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Abstract  

In this paper we are focused on influence of selected geometrical characteristics as are: inscribed circle 
diameter, circumscribed circle diameter, eccentricity, ovality and radius of curvature of inclusion on stress 
concentration around these defects modelling using by FEM. This task was solved as plane stress. From this 
point of view there are monitored and evaluated there factors: maximum value of stress along the loading, across 
the loading, shear stress and equivalent stresses. There will be also presented algorithms for automatic generation 
of models that make possible to practice statistical data processing. 
©  2007 University of West Bohemia. All rights reserved. 
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1. Introduction  

Calculations on the strength of structures are primarily based on the theory of elasticity. If 
the yield stress is exceeded plastic deformation occurs, more complex theory of plasticity has 
to be used [5]. The macroscopic elastic behaviour of an isotropic is characterized by three 
elastic constants, the elastic modulus or Young's modulus E, shear modulus G and Poisson's 
ratio µ [7]. The well-known relation between the constants is:  

                                                                ( )µ+= 12GE ,                                                          (1) 

In the structure, geometrical notches such as holes cannot be avoided. The notches are causing an 
inhomogeneous stress distribution, see fig. 1, with a stress concentration at the root of the notch [1] and 
[4]. The theoretical stress concentration factor Kt is defined as a ratio between peek stress at the root of 
the notch and the nominal stress witch would be present if a stress concentration does not occur, i.e. 
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The severity of the stress concentration depends on the geometry of the notch configuration, 
generally referred to as the shape of the notch. The term notch is defined as a geometric discontinuity 
that may be introduced either by design, such as hole, or by the manufacturing process in the form of 
material and fabrication defect such as inclusion, weld defects, casting defects or machining marks [3]. 
For a component with a surface notch, the maximum elastic notch stress σe can be determined by the 
product of a nominal stress σ and the elastic stress concentration factor Kt, i.e.  

                                                                 t
e K⋅= σσ ,                                                             (3) 

                                                 
*Corresponding author. Tel.: +421 415 132 974, e-mail: peter.kopas@fstroj.uniza.sk.  

Applied and Computational Mechanics 1 (2007) 115 - 120

115



P. Kopas et al. / Applied and Computational Mechanics X (YYYY) 123-456 

The maximum elastic notch stress can be calculated from an elastic finite elements analysis 
and is sometimes referred to as the pseudo-stress if the material at a notch is actually inelastic. 
Because notch stress and strains are controlled by net section material behaviour, the nominal 
stress for determination Kt is defined by an engineering stress formula based on basic elasticity 
theory and the net section properties that do not consider the presence of the notch [2] and [6]. 

It is known that the elastic stress concentration factor is a function of the notch geometry 
and the type of loading. For the case in which the component geometry and load conditions are 
relatively simple and the nominal stress can be easily defined. However, because of complexities 
of the geometry and loads in most real components are different, the value of σe can be directly 
obtained from the elastic finite element analysis. 

 

 

 

 

 

 

 

 

 

 

 

   

Fig. 1. Strip with central hole as a prototype of a notched part. 

2. Effect of the inclusion geometry on stress concentration 

In an infinite sheet for a circular hole is important only diameter D. However, for the 
simple tension specimen with a central hole, see fig. 1, there are already three dimensions: the 
specimen width W, the specimen length L and the hole diameter D. The specimen thickness is 
not yet considered here. In fig. 2 two specimens are shown, which are geometrical similar, but 
the size is different. A geometrical similarity implies that all ratios of the dimensions are the 
same, in the present case the same D/W and L/W.  

Because stress concentration factor Kt is a dimensionless ratio, it can depend on 
dimensionless geometrical ratios only. Assume that all dimensions of specimen 2 in fig. 2 are 
two times larger then the dimension of specimen 1. As a result of geometric similarity, all 
displacements are also two times larger, but the relative displacements will be the same. As a 
result, the strains are the same. Consequently, a geometrical similar stress distribution should 
occur in both specimens as depicted in fig. 2. The same peak stress will be found, and stress 
concentration factor Kt is the same. However, due to the difference in size, the stress gradient 
is not the same in the two specimens because the gradient is not dimensionless, but the 
gradient is inversely proportional to the root radius r. The consequence is that larger 
specimens have larger volumes and larger inclusions surface areas of highly stressed material, 
which is significant for the size effect [8].   
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Fig. 2. Geometrically similar specimens.  

3. Computational model description 

Calculations of stress concentration are solved by several authors. These solutions are 
assigned for homogeneous, elastics, isotropic material and also for single inclusion with the 
defined profile. The theoretical value of stress concentration factor for sphere inclusion is Kt = 3. 
The real inclusions have a random shape and orientation, so stress concentration factor have a 
random value too [4] and [5].  

If we want to determine a relationship between the shape of the inclusion and stress 
distribution in the surround of inclusion than it is necessary to prepare software generator of 
the random geometrical models of inclusion. By the reason of modelled inclusion shape it was 
defined next geometrical parameters: 

� inscribed circle diameter, 
� circumscribed circle diameter, 
� eccentricity, 
� ovality, 
� radius of curvature at point of maximal stress concentration.  

The stress analysis of inclusion model was made by software ADINA R&D. These 
solutions have next simplifications. The matrix of material is modelled as isotropic and elastic 
material model. The inclusion was subtracted from the model, it is a hole without mesh. This 
kind of inclusion models is acceptable on the ground of their properties: low tensile strength 
and often decohesion from the matrix (e.g. graphite in the nodular cast iron). The stress 
concentration factor was simply calculated from maximum value of stress in the direction of 
applied load traction σ = 1. This task was solved as plane stress with simple tension of 
loading. The illustration of a simple FEM model is given in fig. 3. The geometry of the 
component has been modelled by a large number of small interconnected elements. 

With the view of statistical evaluation of results, it was needs to make a lot of FEM 
analysis. Therefore it was necessary to prepare simple algorithm for random model 
generation. The next step was the FEM analysis and evaluation of the required results. The 
best way is to create some simple evaluation programs. All these programs were created in 
user friendly software named OCTAVE.  
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The algorithm for generation of random inclusion model is based on following 
parameters: 

� diameter of inclusion, 
� the number of apex interval for control polygon of the inclusion, 
� the interval of apex value. 
 

 
 
 
 
  
 
 
 
 
 
 
 
 
 

 

Fig. 3. FEM model of inclusion.  

4. Results of FEM analysis 

In first step, we must build the algorithm, which satisfied requirements for generation 
simplified geometrical models of inclusions of various shapes. When it was generated a 
sufficient number of models than it was realized stress analysis in program ADINA. As one of 
representative parameters for evaluation of stress concentration in the surrounding of 
inclusion was specified stress concentration factor Kt. The aim of FEM analysis was obtained 
results to describing the influence of geometrical characteristics on stress distribution in the 
surrounding of inclusion. These results are shown in fig. 4 - 7. 
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Fig. 4. Analysis of stress concentration in the 
surrounding of inclusion along the loading σyy. 

Fig. 5. Analysis of stress concentration in the 
surrounding of inclusion using by HMH theory. 
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On the basis of these results we can say that it was confirmed influence of some 

geometrical characteristics of inclusion shape on magnitude distribution of stress 
concentration in the surrounding of inclusion. The most expressive influence have only two 
from all monitored factors: ovality and radius of curvature of particle in region with highest 
stress concentration. As it results from FEM analysis, other geometrical characteristics 
(inscribed circle diameter, circumscribed circle diameter and eccentricity) have no direct 
(immediate) influence on magnitude of stress distribution in the surrounding of inclusion. 
These characteristics are important in relation to material characteristics. Mechanical 
properties of materials (Young's modulus E, shear modulus G and Poisson's ratio µ) specified 
the value of stress concentration in relation to magnitude and distribution of inclusions in 
matrix. From the analysis we can also generally say, that the minimum value of the stress at 
the edge of inclusion is three times the nominal stress in tension conditions.  

Influence of ovality, in the sense of geometrical characteristic, on stress concentration 
factor Kt is shown in fig. 4 and fig. 5. On the ground of performed FEM analysis is possible to 
say that value of stress concentration factor Kt continually increase from value Kt = 3 (for 
spherical shape of inclusion) to value Kt = 7 (for elliptical shape of inclusion). This is in good 
agreement with theoretical background which related with stress distribution. It is important, 
however, to remember that elastic stress concentration factors for homogeneous isotropic 
materials depend only on geometry (independent of material) and mode of loading, and that 
they apply only when the inclusion is in the linear elastic deformation condition. 

FEM analysis results have shown fig. 6. and fig. 7., that the most expressive influence 
from monitored geometrical characteristics have radius of curvature reviewed in region 
with highest stress, i.e. in region with the smallest radius of curvature of inclusion. It is 
possible to observe that if radius of curvature is increased in reviewed region of inclusion 
than stress concentration factor Kt decrease from value Kt = 7 (for sharp notch) to value Kt = 3 
(for spherical shape of notch). This kind of continual decrease of stress concentration factor Kt is 
good agreement with obtained results that was presented above. This fact was documented 
in a lot of published works.  

Similar values of stress concentration factor Kt calculated for equivalent stresses due to 
HMH theory (fig. 5 and fig. 7) we can be caused by presence of the other nonzero 
components of the stress tensor in the surrounding of inclusion. With respect to this fact, it is 
possible to assume the presence of multiaxial stress state in the surrounding of these 
components. 
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Fig. 6. Analysis of stress concentration in the 
surrounding of inclusion along the loading σyy. 
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Fig. 7. Analysis of stress concentration in the 
surrounding of inclusion using by HMH theory. 
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5. Conclusion 

Stress concentration around the inclusion was considered in this article with stress 
concentration factor Kt as an important parameter for characterizing the severity of the stress 
distribution in the surrounding of inclusion. It's assumed idealized model of inclusions. If stress 
concentration factors or stress distributions are needed, calculations should be made with 
finite element techniques for which computational model have been developed. The solutions 
obtained are not exact because of continuum material is replaced by a simplified material 
model. However, very satisfactory results can be achieved. Application of loads to the model, 
boundary conditions and mesh distributions should be given careful attention. Obtained 
results can be summarized as follows: 

• created algorithm satisfied requirements for generation of simplified geometrical 
models of inclusions of various shapes, 

• by means of FEM was realized analysis of the state of stress,  
• the most expressive influence on stress concentration from monitored geometrical 

characteristics was confirmed for ovality and radius of curvature. Other monitored 
geometrical parameters unconfirmed direct influence on stress concentration in the 
surrounding of inclusion,  

• highest values of stress or stress concentration factor Kt was calculated in the 
surrounding of inclusion. In these regions was obtained highest change of geometrical 
shape in comparison with spherical shape, 

• accurate Kt values can be calculated with FEM techniques. With the current computers, 
these calculations should be more accurate and cost-effective in comparison to 
measurements of stress distribution in the surrounding of  inclusions, 

• the stress concentration produced by a given inclusion is not a unique number, it is depend 
on the mode of loading and on the type of stress that is use to calculated Kt. 
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