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Abstract

The paper deals with modeling the acoustic transmission through a perforated interface plane separating two
halfspaces occupied by the acoustic medium. We considered the two-scale homogenization limit of the standard
acoustic problem imposed in the layer with the perforated periodic structure embedded inside. The homogenized
transmission conditions govern the interface discontinuity of the acoustic pressure associated with the two halfs-
paces and the magnitude of the fictitious transversal acoustic velocity. By numerical examples we illustrate this
novel approach of modeling the acoustic impedance of perforated interfaces.
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1. Introduction

The purpose of the paper is to demonstrate the homogenization approach applied to mod-
elling of the acoustic transmission through perforated planar structure. We consider the acoustic
medium occupying domainΩ which is subdivided by perforated planeΓ0 in two disjoint sub-
domainsΩ+ andΩ−, so thatΩ = Ω+∪Ω−∪Γ0, see Fig. 3. In the differential form the problem
for unknown acoustic pressuresp+, p− reads as follows:

c2∇2p+ + ω2p+ = 0 in Ω+,

c2∇2p− + ω2p− = 0 in Ω−,

+ boundary conditions on∂Ω,

(1)

In a case of no convection flow the usual transmission conditions are given by

∂p+

∂n+
= −iωρ

Z
(p+ − p−),

∂p−

∂n−
= −iωρ

Z
(p− − p+), (2)

wheren+ andn− are the outward unit normals toΩ+ andΩ−, respectively,ω is the frequency,
ρ is the density andZ is thetransmission impedance; this complex number is characterized by
features of the actual perforation considered and is determined using experiments in the acoustic
laboratories, see e.g. [6].

We suggest a more refined mathematical treatment of such transmission problem, which re-
sults in constraints involving severalhomogenized coefficientscomputed directly for a specified
shape of perforation. As an advantage, with such modelling approach one can think ofin-
verse problemsaimed at optimal design of the perforated structure to obtain a desired acoustic
response, see e.g. [1, 8].
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2. Problem formulation

By indicesε we denote dependence of variables on scale parameterε > 0; similar conven-
tion is adhered in the explicit reference to the layer thicknessδ > 0. By the Greek indices we
refer to the coordinate index1 or 2, so that(xα, x3) ∈ IR3.

2.1. Geometry

LetΩδ ⊂ IR3 be an open domain shaped as a layer bounded by∂Ωδ which is split as follows

∂Ωδ = Γ
+
δ ∪ Γ

−
δ ∪ ∂Ω

∞
δ , (3)

whereδ > 0 is the layer thickness, see Fig. 1. The acoustic medium occupies domainΩε
δ \ Sε

δ ,
whereSε

δ is the solid obstacle which in a simple layout has a form of the periodically perforated
sheet.

For homogenization technique, it is important to have a fixed domain, therefore thedilata-
tion is considered, cf. [4]; letΓ0 be the plane spanned by coordinates1, 2 and containing the ori-
gin. Further letΓ+δ andΓ−δ be equidistant toΓ0 with the distanceδ/2 Therefore,x3 ∈]−δ/2, δ/2[
and we introduce the rescalingx3 = zδ.

Fig. 1. The layerΩδ of the acoustic medium with periodic “solid perforations”Sε
δ .

2.2. Boundary value problem in the transmission layer

The problem of acoustics is defined inΩε
δ. We assume a monochrome stationary incident

wave with the frequencyω and no convection velocity of the medium, so that

c2∇2pε δ + ω2pε δ = 0 in Ωε
δ,

c2
∂pε δ

∂nδ
= −iωgε δ± onΓ±δ ,

∂pε δ

∂nδ
= 0 on∂Ω∞δ ,

(4)

wherec = ω/k is the speed of sound propagation,gε δ±k2 is the interface normal acoustic
velocity; bynδ we denote the normal vector outward toΩδ.

3. Homogenization

For passing to the limitε→ 0 we consider a proportional scaling between the period length
and the thickness, so thatδ = κε, for a fixedκ > 0. Further, we need a convenient prepositions
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on the problem data involved in (4). Note thatgε δ± is defined onΓ0, which is equidistant toΓ±;
we assume

gε δ+ ⇀ g0+, gε δ− ⇀ g0−,
1
δ

(
gε δ+ + gε δ−)⇀ 0,

weakly inL2(Γ0), which yields
g0± ≡ g0+ = −g0−. (5)

The homogenized coefficients are introduced using so called corrector functions computed
for the reference periodic cellY =]0, 1[2×]− 1/2,+1/2[⊂ IR3 which is perforated by the solid
(rigid) obstacleT , so that the acoustic medium occupies domainY ∗ = Y \ T .We refer to the
upper and lower boundaries ofY by I+y = {y ∈ ∂Y : z = 1/2} andI−y = {y ∈ ∂Y : z =
−1/2}.

The limit (homogenized) problem is obtained by theperiodic unfoldingmethod, see e.g.
[5], applied to the week formulation of (4).

3.1. Local microscopic problems

The microscopic and macroscopic problems are introduced by virtue of the following de-
composition

p1(xα, y) = π
β(y)∂βp

0(xα) + iωξ
±(y)g0±(xα), (6)

whereπβ, ξ± ∈ H1#(1,2)(Y )/IR, β = 1, 2 are solutions of the local microscopic problems:∫
Y ∗

[
∂y

αξ
± ∂y

αq +
1

κ2
∂zξ

±∂zq

]
+
|Y |
c2κ

(∫
I+y

q −
∫

I−y

q

)
= 0, ∀q ∈ H1#(1,2)(Y )/IR, (7)

∫
Y ∗
∂y

α(y
β + πβ) ∂y

αq +
1

κ2

∫
Y ∗
∂zπ

β∂zq = 0, ∀q ∈ H1#(1,2)(Y )/IR, β = 1, 2. (8)

3.2. Macroscopic problem in transmission layer

Homogenized transmission behaviour is expressed in terms ofinterface mean acoustic pres-
surep0 ∈ H1(Γ0), andfictitious acoustic velocityg0±L2(Γ0) which satisfy the interface probe
(to hold for allq ∈ H1(Γ0) andψ ∈ L2(Γ0))∫

Γ0

Aαβ∂
x
βp
0∂x

αq −
|Y ∗|
|Y |

ω2
∫
Γ0

p0q = −iω
∫
Γ0

Bα∂
x
αq g

0±,∫
Γ0

(p+ − p−)ψ −
∫
Γ0

Dβ∂
x
βp
0ψ = iω

∫
Γ0

F±g0±ψ,

(9)

where the homogenized equations are expressed in terms of the corrector functionsπβ andξ±:

Aαβ =
c2

|Y |

∫
Y ∗
∂y

γ(y
β + πβ) ∂y

γ(y
α + πα) +

c2

|Y |κ2

∫
Y ∗
∂zπ

β∂zπ
α, (10)

Bα =
c2

|Y |

∫
Y ∗
∂y

αξ
±, (11)

Dα =
1
|Iy|

(∫
I+y

πα −
∫

I−y

πα

)
= κBα, (12)

F± =
1
|Iy|

(∫
I+y

ξ± −
∫

I−y

ξ±

)
. (13)
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We remark that while (9)1 results as the homogenization limit of (4), eq. (9)2 is derived specially
as the constraint of the interface discontinuity betweenp+ andp−.

The transmission conditions on interfaceΓ0 are defined in terms ofp0 andg0±:

c2
∂p+

∂n+
= iωg0± onΓ0,

c2
∂p−

∂n−
= −iωg0± onΓ0.

(14)

Mic. #1
A = 1.1546 · 105 (m/s)2,B = 0,D = 0, F = 1.3913 · 10−5 s2

Mic. #2
A = 1.7035 · 105 (m/s)2,B = −0.2509 m,D = −0.2509 m, F = 1.3237 · 10−5 s2

Mic. #3
A = 2.1855 · 105 (m/s)2,B = −0.8974 m,D = −0.8974 m, F = 4.2653 · 10−5 s2

Fig. 2. Distribution ofξ±, π in Y ∗ and homogenized coefficients for three shapes of perforations.

For illustration, in Fig. 4 the local corrector functionsξ± andπ are displayed for 2D exam-
ples of three different shapes of the perforations.

3.3. Modelling acoustic waveguide – influence of perforation type

The following numerical example shows the global response at the macroscopic scale. The
homogenized model (1)+(9) is compared with the “standard” model with the transmission
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impedance (see [6])
Z = ρ (0.006c+ iω (t+ 0.75d)) /Φ, (15)

where porosityΦ = 40 %, thicknesst = 0.2 mm and hole diameterd = 0.4 mm. A perforated
structure with these parameters corresponds to the microstructure #1 in Fig. 4.

The geometry of the acoustic waveguide is depicted in Fig. 3 and the following boundary
conditions are applied:

iωρv + c
∂p

∂n
= 0 onΓin,

iωp+ c
∂p

∂n
= 0 onΓout.

(16)

The first condition prescribes the velocity of the incident wave on the input (v = 1 m/s) and the
second one ensures the anechoic output. The acoustic medium has the densityρ = 1.55 kg/m3

and the speed of sound propagation isc = 343 m/s.

Γ
in

Γ
out

Γ
0

Ω
+

Ω
−

Fig. 3. Macroscopic domainΩ.

4. Conclusion

We derived the transmission conditions, see [7], involving homogenized parameters (10)-
(13) which reflect specific features of the periodic perforation. The separating structures can
be quite general, thus not only flat plates with holes may be considered. Moreover, even the
“no-obstacle” situation is treated by the present model, whenY = Y ∗ andκ → +∞. Then
πβ = ξ± ≡ 0, therefore bothF± andDβ vanish, so that (9)2 yields continuityp+ = p− onΓ0.

Using the standard model we obtained the imaginary part of the transmission impedance
(15) asIm(Z) = 6.1 kg/(ms2). The relevant transmission impedance resulting from the ho-
mogenized model (Mic. #1) isZhom = 8.0 kg/(ms2). It is important to note that relation (15)
was derived for the 3D structures while our homogenized model is just 2D.

The presented example is motivated by modelling of muffler type structures, see e.g. [2, 3].
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[7] E. Rohan, V. Lukěs, Homogenization of the acoustic transmission through perforated layer, Pro-
ceedings of the 8th International Conference on Mathematical and Numerical Aspects of Waves,
University of Reading, 2007, pp. 510–512.

[8] E. Wadbro, M. Berggren, Topology optimization of an acoustic horn, Comput. Methods Appl.
Mech. Engrg. 196 (2006) 420–436.

V. Lukeš et. al  / Applied and Computational Mechanics 1 (2007) 137 - 142

142


