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Abstract  

The simplification of the FEM model (the missing of a notch or a crack) generally means the modification of 
the natural frequencies. An analysis of these changes is matter of this paper. The direct and semicircle notches 
were made on the testing specimens (by cut depth in the specimens) and the naturals frequencies were measured 
and computed. The results are compared.  

In the paper is discussed the choice of the FEM element for FEM model and the comparison with 
experiment is made too.  

The influence of the crack on the natural frequencies is discussed in the case of specimen for high cycle 
fatigue test. The changes of the first three frequencies are compared for specimens with and without crack. 
© 2007 University of West Bohemia. All rights reserved. 
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1. Introduction  

The usually questions in finite element (FE) computing are related to the memory 
requirements and time consumption. From this point of view our aim is the simplification 
of the FE model for example missing of some details. The simplification implies error 
estimation after this action and this estimation cannot be trivial. This task is affected by 
the choice of the type of element too. In the case we have not sufficient knowledge about 
this matter or in the first analysis stage we often use the implicit values (for example 
tetrahedron for solids). 

If the results are represented by �the perfectly colored pictures� then it is easy to believe the 
results are correct (without the detail analysis of results, inputs parameters and applied methods). 

The FE model is impossible to reduce in the same special cases because the neglect of 
the local effect leads to the serious change of natural frequency. This information can be 
using to the detection possible failure of the object (for example the crack in the structure). 
On the relationship between natural frequency and defect can be established decision rules 
for condition monitoring.  

The idea to forewarn a final failure on the base of changes of modal data was used by [6] 
for spot welded joints and for composite materials, general algorithms was presented by 
[13] to apply modal analysis for damage detection, etc. The relationships between 
dynamical (modal) properties and optimization of structured were solved in [3], [4], [8], 
[10], [11] and [14]. 
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2. Testing specimens and solution processing 

2.1. The testing specimens 

We are dealt with three types of specimens. The first two types (A and B) are steel beams 
(STN 411737) 490 mm in long with rectangular cross section (20 x 5 mm, hs× ) with and without 
the notches in the middle of the beams. The first type A with notch A (a width of 0.35 mm) is 
depicted in fig 1. The second type B with notch B (a width of 0.8 mm) is depicted in fig. 2. 

The notches were made with the different depth, for type A or B a depth of is / or ( ih / ), 
fig. 1 and fig. 2, where: 

 








∈
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4
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The third type C is specimen for high frequency fatigue test [1] and [7], (from AISI 316L) 
without the crack and with crack (a depth of 40% s in the reduce part). 

 

Fig. 1. The notch A in the middle of the length beams, 
with the different depth s/i. 

Fig. 2. The notch B in the middle of the length beams, 
with the different depth h/i. 

 

Fig. 3. The specimen C for high frequency fatigue test. 
 

2.2. The experiments 

The natural frequencies on the base of frequency response function (FRF) [9] for free free 
vibration are measured for all specimens without and with the notch or the crack. These 
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frequencies are compared for different depth of notches. The change of the frequencies is a 
measure of error in the case of missing of the notch or the crack. 

The PC card NI4472 (the product of National Instrument, NI), with accelerometer 
ACC104A (Omega), impulse hammer IH101 500 (Omega) and LabView 8.0 with Sound and 
Vibration Toolkit (NI) were used for all measurement. 

2.3. Finite element analysis 

The commercial software products ADINA and ANSYS were used. The 4 node tetra, 8 node 
brick and 10 node tetra elements were preferred. The other elements were used too but in this 
paper the results was not published. 

The computations were made for specimens A and B with and without notches and for 
specimen C without the crack. 

2.4. The analytical solution for specimen without notch 

A differential equation, which is governed the elastic curve ( )tx,w characterizing the shape 
of the deformed beam in the place x and in the time t [2], [5] and [12]. 
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where ρ is density, S is cross section area, E is modulus of elasticity and J is moment of 
inertia of the area S. The naturals frequencies fn for bending vibration is explained (on the base 
of roots of characteristic equation for (2)): 
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where l is length of the beam.  

The first four natural frequencies for beam without notch are 108.84 Hz; 302.33 Hz; 
435.36 Hz and 592.57 Hz. 

We reduced application only first four natural frequencies and we did not concern on 
torsion and longitudinal vibration in this paper. 

3. The results of measurement and computing 

3.1. The results for notches 

Frequency response functions (RTF�s) are depicted for specimens A and B. In the fig. 4 
and fig. 5 are depicted FRF�s for specimen A with and without notches. In the fig. 5 and fig. 6 
are depicted FRF�s for specimen B with and without notches too. The 3rd natural frequency 
(NF) is depicted in the separate figure because we used 1 axis accelerometer and the plane of 
the motion of 3rd modal shape is perpendicular to the planes of 1st, 2nd and 4th modal shapes. 

In the fig. 4, fig. 6 and fig. 7 there are depicted FRF�s only for specimen without notch 
and for maximal depth of notch. The other peeks of FRF�s are placed between these boundary 
peeks and all these curves are not shown in fig. 4 to fig. 7. 
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Fig. 4. The FRF�s of specimen A for 1st, 2nd and 4th

natural frequency.  
Fig. 5. The FRF�s of specimen A for 3rd

natural frequency. 

.

Fig. 6. The FRF�s of specimen A for 1st, 2nd and 4th 
natural frequency. 

Fig. 7. The FRF�s of specimen B for 3rd 
natural frequency. 

The first four natural frequencies from experiment, analytical solution and finite element 
analysis (FEA) by using ADINA and ANSYS are presented in the tab. 1. The element size of 
1 mm is used in these computations. The variation of the natural frequencies values between 
8 node and 10 node elements was negligible.  
 

Natural frequency [Hz] 
ADINA ANSYS No. Analytical 

solution 
Experiment 4 node 

elements
8 node 

elements
4 node 

elements 
8 node 

elements
10 node 
elements 

1. 108,8 111,2 118,2 110,8 115,3 109,6 109,6 
2. 302,3 307,1 325,6 305,3 317,6 302,0 302,0 
3. 435,4 441,3 438,2 436,3 437,1 436,0 436,0 
4. 592,6 602,1 637,8 598,1 622,2 591,7 591,7 

Tab. 1. The values of natural frequencies for beam without notch. 

In the tab. 2 are presented variations of the values from tab. 1. In the tab. 3 and tab. 4 are 
presented the values and variations of natural frequencies of specimen A. The 3rd natural 
frequency is changed substantial. This fact is presented on the fig. 5. ANSYS is used for 
computation of natural frequencies in the tab. 3 and all next tables too. 
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Variation of FEA and experimental NF from analytical solution [%] 
Variation of FEA and analytical solution NF from experiment [%]

ADINA ANSYS 
No. 

Analytical 
solution 

Experiment
4 node  8 node 4 node 8 node 

1. 
0.0

2.1
2.2 

0.0
6.3 

8.6
1.8 

0.4
5.9 

3.7
0.7 

1.4

2. 
0.0

1.5
1.6 

0.0
6.0 

7.7
1.0 

0.6
5.1 

3.4
0.1 

1.6

3. 
0.0

1.3
1.4 

0.0
0.7 

0.7
0.2 

1.1
0.4 

1.0
0.2 

1.2

4. 
0.0

1.6
1.6 

0.0
6.0 

7.6
0.9 

0.7
5.0 

3.3
0.2 

1.7

Tab. 2. The comparison of NF and the variations for beam without notch for different element. 

Natural frequency [Hz] 
Without notch s/4 s/2 3s/4 

No. 
FEA 

Experiment
FEA 

Experiment
FEA 

Experiment
FEA 

Experiment

1. 
110,8 

111,2
111,3 

110,7
109,4 

110,0
104,8 

104.3

2. 
305,3 

307,1
308,5 

308,5
309,0 

311,0
308,2 

308,4

3. 
436,3 

441,3
427,1 

424,0
379,0 

385,6
257,3 

255,7

4. 
598,1 

602,1
601,3 

601,4
594,0 

598,4
576,5 

576,8

Tab. 3. The values of natural frequencies for beam with notch A. 

Variation of FEA with notch from FEA without notch [%] 
Variation of FEA from experiment [%] 

Variation of experiment with notch from experiment without notch[%]
Notch A 

No. 

s/4 s/2 3s/4 

1. 
0.5 

0.5 
0.4

1.3 
0.5 

1.1

5.4 
0.5 

6.2

2. 
1.1 

0.0 
0.5

1.2 
0.6 

1.3

1.0 
0.1 

0.4

3. 
2.1 

0.7 
3.9

13.2 
1.7 

12.6

41.0 
0.6 

42.1

4. 
0.6 

0.0 
0.1

0.7 
0.7 

0.6

3.6 
0.1 

4.2

Tab. 4. The comparison of natural frequencies (the variations) for beam with notch A.  
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The variations of natural frequencies for specimen B are negligible and the similar tables 
for this specimen are not presented. This fact is presented in the fig. 6 and fig. 7. 

The first four modal shapes are depicted in fig. 8 to fig. 11. These figures are useful to 
understanding that the 3rd frequency is changed in a great measure. This modal shape is 
performed in the plane XY and the notch A is opened. 

 

Fig. 8. 1st modal shape in the plane YZ. 

Fig. 9. 2nd modal shape in the plane YZ. 

Fig. 10. 3rd modal shape in the plane XY. 

Fig. 11. 4th modal shape in the plane YZ. 
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3.2. The results for crack 

The FRF�s (amplitude and phase) for specimen C with and without the crack are shown in 
the fig. 9 and fig. 10. The natural frequencies for specimen with crack are shifted in links. 

The natural frequencies from experiment and FEA are presented in the tab. 5 with 
variation of FEA from experiment. In the tab. 5 there are presented results for type of element, 
size of element and mesh method too. 

The natural frequencies and their variations are presented in the tab. 6 with and without 
crack. The frequencies of specimen with crack are substantially decreased. 

 

Fig. 9. The amplitude of FRF�s of specimen C for 1st,
2nd and 3rd natural frequency. 

Fig. 10. The phase of FRF�s of specimen C for 1st,
2nd and 3rd natural frequency. 

 
Experiment

[Hz] 
FEA natural frequency [Hz] 

Variation of FEA from experiment [%]No

2203 
4 node, 

Free mesh 
4 node 
1 mm 

4 node 
0.5 mm 

10 node 
Free mesh 

10 node 
1 mm 

1 2203 
4658 

111.4
2504 

13.7
2360 

7.1
2342 

6.3
2297 

4.3

2 4525 
10217 

125.8
5210 

15.1
4877 

7.8
4908 

8.5
4731 

4.6

3 8349 
11893 

42.4
9098 

9.0
8649 

3.6
8842 

5.9
8447 

1.2

Tab. 5. Comparison of natural frequencies and variations for specimen C without crack 
from the experiment and FEA.  

Experimental natural frequency [Hz] 
No. 

Without crack With crack 

Variation NF for specimen 
without crack from 

specimen with crack [%] 

1 2203 1644 34.0 
2 4529 2859 58.3 
3 8349 6520 28.1 

Tab. 6. Comparison of natural frequencies and variations for specimen C without 
and with crack from the experiment. 
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7. Conclusion 

The paper deals about measurement ant computation of natural frequencies for three 
types of specimens. We were concentrated on comparison of the natural frequencies for 
specimens with and without notches and with and without crack. The computed natural 
frequencies by using different types and sizes of elements are compared with 
experimental results. 

We should like to point out that the uncritical using default values of element types and 
mesh method can be unsuitable. The using of default values can be generally useful in the 
first steps of the analysis. 

The influence of notch B on the natural frequencies is negligible and in the case A is 
influence various for different natural frequencies. The 3rd modal shape is realized in the 
plane of opening notch. The influence of geometric parameters of notch is important in this 
plane of 3rd modal shape. 

The variance between natural frequencies of specimen without and with crack is 
significant. We do not make a conclusion about miss out a crack from FE model because we 
have not an appropriate FE model for crack. 

The presence of natural frequency in spectrum is generally presented as a serious problem 
of machine in the condition monitoring publications. The change of this frequency can 
identify a growth of crack. 
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