
 [

H
z
]

Center of rolling   r
c
 [m]

 0/1

 0/0

 0/2

 0/3

    

0,00 0,03 0,06 0,09 0,12

0

100

200

300

400

500 ∆z = 3 µm

N
a
tu

ra
l 
fr

e
q

u
e

n
c
y
  

[H
z]

Center of rolling  r
c
 [m]

 0/1  

 0/0
 0/2

 0/3

 

Fig. 5. Effect of rolling depth ∆z and mean rolling radius rc  on the first four natural frequencies. 
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Fig. 6. Effect of rolling radius rc  and rolling depth ∆z on the natural frequencies (mode shapes 0/1, 0/0, 0/2). 

This manner of structural modification of circular disc provides very effective tool to 

structural dynamic modification of such structures for which the modification of geometrical 

parameters, connection of mass or stiffness elements is not possible.  

4. Conclusion  

Structural modification as a technique to change the dynamic characteristics of a structure 

has been used by engineers for decades. The main objective of SDM techniques is to reduce 

vibration levels, shift resonances, improve dynamic stability, place optimally the modal points, 

perform modal synthesis, and optimize the weight and cost subject to dynamic constraints. 

Generally, the modification may be expressed in terms of the incremental mass, damping, and 

stiffness matrices.  

In this paper, a short summary about theoretical principles of the structural dynamic 

modification of vibrating systems and the general mathematical theory of the modification 

process are presented. The solution procedures for structural modification problems of the 

vibrating systems with proportional and hysteretic damping are introduced.  

Subsequently, the structural modifications of real-life structures are presented. The 

changes of modal properties of selected modified structures are studied in dependency on 

changes of spatial and physical properties. Two examples of modification of vibrating 
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structures are selected – cantilever beam embedded into viscoelastic constraining layers a 

circular disc with in-plane residual stresses. The obtained results confirm that structural 

dynamic modification is very effective tool to change of dynamical properties vibrating 

systems. 
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