ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

KATEDRA ELEKTROENERGETIKY A EKOLOGIE

DIPLOMOVÁ PRÁCE

Využití několika vyhořívajících absorbátorů v jaderném palivu

Jaroslav Hanzlík

ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta elektrotechnická Akademický rok: 2014/2015

ZADÁNÍ DIPLOMOVÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Bc. Jaroslav HANZLÍK
Osobní číslo:	E13N0071P
Studijní program:	N2612 Elektrotechnika a informatika
Studijní obor:	Elektroenergetika
Název tématu:	Využití několika vyhořívajících absorbátorů v jaderném palivu
Zadávající katedra:	Katedra elektroenergetiky a ekologie

Zásady pro vypracování:

- 1. Seznamte se s kódem UWB1.
- Vyberte dva vhodné vyhořívající absorbátory a spočítejte jejich profil vyhoření za pomoci kódu UWB1.
- Navrhněte použití obou těchto absorbátorů současně, v různých hmotnostních koncentracích.
- 4. Zpracujte a navrhněte zlepšení kódu UWB1.

Rozsah grafických prací:	podle doporučení vedoucího
Rozsah pracovní zprávy:	30 - 40 stran
Forma zpracování diplomové práce:	tištěná/elektronická
Seznam odborné literatury:	

Student si vhodnou literaturu vyhledá v dostupných pramenech podle doporučení vedoucího práce.

Vedoucí diplomové práce:

Ing. Jana Jiřičková, Ph.D. Katedra elektroenergetiky a ekologie

Datum zadání diplomové práce: Termín odevzdání diplomové práce: 11. května 2015

15. října 2014

Doc. Ing. Jiří Hammerbauer, Ph.D. $d\check{e}kan$

V Plzni dne 15. října 2014

lohdi

Doc. Ing. Karel Noháč, Ph.D. vedoucí katedry

Abstrakt

Obsah této diplomové práce je zaměřen na použití vyhořívajících absorbátorů v jaderném palivu, jejich vlastností a základních vztahů, které je popisují. Hlavní náplní práce je návrh a výpočet příměsi jaderného paliva ve formě dvou současně použitých vyhořívajících absorbátorů v různých hmotnostních koncentrací. K výpočtu je využit rychlý výpočetní kód U_WB_1 , jehož výstupní data jsou zde graficky zpracována. Závěrem práce je zhodnocení získaných výsledků, jejich porovnání a možné směry dalšího výzkumu.

Klíčová slova

Vyhořívající absorbátor, Jaderné palivo, U_WB_1 , Vyhořívání, JANIS 4.0, Gadolinium, Europium, Kadmium, Dysprosium, Samarium, Xenon, Hafnium

Abstract

The content of this Diploma thesis is focused on using of burnable absorbers using in nuclear fuel and their characters and basic relationships which they describe. The main content of this thesis is a suggestion and calculation of nuclear fuel dopant in the form of two simultaneously used burnable absorbers in various weight concentrations. Fast computational code U_WB_1 is utilized for the calculation. Its output data are here graphically presented. The conclusion evaluates the results which were found out, compares them and shows possible directions for further research.

Key words

Burnable absorber, Nuclear fuel, U_WB_1 , Depletion, JANIS 4.0, Gadolinium, Europium, Cadmium, Dysprosium, Samarium, Xenon, Hafnium

Prohlášení

Předkládám tímto k posouzení a obhajobě diplomovou práci, zpracovanou na závěr studia na Fakultě elektrotechnické Západočeské univerzity v Plzni.

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně, s použitím odborné literatury a pramenů uvedených v seznamu, který je součástí této diplomové práce.

Dále prohlašuji, že veškerý software, použitý při řešení této diplomové práce, je legální.

V Plzni dne 30.4.2015

Bc. Jaroslav Hanzlík

.....

podpis

Poděkování

Tímto bych rád poděkoval vedoucí diplomové práce Ing. Janě Jiřičkové, Ph.D. a především Ing. Martinu Loveckému za cenné profesionální rady, připomínky a metodické vedení práce.

Obsah

OBS	SAH	8
SEZ	ZNAM SYMBOLŮ A ZKRATEK	10
ÚV	OD	11
1	ZÁKLADNÍ ROVNICE A VZTAHY POPISUJÍCÍ VYHOŘENÍ PALIVA	13
1.	.1 MIKROSKOPICKÝ ÚČINNÝ PRŮŘEZ	
1.	.2 MAKROSKOPICKÝ ÚČINNÝ PRŮŘEZ	
1.	.3 JADERNÉ REAKCE	
	Pružný rozptyl	14
	Nepružný rozptyl	14
	Štěpná absorpce	14
	Neštěpná absorpce	
1.	.4 HUSTOTA TOKU NEUTRONU	
1.	15 1 Dealetivita	15 16
1	1.3.1 Κεακινία	10 16
1.		10
2	REGULACE REAKIIVIIY V JADEKNEM REAKIUKU	1/
2.	.1 KRÁTKODOBÁ REGULACE REAKTIVITY	
2.	.2 DLOUHODOBÁ REGULACE REAKTIVITY	
2.	.3 VYHORIVAJICI ABSORBATORY V JADERNEM PALIVU	
	2.3.1 Gadolinium	19 20
	2.3.2 E1010111	20 21
	23.4 Karhid hóru	21 22
	2.3.5 IFBA - ZrB ₂	
	2.3.6 Borosilikátové sklo	23
2.	.4 OSTATNÍ MATERIÁLY S VLASTNOSTMI VYHOŘÍVAJÍCÍCH ABSORBÁTORŮ	23
	2.4.1 Slitiny na bázi stříbra	23
	2.4.2 <i>Hafnium</i>	24
	2.4.3 Xenon a samarium	
	2.4.4 Dysprosium	25
3	VYBÉR VHODNYCH PRVKÚ POMOCÍ SOFTWARU JANIS 4.0	26
4	VÝPOČETNÍ KÓD U _w B ₁	
4.	.1 VSTUPNÍ SOUBOR	
4.	.2 VÝSTUPNÍ SOUBOR	
5	VÝPOČET VYHOŘENÍ JEDNOTLIVÝCH PRVKŮ	
5	1 Kadmilim	38
5.	.2 Dysprosium	40
5.	.3 Europium	
5.	.4 GADOLINIUM	
5.	.5 HAFNIUM	46
5.	.6 SAMARIUM	
5.	.7 XENON	50
6	VÝBĚR A VÝPOČET VYHOŘENÍ VHODNÉ DVOJICE PRVKŮ	52
6.	.1 KOMBINACE - KADMIUM / HAFNIUM	
	6.1.1 Kompenzace počátečního k_{eff} na hodnotu $k_{eff} = 1, 2$	53
	6.1.2 <i>Kompenzace počátečního</i> k_{eff} <i>na hodnotu</i> $k_{eff} = 1, 1$	55
	6.1.3 Kompenzace počátečního k_{eff} na hodnotu $k_{eff} = 1,0$	56
6.	.2 KOMBINACE - EUROPIUM / HAFNIUM	
	0.2.1 Kompenzace pocatecniho k_{eff} na hodnotu $k_{eff} = 1, 2$	

6.2	2.2 Kompenzace počátečního k_{eff} na hodnotu $k_{eff} = 1, 1$	58
6.2	2.3 Kompenzace počátečního k_{eff} na hodnotu $k_{eff} = 1,0$	
6.3	NUMERICKÉ VYHODNOCENÍ PODÍĽŮ DVOJICE PRVKŮ	61
6.4	Směr dalšího výzkumu - kombinace Gadolinium / Dysprosium	62
7 N.	ÁVRH ZLEPŠENÍ KÓDU U _w B1	63
8 ZA	ÁVĚR	64
SEZNA	AM LITERATURY A INFORMAČNÍCH ZDROJŮ	65
PŘÍLC	DHY	1
1 K.	ADMIUM	1
2 D'	YSPROSIUM	2
3 EU	JROPIUM	
4 G.	ADOLINIUM	4
5 H.	AFNIUM	5
6 SA	AMARIUM	6
7 XI	ENON	7
8 K	OMBINACE Cd/Hf	8
8.1	Kompenzace počátečního k _{eff} = 1,2	8
8.2	Kompenzace počátečního k _{eff} = 1,1	9
8.3	Kompenzace počátečního k _{eff} = 1,0	11
9 K	OMBINACE Eu/Hf	
9.1	KOMPENZACE POČÁTEČNÍHO K _{eff} = 1,2	
9.2	KOMPENZACE POČÁTEČNÍHO K _{eff} = 1,1	14
9.3	KOMPENZACE POČÁTEČNÍHO K _{eff} = 1,0	

Seznam symbolů a zkratek

Gd	- Gadolinium
Eu	- Europium
Dy	- Dysprosium
Xe	- Xenon
Hf	- Hafnium
Sm	- Samarium
Cd	- Kadmium
E-110	- Slitina pokrytí palivových proutků
nat.	- Natural. Složení čistého paliva bez vyhořívajících absorbátorů
IFBA	- Integral fuel burnable absorber. BA přimíchán do paliva
Cd/Hf	- Kombinace prvků kadmiu / hafnium
Eu/Hf	- Kombinace prvků europium / hafnium
Gd/Dy	- Kombinace prvků gadolinium / dysprosium
σ_a	- Mikroskopický účinný průřez [b]
b	- Barn. 1 barn = 10^{-20} m ²
%wt.	- Hmotnostní podíl
%at.	- Atomový podíl
ppm	- Parts per milion. Dílů či částic na jeden milion, 1% = 10 000 ppm
ρ	- Reaktivita [-]
φ	- Hustota toku neutronů [m ⁻² s ⁻¹]
Δρ	- Rozdíl reaktivit [-]
Σ	- Makroskopický účinný průřez [m⁻¹]
k _{eff}	- Efektivní koeficient násobení [-]
Ν	- Hustota jader [m ⁻³]
В	- Vyhoření [MWd/MTU]
E	- Energie [eV]
ZAID	- Číslo nuklidu [10000Z + 10A + m]
MTU	- Metric Ton of Uranium. Metrická tuna uranu.
D۸	Purnahla absorbar, Vyhořívající absorbátor
DA VVFR	- Vodo vodianoj energetičeskij reaktor. Tlakovodní reaktor
	Pressurized Water Peactor. Tlakovodní reaktor.
	- Lessunzeu water Keactor. Hakovoum teaktor. - Canadian Deuterium Uranium, Těžkovodní tlakový reaktor
U.R.	- Canadian Deutenum Oranium. 162K0voum uakovy ičaktol - Fast nuclear fuel depletion code. Duchlý výpočetní kód pro studium
UWD1	vyhořívání iademého paliva
MC solver	- Monte Carlo solver, Simulace Monte Carlo

Úvod

Stále se zvyšující spotřeba elektrické energie ve spojení s ekonomickými faktory, které si žádají co nejvíce využitý provoz všech energetických zdrojů, klade nové nároky i na provoz jaderných elektráren. Po jaderných haváriích z minulých let se jaderný průmysl opět rozvíjí, začínají se stavět nové reaktorové bloky nebo se využívají rezervy bloků současných.

Jaderné palivo a jeho správně navržené složení je základem každého nového i stávajícího reaktoru. Trendem dnešní doby je zvýšení obohacení uranu u klasických keramických paliv na hodnotu 5%, což je aktuální maximální limit. Dalšími směry ve výzkumu jaderných paliv jsou takzvaná MOX paliva nebo thorium-uranové palivové cykly. Vše vede k prodloužení doby provozu reaktoru a snížení doby jeho pravidelných odstávek. Samozřejmostí je zvyšování bezpečnosti samotného provozu, ale také vývoj systému ukládání vyhořelého paliva.

Problémem jaderného paliva s vyšším obohacením je jeho vysoký výkon, který souvisí s vysokou počáteční reaktivitou. Ta má negativní vliv na reaktorovou nádobu, která je vystavena nadměrnému množství neutronových dávek. Druhým zásadním problémem je schopnost samotné regulace reaktivity reaktoru a tím dosažení koeficientu násobení v aktivní zóně rovnému hodnotě 1. Dlouhodobá regulace reaktivity je typicky prováděna koncentrovanou kyselinou boritou (H₃BO₃) v chladivu, jejíž maximální možná koncentrace je dána požadavkem na udržení záporného koeficientu reaktivity. Další možností, jak dlouhodobě regulovat reaktivitu a snížit její vysokou počáteční hodnotu, je vkládání vyhořívajících absobátorů přímo do paliva. V současné době se jako vyhořívající absorbátory používají například sloučeniny gadolinia, bóru, erbia nebo hafnia. Jsou to absorpční příměsi, které absorbují část neutronů, jež by jinak způsobily štěpnou reakci uranu. Hlavní vlastností vyhořívajícího absorbátoru jako příměsi je vysoký účinný průřez, který se po absorpci neutronu přemění na nuklid s nízkým účinným průřezem. Tím vznikne nuklid s nízkou absorpční schopností.

Cílem této diplomové práce je navrhnout složení a hmotnostní podíly dvou současně působících vyhořívajících absorbátorů. K výpočtu profilu vyhoření jednotlivých prvků a jejich vzájemných kombinací je použit výpočetní kód U_WB_1 . Tato práce je tvořena několika stěžejními body. Nejprve je utvořen přehled základních vztahů a rovnic popisující vyhoření

paliva, který je následován přehledem dnes používaných vyhořívajících absorbátorů. Dalším krokem této práce je výběr vhodných prvků, seznámení s kódem U_WB_1 a výpočet profilu vyhoření vybraných prvků. Poslední část je zaměřena na výběr dvojice konkrétních prvků, jejich výpočet a porovnání. Součástí poslední části je navržení postupu dalšího výzkumu vyhořívajících absorbátorů.

1 Základní rovnice a vztahy popisující vyhoření paliva

V první kapitole této práce jsou uvedeny základní vztahy a rovnice, které úzce souvisí s problematikou provozu a vyhořívání jaderného paliva.

1.1 Mikroskopický účinný průřez

Mikroskopický účinný průřez kvantitativně popisuje interakce neutronů s atomovými jádry. Vyjadřuje pravděpodobnost srážky mezi jedním jádrem a jedním dopadajícím neutronem, který projde kolmou plochou o velikosti $1m^2$. Mikroskopický účinný průřez se značí písmenem σ a jednotkou je *barn*. Platí, že jeden barn se rovná $10^{-28}m^2$ [16]

$$\sigma = \sigma(E) \tag{1.1}$$

Kde E je energie neutronu vstupující do interakce.

Graf 1 - Závislost účinného průřezu na energii [16]

- 1 oblast do 1eV
- **2** oblast 1eV až 10^3 eV (rezonance)
- **3** oblast 10^3 eV až 10^7 eV (neutrony s velkou energií)

1.2 Makroskopický účinný průřez

Při srážce velkého počtu jader s velkým počtem neutronů uvažujeme takzvaný makroskopický účinný průřez $\sum [m^{-1}]$, což je pravděpodobnost srážky jednoho jádra ze všech s neutronem, který dopadá kolmo na jednu ze stěn krychle o straně délky 1m. [16]

$$\Sigma = N.\sigma \tag{1.2}$$

Kde N je hustota jader v jednotce objemu 1m³.

1.3 Jaderné reakce

Jaderné reakce se dělí na čtyři základní typy:

Pružný rozptyl

"Pružný rozptyl je interakce částice a jádra, při níž dochází v silovém poli jádra k zakřivení dráhy nalétající částice, avšak kinetická energie se nemění v jiný druh energie."[19]

Při tomto stavu nedochází ke změně vnitřního stavu částic. To představuje například srážka neutronu s jádry moderátoru v aktivní zóně reaktoru.

Nepružný rozptyl

"Nepružný rozptyl je interakce nalétající částice a jádra, při níž dochází k přeměnám kinetické energie částice na jiné druhy energie" (excitace či deexcitace).[19]

Při procesech nepružného rozptylu dochází ke vzniku sekundárního ionizujícího záření.

Štěpná absorpce

Je reakce, při které dojde k rozštěpení původního atomového jádra na nová lehčí jádra za vzniku nejméně dvou nových částic. Při štěpení $^{235}_{92}U$ dochází k uvolnění energie (přibližně 200MeV) a 2-3 neutronů umožňující další štěpnou reakci. Tento jev je doprovázen y zářením.

Neštěpná absorpce

Při neštěpné absorpci (radiačním záchytu) dochází k pohlcení neutronu jádrem, kterým je absorbován bez uvolnění dalšího neutronu. V jádře dojde k zvýšení počtu neutronů o 1. Touto vlastností se vyznačují právě vyhořívající absorbátory.

Mezi neštěpnou absorpci patří také reakce (n, α) izotopu bóru ¹⁰B, který se po absorpci neutronu přemění na lithium za vzniku záření α . [19]

1.4 Hustota toku neutronů

Hustotu toku neutronů $\varphi[m^{-2}s^{-1}]$ definujeme jako počet neutronů, které projdou za jednotku času kolmou plochou. Je dána funkcí $\varphi = \varphi(r, \Omega, E, t)$, jejíž úhlovou integrací do všech směrů získáme celkový neutronový tok závislý na energii E a čase t. [17]

$$\varphi(r, E, t) = \int_{4\pi} \varphi(e, E, \Omega, t) d\Omega$$
(1.4)

1.5 Koeficient násobení

Koeficient násobení k[-], nebo také multiplikační činitel, můžeme definovat jako poměr počtu neutronů konkrétní generace n_i k počtu neutronů předchozí generace n_{i-1} . "Aby se štěpná řetězová reakce udržela, musí vzniknout na každý zachycený tepelný neutron vyvolávající štěpení alespoň jeden nový neutron, který způsobí štěpení dalšího jádra." [16]

$$k = \frac{n_i}{n_{i-1}} \tag{1.5}$$

- *1.* k < 1 soustava je podkritická. Reakce se nemůže sama udržet, protože počet neutronů v řetězové reakci klesá
- 2. k = 1 soustava je kritická. Reakce se udržuje samočinně a počet neutronů je v ustálené rovnováze.
- 3. k > 1 soustava je nadkritická. Dochází k lavinovitému nárůstu počtu neutronů.

Pro soustavu s konečnými rozměry zavádíme efektivní koeficient násobení k_{eff} , z kterého vychází kritická podmínka jaderného reaktoru $k_{eff} = 1$ (samočinné udržení řetězové reakce)

Graf 2 - Časová závislost hustoty toku neutronů v konečné násobící soustavě [16]

1.5.1 Reaktivita

V praxi se častěji, než s efektivním koeficientem násobení, setkáme s reaktivitou $\rho[-]$. Nachází-li se soustava v kritickém stavu, je reaktivita rovna 0. V případě podkritického stavu je hodnota reaktivity záporná a naopak při nadkritickém stavu kladná.

$$\rho = \frac{k_{eff} - 1}{k_{eff}} \tag{1.5.1}$$

Jedná se o míru schopnosti udržet řetězovou reakci.

1.6 Výkon jaderného reaktoru

Výkon jaderného reaktoru P [W] je dán vztahem

$$P = \sum_{i} E_{f,i} \sum_{f,i} \varphi_i V_i \tag{1.6}$$

kde $E_{f,i}$ je energie získaná ze štěpení, $\sum_{f,i}$ makroskopický účinný průřez, φ_i hustota toku neutronů a V_i prostorový objem aktivní zóny. [18]

Vezmeme-li v potaz energii získanou štěpením z jednotkové hmotnosti jaderného paliva *mU [MTU]*, získáme veličinu s názvem vyhoření *B [MWd/MTU]*. Jednoduše řečeno, udává množství získané energie vyhořením vztažené na jednotku hmotnosti uranu.

2 Regulace reaktivity v jaderném reaktoru

Dnešní doba si klade požadavky na zvýšení ekonomického koeficientu využití jaderných elektráren a jejich bezpečnosti. Zvýšení koeficientu využití docílíme snahou o prodloužení palivové kampaně obvykle na 12 či 18 měsíců. Abychom mohli tohoto prodloužení dosáhnout, musíme zajistit dostatečnou zásobu paliva na celou kampaň, zvýšit jeho obohacení, ale zároveň je nutné zajistit dostatečnou kompenzaci reaktivity.

Regulace reaktivity je prováděna krátkodobě a dlouhodobě. Krátkodobé řízení reaktivity je realizováno pomocí regulačních tyčí, dlouhodobé pak pomocí kyseliny borité H_3BO_3 v chladivu a vyhořívajících absorbátorů v palivu. Hlavním úkolem absorbátorů je právě dlouhodobá kompenzace přebytku reaktivity v palivu tak, aby se co nejvíce snížily neutronové dávky na reaktorovou nádobu a došlo tak k celkovému výkonovému vyrovnání palivového souboru a tím dosažení požadovaného $k_{eff} = 1$ v aktivní zóně. Velikost neutronové dávky je limitující pro životnost reaktorové nádoby a tak i celého výrobního bloku. Dávku lze částečně omezit zavážením nového paliva blíže ke středu aktivní zóny a tím snížit hustotu neutronového toku na okraji nádoby. Během provozu reaktoru se mění obsah štěpného materiálu, a proto musí být absorpce neutronů regulovatelná. Dosáhneme tím rovnováhy mezi vznikem a zánikem neutronů během štěpení.

2.1 Krátkodobá regulace reaktivity

Mezi krátkodobou regulaci řadíme absorbátory ve formě regulačních a havarijních tyčí, jejichž délka zasunutí se mění v průběhu provozu reaktoru. V okolí zasunutých regulačních tyčí klesá tepelný výkon, který je v rámci zachování celkového výkonu reaktoru doplňován z okolních oblastí, kde dochází k prudkému nárůstu tepelného výkonu. Regulační tyče jsou

vyráběny z oceli s příměsí absorpčního materiálu s vysokým účinným průřezem, jako je bor nebo kadmium. V kapitole 2.3.4 je popsán absorbátor pro regulační tyče - karbid bóru.

Reaktor typu VVER 1000 obsahuje celkem 61 klastrů, které jsou rozděleny do deseti regulačních skupin. Jeden klastr obsahuje 18 regulačních tyčí. Tyto tyče jsou umístěny vertikálně a v případě havarijní situace dojde k uvolnění západek a pádu tyčí do aktivní zóny. [1]

2.2 Dlouhodobá regulace reaktivity

Dlouhodobá regulace je nejčastěji řešena pomocí koncentrované kyseliny borité v chladivu (reaktor moderovaný lehkou vodou). Problém nastává v případě použití paliva s vyšším obohacením, kdy roste počáteční přebytek reaktivity, který lze kyselinou boritou kompenzovat jen do určité míry. [2]

Z důvodu nedostatku kompenzace reaktivity při vyšších obohaceních pomocí kyseliny borité je nutné využít vyhořívající absorbátory umístěné v palivu.

2.3 Vyhořívající absorbátory v jaderném palivu

Vyhořívající absorbátor je vhodný izotop s vysokým účinným průřezem σ_a pro záchyt neutronu, který se po absorpci mění na izotop s malým nebo zanedbatelným účinným průřezem tak, že již další neutrony nezachytává. Na začátku kampaně, kdy je vloženo čerstvé palivo, napomáhá vyrovnat výkon v aktivní zóně pohlcováním neutronů. Naopak v průběhu vyhořívání paliva jejich absorpční schopnost klesá. Vyhořívající absorbátor by měl nezbytně nutně udržet koeficient reaktivity v záporných hodnotách a to za každých provozních podmínek. Zároveň by neměl přispívat k radiačním zdrojům ve vyhořelém palivu.[1, 2]

Vyhořívající absorbátor může být proveden jako integrální nebo diskrétní (blokový). V případě integrálního provedení se jedná o vyhořívající absorbátor, který je naprašován přímo na palivové tablety nebo je jejich součástí. Blokový vyhořívající absorbátor je tvořen celými proutky vloženými do palivového souboru. [6]

2.3.1 Gadolinium

Gadolinium (Gd) je chemický prvek stříbřité barvy s feromagnetickými vlastnostmi. Atomové číslo gadolinia je 64 a patří do skupiny lanthanoidů. V přírodě se Gd vyskytuje pouze ve formě sloučenin, kde je směsí sedmi stabilních izotopů. Využití Gd uplatníme jak v energetice, tak v jemné elektronice. Vzhledem k obrovskému účinnému průřezu pro záchyt neutronů je velmi vhodný jako vyhořívající absorbátor a to ve formě Gd₂O₃. V jemné elektronice nalezneme využití při výrobě pamětí. [3, 4]

Jako vhodný vyhořívající absorbátor se z hlediska přírodního zastoupení a účinného průřezu pro radiační záchyt využívají izotopy ¹⁵⁵Gd a ¹⁵⁷Gd. Porovnání s ostatními izotopy při tepelné energii 0,0253 eV nalezneme v Tab. 1.

Izotop	Přírodní zastoupení	Účinný průřez [b]
Gd154	2,18 at%	85,19
Gd155	14,80 at%	60737
Gd156	20,47 at%	1,8
Gd157	16,56 at%	253741
Gd158	24,84 at%	2,2
Gd160	21,86 at%	1,41

Tabulka 1	-	Vlastnosti	a	složení	Gd	[1	Ì
-----------	---	------------	---	---------	----	----	---

Po absorpci neutronu se izotopy mění na izotopy s velmi nízkým účinným průřezem v řádu jednotek barnů. Pro vysoký počáteční účinný průřez se Gd₂O₃ přidává pouze do několika palivových tyčí v aktivní zóně. Na *Obr.1*. je možné vidět rozložení aktivní zóny VVER – 440.[1, 2]

Obrázek 1 - Řez palivového souboru VVER – 440 [5]

Již od roku 1970 se využívání gadolinium jako příměs paliva v lehkovodních reaktorech typu VVER a PWR. Tyto paliva obsahují 2-8 % Gd₂O₃. Pro VVER 440 je to 3,35 % (6 proutků v palivovém souboru) a v případě VVER 1000 se nejčastěji používá 6 nebo 9 palivových proutků. Tímto hmotnostním podílem je zajištěno dostatečné pohlcení počáteční reaktivity při zvýšeném obohacení paliva. Zároveň je možné snížit koncentraci kyseliny borité. Nevýhodou takového paliva je nižší tepelná vodivost a skutečnost, že příměs Gd₂O₃ vytěsňuje z palivové tyče uran, což vede ke snížení jeho hmotnostního podílu v palivovém souboru. Vlivem vysokého účinného průřezu gadolinia dochází k rychlému vyhoření.[15]

2.3.2 Erbium

Erbium (Er) je stříbřitě bílý chemický prvek opět ze skupiny lanthanoidů, stejně jako Gd. Přírodní Er se vyskytuje ve formě sloučenin směsí 6 stabilních nuklidů - ¹⁶²Er, ¹⁶⁴Er, ¹⁶⁶Er, ¹⁶⁷Er, ¹⁶⁸Er, ¹⁷⁰Er. Erbium lze využít v jaderné energetice ve formě příměsi pro výrobu moderátorových tyčí nebo jako příměs paliva. Další uplatnění nalezne v oblasti sklářského průmyslu. Jako vyhořívající absorbátor je využíván izotop ¹⁶⁷Er, který, jak je vidět z Tab. 2, disponuje nejvyšším účinným průřezem. Erbium je méně využívaný BA a je využíván především v komerčních reaktorech typu PWR. Dlouhá doba vyhořívání pak způsobuje ovlivnění zbytkové reaktivity ve vyhořelém palivu. [7]

Izotop	Přírodní zastoupení	Účinný průřez [b]
Er162	0,19 at%	18,92
Er164	1,60 at%	12,95
Er166	33,50 at%	16,87
Er167	22,87 at%	649,8
Er168	26,98 at%	2,74
Er170	14,91 at%	8,85

Tabulka 2 - Vlastnosti a složení Er [1]

Oproti Gd má Er řádově nižší účinný průřez záchytu neutronů, tudíž je vliv na počáteční reaktivitu nižší než u Gd. Na druhou stranu erbium vyhořívá pomaleji a tím je přebytečná reaktivita kompenzována do vyšších hodnot vyhoření. Podstatnou výhodou je možnost přidat příměs erbia do všech palivových tyčí aktivní zóny. Příměs erbia pak tvoří přibližně 1% hmotnostního podílu. [1, 2, 5]

2.3.3 Europium

Vzácné zeminy našly v jaderné energetice jako vyhořívající absorbátory široké uplatnění. Jako další prvek, který se využívá, je europium (Eu). Europium má vysoký účinný průřez a v přírodě se hojně vyskytuje ve formě pěti izotopů a to: ¹⁵¹Eu, ¹⁵²Eu, ¹⁵³Eu, ¹⁵⁴Eu, ¹⁵⁵Eu. Jako vyhořívající absorbátor se používá izotop ¹⁵¹Eu, který má přírodní zastoupení 47,8 at%. Účinný průřez tohoto izotopu je 9190b, což je v porovnání s ¹⁶⁷Er hodnota o řád vyšší. Řídící tyče s europiem se využívaly již v roce 1981 v malých kompaktních reaktorech, například v jaderných ponorkách. Naopak sloučenina EuB₆ (hexaborid europia) se používá v rychlých množivých reaktorech pro záchyt neutronů. V tlakovodních reaktorech se využívá Eu₂O₃. Vlivem nižších rozdílů mezi účinnými průřezy ¹⁵¹Eu a ¹⁵²Eu je rychlost vyhořívání europia malá a tím ovlivňuje reaktivitu po delší dobu.

Vyhořívání europia probíhá ve dvou stupních. První stupeň vychází z přeměny ¹⁵¹Eu na izotop ¹⁵³Eu, který není z počátku v palivu obsažen. Druhý stupeň je pak samotné vyhořívání ¹⁵³Eu s účinným průřezem 370b s přírodním zastoupením 52,19 at%. [9, 10, 1]

Obrázek 2 - Gd, Eu a Er vyhořívající absorbátory - celkový účinný průřez [9]

Na *Obr.* 2 je znázorněno srovnání účinných průřezů na nejpoužívanějších vyhořívajících absorbátorech v závislosti na energii neutronů. Jak je vidět, gadolinium má sice nejvyšší počáteční účinný průřez pro záchyt radiačních neutronů, ale zároveň má velmi rychlou dobu vyhoření. Vyšší dobu vyhoření poskytuje erbium, které ale dosahuje nižšího počátečního účinného průřezu než gadolinium. Velmi příznivé vlastnosti má europium, které má velký účinný průřez a s přeměnou na izotop ¹⁵³Eu i dlouhou dobu vyhoření.

2.3.4 Karbid bóru

V současné době se jedná o nejpoužívanější absorbátor pro regulační tyče využívané v tlakovodních a rychlých množivých reaktorech. Přírodní karbid bóru B_4C se vyznačuje účinným průřezem 600b a vysokým bodem tání 2450°C. Nevýhodou je tvorba atomu helia, tritia a lithia při vyhořívání abrorbátoru, což způsobuje bobtnání a praskání vnějšího pláště.

 B_4C se skládá z 85% koncentrace bóru, která obsahuje izotop ¹⁰B s velmi vysokým účinným průřezem 4000b.

Karbid bóru se do regulačních tyčí přidává ve formě peletek, které se lisují za studena, za tepla nebo se slinují s hustotou 70-80%. Některé reaktory tento karbid využívají ve formě prášku. [11, 13]

2.3.5 IFBA - ZrB₂

Jedná se o tzv. integrální vyhořívající absorbátor, který je naprašován přímo na palivové tablety. Návrhy paliva firmy Westinghouse se právě tímto druhem BA nejčastěji zabývají a konkrétně typ paliva VVANTAGE 6 (palivo pro tlakovodní reaktory VVER 1000) je realizován s BA typu ZrB_2 ve formě tenké vrstvy na palivových tabletách. V některých případech se může jednat o obohacené zirkonium izotopem ¹⁰B. [23]

2.3.6 Borosilikátové sklo

Tento druh BA využívala v minulých letech firma Westinghouse ve svých reaktorech. Jako BA se používaly borosilikátové proutky skla s 3-5% bóru vyztužené nerezovou ocelí. Výhodou použití takových BA byla nízká cena. Vlivem nízké pevnosti a korozní odolnosti, vysokému množství uvolněného helia během vyhořívání a napuchání skla se tyto BA přestaly používat. [24]

2.4 Ostatní materiály s vlastnostmi vyhořívajících absorbátorů

V této kapitole jsou stručně shrnuty materiály, které mají sice vlastnosti vyhořívajících absorbátorů, ale jejich využití je zatím otázkou budoucnosti a výzkumu nebo je jejich použití ekonomicky nevýhodné.

2.4.1 Slitiny na bázi stříbra

Tyto slitiny lze použít při výrobě řídících tyčí v tlakovodních reaktorech, kde se vyznačují výbornými absorpčními vlastnostmi a to v celém spektru neutronových energií. Jedná se o kombinaci stříbra s 15% hmotnostního podílu kadmia (Cd) a 5% india (In).

Výborné vlastnosti slitin však prudce sráží jejich vysoké výrobní náklady (cena stříbra), a proto se využívají jen zřídka. Také se můžeme setkat s označením AIC 80 - 15 - 5. [11]

2.4.2 Hafnium

Hafnium (Hf) se získává jako vedlejší produkt při oddělení zirkonia ze surového tvaru, který je odolný proti korozi a chemicky stálý. Skládá se ze šesti izotopů s vysokým účinným průřezem, který výrazně neklesá v průběhu vyhořívání, kdy vznikají jeho nové izotopy. Použití hafnia v řídících tyčí je velmi rozšířené v Japonsku v reaktorech BWR. Řídící tyče z čistého hafnia byly použity i na francouzském experimentálním reaktoru. V dnešní době se spíše využívá sloučenina HfB₂. [11, 12]

Izotop	Přírodní zastoupení	Účinný průřez [b]
Hf174	0,16 at%	561
Hf176	5,2 at%	23,5
Hf177	18,6 at%	373
Hf178	27,1 at%	84
Hf179	13,7 at%	41
Hf180	35,2 at%	13

Tabulka 3 - Vlastnosti a složení Hf [12]

2.4.3 Xenon a samarium

Izotopy ¹³⁵Xe a ¹⁴⁹Sm vznikají jako vedlejší produkt při štěpení. Konkrétně 95% produkce ¹³⁵Xe vzniká z rozpadu jódu. Tyto izotopy mají obrovský účinný průřez ¹³⁵Xe - 2×10^{6} b a ¹⁴⁹Sm 74500b. Takto vysoký účinný průřez pohltí velké množství neutronů z reaktorové nádoby a tím pádem má velký vliv na tepelný výkon reaktoru. Pohlcení neutronů se může stát natolik závažné, že dojde k takzvané xenonové otravě. To je stav, kdy může dojít k zastavení štěpné reakce. Proto je nutné udržovat rovnovážnou koncentraci mezi nově vzniklým a rozpadlým jódem. Výroba vyhořívajících absorbátorů s obsahem xenonu je velmi těžce fyzikálně proveditelná, neboť xenon se v přírodě vyskytuje ve formě plynu.

Samarium je stabilní prvek, který vzniká z rozpadu neodymu. Při provozu reaktoru zůstává samarium v rovnovážné koncentraci. Problém nastává v situaci při odstavení

reaktoru, kdy dojde k jeho nahromadění. Velikost nahromadění závisí na úrovni výkonu při odstavení reaktoru. [14]

¹⁴⁹Sm vzniká přímo ze štěpení v reaktoru, ale především vzniká radioaktivní přeměnou promethia ¹⁴⁹Pm, který vzniká opět radioaktivní přeměnou z neodymu ¹⁴⁹Nm, který je součástí štěpného produktu. Naopak od xenonové otravy nedochází u samariové otravy k rozpadu, ale dochází k nahromadění. [22]

2.4.4 Dysprosium

Podobně jako gadolinium se dysprosium vyznačuje vysokým účinným průřezem pro záchyt tepelných neutronů. Slitiny dysprosia se s příměsí niklu využívají jako materiál vhodný pro výrobu moderátorových tyčí. První aplikace dysprosia jako vyhořívajícího absorbátoru bude využita v těžkovodním reaktoru CANDU. Nová konstrukce paliva osahující soubor 42 palivových tyčí uspořádaných ve třech prstencových kruzích kolem centrální tyče složené z UO₂/Dy₂O₃.

Dysprosium se těží ve formě rudy s největšími ložisky v oblasti Číny, Vietnamu a USA. Přírodní dysprosium se vyskytuje ve formě sedmi stabilních izotopů.

3 Výběr vhodných prvků pomocí softwaru JANIS 4.0

JANIS (Java-based nuclear information software) je program sloužící k zobrazení a vizualizaci jaderných dat, jako jsou účinné průřezy, rozpad, výnosy štěpení, vyhořívání atd. Umožňuje uživateli jejich grafické a numerické znázornění. Obsahuje knihovny formátů CINDA, ENDF a EXFOR.

Pro tuto práci byly využity knihovny jaderných dat ENDF, konkrétně knihovny ENDF/B-VII.1 z roku 2011 se zaměřením na neutronová data. V těchto knihovnách jsou pro všechny prvky vyhledány nejvíce absorpční nuklidy (nuklid s nejvyšším účinným průřezem), které jsou následně zaneseny do tabulky 4. Všechny účinné průřezy jsou uvažovány pro tepelnou energii 0,0253eV a pro střední hodnotu PWR.

Důležitou vlastností při tomto výběru je rozdíl účinného průřezu daného nuklidu a jeho dceřiného produktu. Čím je rozdíl vyšší, tím daný nuklid rychleji vyhořívá. To je žádoucí právě pro snížení počáteční reaktivity. Naopak nižší rozdíl znamená pomalejší vyhoření. Cílem této práce je nalezení vhodné kombinace dvou vyhořívajících absorbátorů (rychlý a pomalý) v požadovaném hmotnostním podílu. Při výběru je brán zřetel na přírodní zastoupení daného prvku. V tabulce 4 jsou vypsány pouze ty prvky, které mají potenciál (vysoký účinný průřez) pro využití jako vyhořívající absorbátor.

Název	Značka	eV	σ [b]	Stř. hodnota pro PWR	Přírodní zastoupení
Kobalt	Co 58	0,0253	2029,412	863,076	-
	Co 59	0,0253	43,216	50,100	100%
Promethium	Pm 148	0,0253	2003,670	297,124	-
	Pm 149	0,0253	1403,603	215,475	-
	Pm 151	0,0253	155,763	270,309	-
Europium	Eu 151	0,0253	9189,509	999,335	47,81%
	Eu 152	0,0253	12819,360	692,631	-
	Eu 153	0,0253	367,094	111,479	52,19%
	Eu 154	0,0253	1358,340	282,378	-
	Eu 155	0,0253	3766,962	1324,362	-
	Eu 156	0,0253	106,649	114,370	-
	Eu 157	0,0253	117,291	76,472	-
Gadolinium	Gd 152	0,0253	1036,609	180,617	0,20%
	Gd 153	0,0253	22353,420	737,260	-
	Gd 154	0,0253	90,932	29,608	2,18%

				Stř.	
Název	Značka	eV	σ [b]	hodnota	Přírodní
		•••	• [*]	pro PWR	zastoupení
	Gd 155	0.0253	60797,690	2360.979	14.80%
	Gd 156	0.0253	6.694	18.736	20.47%
	Gd 157	0.0253	253913.300	9867.561	15.65%
	Gd 158	0.0253	7.858	13.393	24.84%
	Gd 160	0.0253	10.786	11.723	21.86%
Frbium	Fr 162	0.0253	26,944	41.019	0.14%
	Fr 164	0.0253	22.082	21.899	1.61%
	Er 166	0.0253	31.154	20.897	33.61%
	Er 167	0.0253	652.254	376.863	22.93%
	Er 168	0.0253	12.403	15.493	26.78%
	Er 170	0.0253	20.555	35.641	14.93%
Hafnium	Hf 174	0.0253	597.624	103.723	0.16%
	Hf 176	0.0253	26.943	63,496	5.26%
	Hf 177	0.0253	373.882	461.020	18.60%
	Hf 178	0.0253	90 548	218 550	27 28%
	Hf 179	0.0253	49,572	48,024	13.62%
	Hf 180	0.0253	35 440	20 584	35.08%
Tantal	Ta 180	0.0253	879 216	283 972	-
Turitar	Ta 181	0.0253	27 295	57 268	99 99%
	Ta 182	0,0253	8322 545	1991 807	-
Iridium	lr 191	0.0253	968 622	272 820	37 30%
	lr 193	0.0253	124 293	98 769	62 70%
Rtuť	Hg 196	0.0253	3188 046	264 039	15.00%
	Hg 198	0.0253	14,800	20.443	9,97%
	Hø 199	0.0253	2216 344	195 752	16 87%
	Hg 200	0.0253	16 004	14 716	23 10%
Protactinium	Pa 230	0.0253	1892.046	228,969	-
Trotactinian	Pa 231	0.0253	211 919	103 550	-
	Pa 232	0.0253	2099 961	266 973	_
Nentunium	Nn 234	0.0253	2121 916	227 699	-
Reptullull	Np 234	0.0253	219 363	116 664	
Americium	Am 2//	0,0253	2912.056	325 / 67	_
Berkelium	Bk 2/16	0,0253	2512,030	251 592	
Derkendin	Bk 2/17	0,0253	101/ 057	129 265	
	Bk 248	0.0253	2870 39/	286 797	
	Bk 249	0.0253	718 879	395 748	
Californium	Cf 251	0.0253	7811 727	1351 927	
Cultornulli	Cf 251	0.0253	64 802	25 201	
Helium	He 3	0.0253	5321 /52	512 /8/	0.00%
nenum		0,0255	0 864	1 1 21	
Lithium		0,0233	0,004	1,101 Q1 159	7 20%
Littilain		0,0233	1 025	1 200	07 /10/
Benyllium	Bo 7	0,0233	37617 070	3572 /57	52,41/0
Berymun	Be 0	0,0233	57017,070 6 E00	5575,457	100%
Dusík		0,0253		5,50Z	100%
DUSIK	N 14	0,0253		0,010	0.27%
Por		0,0253	4,504	4,032	10,00%
BOL	R TO	0,0253	3846,321	370,833	19,90%

Název	Značka	eV	σ [b]	Stř. hodnota	Přírodní zastoupení
				pro PWR	zastoupeni
	B11	0,0253	5,067	4,476	80,10%
Sodík	Na 22	0,0253	29180,960	2950,398	-
	Na 23	0,0253	3,921	7,534	100%
Křemík	Si 28	0,0253	2,160	2,317	92,23%
	Si 29	0,0253	2,749	2,598	4,68%
	Si 30	0,0253	2,606	2,596	3,09%
Chlor	Cl 35	0,0253	65,063	13,969	34,97%
	Cl 37	0,0253	1,583	1,678	36,96%
Argon	Ar 36	0,0253	79,638	46,967	0,34%
	Ar 37	0,0253	9,743	6,029	-
Vápník	Ca 40	0,0253	3,470	2,788	96,94%
	Ca 42	0,0253	1,920	1,942	0,65%
	Ca 43	0,0253	4,246	3,147	0,14%
	Ca 46	0,0253	3,706	7,136	0,00%
	Ca 48	0,0253	4,849	3,332	0,19%
Titan	Ti 46	0,0253	3,322	3,404	8,25%
	Ti 47	0,0253	4,891	6,061	7,44%
	Ti 48	0,0253	12,356	10,641	73,72%
	Ti 49	0,0253	2,409	4,241	5,41%
	Ti 50	0,0253	3,935	3,526	5,18%
Vanad	V 50	0,0253	52,386	26,209	0,25%
	V51	0,0253	9,885	14,271	99,75%
Chrom	Cr 50	0,0253	17,826	15,104	4,35%
	Cr 52	0,0253	3,933	3,263	83,79%
	Cr 53	0,0253	25,989	19,156	9,50%
	Cr 54	0,0253	2,955	2,860	2,37%
Kobalt	Co 58	0,0253	2029,412	863,076	-
	Co 59	0,0253	43,216	50,100	100%
Nikl	Ni 58	0,0253	29,262	18,977	68,07%
	Ni 59	0,0253	98,363	37,434	-
	Ni 60	0,0253	3,500	5,422	26,22%
	Ni 61	0,0253	11,312	8,329	1,14%
	Ni 62	0,0253	24,627	27,777	3,63%
Měď	Cu 63	0,0253	9,614	7,356	69,17%
	Cu 65	0,0253	16,041	11,166	30,83%
Zinek	Zn 64	0,0253	4,715	7,339	48,63%
	Zn 65	0,0253	72,192	18,885	-
	Zn 66	0,0253	5,556	5,683	27,90%
	Zn 67	0,0253	9.583	12.957	4.10%
	Zn 68	0,0253	5.619	12.064	18.75%
Germanium	Ge 72	0,0253	9.813	8.039	27.54%
	Ge 73	0,0253	19.519	27.724	7.73%
	Ge 74	0.0253	7.742	7.555	36.28%
Arsen	As 74	0.0253	16.868	22,540	
	As 75	0.0253	9,968	13,836	100.00%
Selen	Se 76	0.0253	103.546	22,890	9,37%
	Se 77	0,0253	50,493	15,198	7,63%

Název	7načka	eV	a [b]	Stř. hodnota	Přírodní
Huzer	Lindena		0[0]	pro PWR	zastoupení
	Se 78	0.0253	8.885	9.229	23.77%
	Se 79	0.0253	56.356	15.452	-
	Se 80	0.0253	7.604	11.189	46.91%
Krypton	Kr 82	0.0253	33,949	30,524	11.58%
71	Kr 83	0.0253	211.674	35.278	11.49%
	Kr 84	0.0253	3.851	6.608	57%
	Kr 85	0.0253	8.015	6.487	-
	Kr 86	0,0253	5,473	5,833	17,30%
Yttrium	Y 89	0,0253	9,010	7,098	100%
	Y 90	0,0253	12,910	12,546	-
	Y 91	0,0253	7,132	7,254	-
Zirkon	Zr 90	0,0253	5,538	6,462	51,45%
	Zr 91	0,0253	11,128	11,008	11,22%
	Zr 92	0,0253	7,378	8,464	17,15%
	Zr 93	0,0253	6,492	9,858	-
	Zr 94	0,0253	8,708	8,837	17,38%
	Zr 95	0,0253	6,934	7,638	-
	Zr 96	0,0253	5,759	7,384	2,80%
Niob	Nb 93	0.0253	7,520	7.517	100%
	Nb 94	0.0253	22.255	16.102	-
	Nb 95	0.0253	12.732	10.224	
Molvbden	Mo 99	0.0253	13.731	10.384	-
,	Mo 100	0,0253	5,526	7,583	9,63%
Palladium	Pd 105	0,0253	28,239	13,788	22,33%
	Pd 106	0,0253	4,936	7,719	27,33%
	Pd 107	0,0253	5,342	13,150	-
	Pd 108	0,0253	10,922	37,460	26,46%
Stříbro	Ag 109	0,0253	92,789	98,424	48,16%
	Ag 110	0,0253	88,673	15,821	-
	Ag 111	0,0253	8,382	12,707	-
Kadmium	Cd 113	0,0253	19994,010	3612,013	12,22%
	Cd 114	0,0253	6,016	9,392	28,73%
	Cd 115	0,0253	9,941	7,163	-
	Cd 116	0,0253	5,041	5,880	7,49%
Cín	Sn 115	0,0253	67,095	11,725	0,34%
	Sn 116	0,0253	4,447	6,609	14,54%
Tellur	Te 123	0,0253	419,015	371,640	0,89%
	Te 124	0,0253	13,502	7,428	4,74%
	Te 125	0,0253	4,570	6,803	7,07%
	Te 127	0,0253	3384,619	322,413	-
	Te 128	0,0253	4,608	4,918	31,74%
	Te 129	0,0253	1603,875	163,673	-
	Te 130	0,0253	4,801	4,838	34,08%
Jod	I 129	0,0253	40,674	11,338	-
	I 130	0,0253	20,675	10,911	-
	131	0,0253	83,637	19,435	-
Xenon	Xe 123	0,0253	95,352	91,596	-

Název	Značka	eV	σ [b]	Stř. hodnota pro PWR	Přírodní zastoupení
	Xe 124	0,0253	150,318	228,459	0,09%
	Xe 131	0,0253	91,219	155,746	21,18%
	Xe 132	0,0253	4,224	6,379	26,89%
	Xe 133	0,0253	193,668	27,034	-
	Xe 134	0,0253	4,780	5,065	10,44%
	Xe 135	0,0253	2964433,000	237135,600	-
	Xe 136	0,0253	8,506	7,401	8,87%
Cesium	Cs 134	0,0253	162,417	26,886	-
	Cs 135	0,0253	15,039	13,287	-
	Cs 136	0,0253	16,517	18,171	-
	Cs 137	0,0253	3,793	5,707	-
Lanthan	La 138	0,0253	70,124	33,457	0,09%
	La 139	0,0253	19,246	8,424	99,91%
	La 140	0,0253	4,683	20,223	-
Cerium	Ce 139	0,0253	529,511	53,077	-
	Ce 140	0,0253	4,193	4,368	88,45%
Neodynium	Nd 143	0,0253	405,576	73,790	12,20%
	Nd 144	0,0253	5,048	36,899	23,80%
	Nd 145	0,0253	58,700	48,750	8,30%
	Nd 146	0,0253	11,773	14,192	17,20%
Samarium	Sm 147	0,0253	64,192	87,858	14,99%
	Sm 148	0,0253	6,873	29,876	11,24%
	Sm 149	0,0253	40697,460	6055,091	13,82%
	Sm 150	0,0253	122,812	57,952	7,38%
	Sm 151	0,0253	15203,450	865,458	-
	Sm 152	0,0253	209,100	500,226	26,75%
	Sm 153	0,0253	424,187	341,132	-
	Sm 154	0,0253	19,163	16,915	22,75%
Terbium	Te 159	0,0253	30,306	33,783	100%
	Te 160	0,0253	337,893	225,078	0
Dysporsium	Dy 161	0,0253	617,743	109,737	18,91%
	Dy 162	0,0253	194,151	204,011	25,51%
	Dy 163	0,0253	126,709	103,568	24,90%
	Dy 164	0,0253	2981,596	264,424	28,18%
Thulium	Tm 169	0,0253	112,015	112,593	100%
	Tm 170	0,0253	22,518	47,065	-
Thorium	Th 232	0,0253	20,381	20,231	100%
	Th 233	0,0253	1317,441	145,194	-

Tabulka 4 - Porovnání prvků

V následující tabulce je zobrazen výběr konkrétních sedmi prvků, které jsou dále propočítány pomocí kódu U_WB_1 . Výběr je proveden na základě rozdílu účinného průřezu daného nuklidu a jeho dceřiného produktu s ohledem na přírodní zastoupení.

Prvek (Matka)	σ [b]	Prvek (Dcera)	σ [b]	Rozdíl σ [b]	Přírodní zastoupení matky
Rychlé vyhoření					
Sm 149	40697,46	Sm 150	122,812	40574,648	13,82%
Eu 151	9189,509	Eu 153	367,094	8822,415	47,81%
Gd 157	253913,300	Gd 158	7,858	253905,44	15,65%
Cd 113	19994	Cd 114	6,016	19987,984	12,22%
Pomalé vyhoření					
Dy 162	194,151	Dy 163	126,709	67,442	25,51%
Hf 179	49,572	Hf 180	35,44	14,132	13,62%
Xe 131	91,2192	Xe 132	4,223	86,9962	21,18%

Tabulka 5 - Výběr vhodných zástupců BA, rozdělení dle účinných průřezů

4 Výpočetní kód U_WB₁

Výpočetní kód U_WB_1 (Fast nuclear fuel depletion code) je rychlý výpočetní kód pro studium vyhořívajících absorbátorů, který je vyvíjen na ZČU v Plzni. Hlavním úkolem kódu U_WB_1 je snížení výpočetní doby ve srovnání s konkurenčními moderními kódy, jako jsou Serpent, MCNP, SCALE, Helios apod. Ty jsou založeny na výpočtu Batemanových a transportních rovnic. Batemanovy rovnice jsou řešeny jako soustava diferenciálních rovnic popisující změny paliva v průběhu vyhoření. Transportní rovnice řeší průběh hustoty toku neutronů v palivovém souboru. [25]

Zrychlení starších verzí kódu bylo docíleno vynecháním transportních výpočtů během vyhořívání. Pomocí vytvořených knihoven kódu U_wB_1 byly určovány hodnoty efektivních účinných průřezů pro hustoty toku neutronů odpovídající stavu paliva v polovině průběhu vyhoření. Nynější verze využívají Monte Carlo solver, který řeší transportní rovnici simulací Monte Carlo. Jedná se o statistickou metodu, která je založena na principu použití generátoru náhodných čísel, statistických rozdělení a vhodném algoritmu daného problému.[25]

Veškeré výpočty, které obsahuje tato práce, jsou provedeny ve verzi U_WB_1 (*verze prosinec 2014*), která již využívá k řešení transportní rovnice Monte Carlo solver. Pro snížení výpočetní doby je v U_WB_1 implementována metoda 2sPC, která snižuje počet transportních výpočtů během výpočtu vyhořívání.

4.1 Vstupní soubor

uwb1 depletion test	
5000	npg - number of neutrons per generation11
5	nsng - number of skipped neutron generations
110	tnng - total number of neutron generations
0.385	rfuel - fuel radius
0.455	rclad - clad radius
0.6375	hpitch - half pitch
2	lat - lattice type (1=square, 2=hexagonal)
43	idepl - number of depletion intervals

První část vstupního souboru kódu U_WB_1 (*verze December 2014*) obsahuje informace o jaderném palivu a jeho geometrii.

npg	 počet neutronů v generaci. Typická hodnota rovna 5000
nsng	 počet neaktivních generací. Typická hodnota rovna 10
tnng	- celkový počet neutronových generací. Typická hodnota rovna 110 [20]

Geometrie paliva - VVER 1000

Parametr	Hodnota [cm]	Poloměr [cm]
Vnější průměr UO2	0,76	0,38
Vnitřní průměr pokrytí Zr	0,77	0,385
Vnější průměr pokrytí Zr	0,91	0,455
Rozteč palivového proutku	1,275	0,6375

Tabulka 6 - Geometrie paliva VVER 1000 [21]

Parametrem *"lattice type"* zadáme geometrii mříže a to: 1 - čtvercová mříž / 2 - šestiúhelníková (hexagonální) mříž. Následujícím parametrem zvolíme počet intervalů vyhořívání, které je v daném případě zvoleno v rozmezí 0 - 50000 MWd/MTU.

```
4.00000E+01 4.00000E+01 4.00000E+01 4.00000E+01 4.00000E+01 4.00000E+01 ......4.00000E+01 4.00000E+01 4.00000E+01 irradiation power
1.00000E+00 2.00000E+00 3.00000E+00 4.00000E+00 5.00000E+00 1.00000E+01 ...... 1.12500E+03 1.18750E+03 1.25000E+03 irradiation days
```

"/media/sf_xwork/uwb1libs/"	folder with uwb1 libraries
uwb1zaid0423to3820.txt	position of transport nuclides in depletion nuclides
uwb1nmass.txt	nuclide mass relative to neutron
uwb1qvalues4mc.txt	qvalues for inelastic reactions
uwb1chi16.txt	xs_n2n chi data library
uwb1chi17.txt	xs_n3n chi data library
uwb1chi18.txt	xs_fission chi data library
uwb1chi91.txt	xs_inelastic_continuum chi data library
uwb1nubar.txt	nubar data library
uwb1angular02.txt	xs_elastic angular distribution data library
uwb1angular51t90.txt	xs_inelastic_discrete angular distribution data library
uwb1angular91.txt	xs_inelastic_continuum angular distribution data library
uwb1egrid.txt	energy grid for xs data
uwb1xscom0900k.txt	fuel material xs data library (power depletion)
uwb1xscom0600k.txt	clad material xs data library (flux depletion)
uwb1xscom0293k.txt	moderator material xs data library (no depletion)
uwb1maxwell0900k.txt	fuel temperature maxwell distribution library
uwb1maxwell0600k.txt	clad temperature maxwell distribution library
uwb1maxwell0293k.txt	moderator temperature maxwell distribution library
uwb1aiiuni.txt	transition matrix Aii, universal flux-independent part
uwb1fijphi.txt	transition data Fij, part of Aij, case-flux-dependent part
uwb1aijuni.txt	transition matrix Aij, universal flux-independent part
uwb1deplxscom0900k.txt	cross section library for depletion reactions
uwb1qvalues4depl.txt	recoverable energy library for depletion reactions

Druhá část obsahuje informace o vyhoření, kdy uvažujeme ozařovací výkon 40MW/MTU, který přibližně vychází při výkonu reaktoru 3000 MW (163 palivových souborů s hmotností uranu v 1 palivovém souboru rovnu 0,467 MTU/PS), po dobu 1250 dnů (50000 MWd/MTU). Následující řádky obsahují názvy souborů knihoven.

12 number of fuel nuclides 15 86 80160 4.62954E-02 16 87 80170 1.76342E-05 159 1405 481060 6.96440E-08 160 1407 481080 4.95865E-08 362 3514 922350 1.17424E-03 365 3518 922380 2.20287E-02 12 number of clad nuclides 117 1039 400900 2.19170E-02 118 1041 400910 4.77956E-03 308 2603 721790 8.98867E-07 309 2606 721800 2.31514E-06 4 number of moderator nuclides 1 10010 4.776E-02 1 10 41 50100 4.752E-06 11 42 50110 1.913E-05 15 86 80160 2.388E-02 eof

Třetí část definuje tři materiály modelu vyhoření. Jedná se o palivo - *number of fuel nuclides*, pokrytí - *number of clad nuclides* a moderátor - *number of moderator nuclides*. Systém zadávání jednotlivých nuklidů je znázorněn v tabulce 7, kde je na příkladu uvedeno zadání ²³⁵ U.

Pořadí v knihovně účinných průřezů 1 - 423	Pořadí v rozpadové knihovně 1 - 3820	ZAID	Hustota nuklidu
362	3514	922350	1,17E-03

Tabulka 7 - Příklad definování materiálu - U235

4.2 Výstupní soubor

 U_wB_1 kód spojuje řešení Batemanových rovnic a transportní rovnice ve výpočetním schématu založeném na dvouúrovňové metodě prediktor - korektor (metoda 2sPC), která je založena na třech transportních výpočtech. Nejprve se pomocí prediktoru získá odhad nového řešení, který se pak použije jako start iteračního procesu - korektoru. Tímto iteračním procesem se zpřesní první odhad z prediktoru. První krok je rozdělen na 3 části nazývající se - Initial, Predictor a Corrector. Každá z těchto částí má svůj transportní výpočet. Cílem prvního

kroku je výpočet počátečního a koncového stavu vyhoření - účinných průřezů, multiplikačního faktoru, vzniku neutronů a složení paliva. Kód U_WB_1 řeší Batemanovy rovnice pro 3820 nuklidů a 30 jaderných reakcí metodou CRAM s algebraickou knihovnou MUMPS. Dřívější verze kódu U_WB_1 využívaly Fortran knihovnu LAPACK. Přechodem na knihovnu MUMPS došlo k razantnímu poklesu výpočtového času. [25]

uwb1 vver50 depletion test

28.51 sec: stage 1/5 initial started

transport calculation for depletion step 0 / 43

k-eff values during MC simulation:1.290001.287001.302801.260401.28040...1.286201.29700k-eff averages during MC simulation:0.000000.000001.287601.285101.282871.284961.28509k-eff uncertainty during MC simulation:0.000000.000000.001440.005230.004330.001390.00138

final k-eff: 1.28509 0.00138

energy grid: 1.02563E-05 1.05191E-05 1.07886E-05 1.10651E-05 1.93655E+07 1.96802E+07 2.00000E+07 neutron flux in fuel: 4.25376E-08 0.00000E+00 1.70117E-07 0.00000E+00 0.00000E+00 0.00000E+00 neutron flux in clad: 0.00000E+00 2.37194E-06 6.65675E-07 0.00000E+00 0.00000E+00 0.00000E+00 neutron flux in mod: 1.39940E-07 1.24060E-07 1.57190E-07 0.00000E+00 0.00000E+00 0.00000E+00 0.07 sec: transport calculation finished

První část výpočtu (*stage 1/5 initial started*) se používá k analýze původního stavu paliva řešeného Monte Carlo simulací (MC Simulace). Celkový makroskopický účinný průřez je vypočítán ještě před MC simulací tak, aby se urychlil průběh života neutronů, který je simulován v procesu tzv. náhodné procházky. Transportním výpočtem je pak vypočten k_{eff} a neutronové toky pro všechny geometrické oblasti ve 4308 energetických grupách.

213.04 sec: stage 2/5 predictor started

transport calculation for depletion step 43 / 43

k-eff values during MC simulation:0.971000.961000.909800.974800.93420....0.948000.95980k-eff averages during MC simulation:0.000000.000000.930400.933400.93973....0.947970.94810k-eff uncertainty during MC simulation:0.000000.000000.000000.006570.00475....0.001440.00143

final k-eff: 0.94810 0.00143

energy grid: 1.02563E-05 1.05191E-05 1.07886E-05 1.10651E-05 1.93655E+07 1.96802E+07 2.00000E+07 neutron flux in fuel: 0.00000E+00 0.00000E+00 2.13240E-07.... 0.00000E+00 0.00000E+00 0.00000E+00 neutron flux in clad: 2.66280E-06 0.00000E+00 1.24377E-06.... 0.00000E+00 0.00000E+00 0.00000E+00 neutron flux in mod: 1.74150E-07 6.25442E-08 2.78593E-07.... 0.00000E+00 0.00000E+00 0.00000E+00

726.69 sec: transport calculation finished

V druhé části (*stage 2/5 predictor started*) dojde k určení stavu paliva na konci vyhoření z původního účinného průřezu získaného v kroku 1.

790.68 sec: stage 3/5 corrector started

transport calculation for depletion step 43 / 43

k-eff values during MC simulation:0.948000.934000.950800.933200.953600.945600.93180k-eff averages during MC simulation:0.000000.000000.000000.926400.947500.941700.94160k-eff uncertainty during MC simulation:0.000000.000000.000000.021100.01266....0.001590.00158

final k-eff: 0.94160 0.00158

energy grid: 1.02563E-05 1.05191E-05 1.07886E-05 1.10651E-05 1.93655E+07 1.96802E+07 2.00000E+07 neutron flux in fuel: 2.55675E-08 0.00000E+ 4.22269E-08.... 0.00000E+00 0.00000E+00 0.00000E+00 neutron flux in clad: 0.00000E+00 0.00000E+00 2.44493E-06.... 0.00000E+00 0.00000E+00 0.00000E+00 neutron flux in mod: 6.44985E-08 1.40754E-07 2.26836E-07.... 0.00000E+00 0.00000E+00 0.00000E+00

1226.20 sec: transport calculation finished

Třetí část výpočtu (*stage 3/5 corrector started*) je téměř shodná s předchozí částí. Zde dochází k určení počátečního stavu paliva pomocí sady účinných průřezů daných predikovaným složením paliva na konci vyhoření. Kroky *predictor* a *corrector* dojde k vypočtení průměrné hodnoty složení paliva na konci vyhoření.

1229.23 sec: stage 4/5 depletor started

depletion calculation for depletion step 0 / 43

fuel burnup:0.0 MWd/MTUnuclide positions:123456....

 zaid identifiers:
 10010
 10020
 10030

 1102711
 1102720
 1102730
 1102791
 1112720

 fuel inventory:
 0.00000E+00
 0.0000

3816

3817

3818

3820

3819

1229.23 sec: depletion calculation finished

depletion calculation for depletion step 1 / 43 fuel burnup: 40.0 MWd/MTU nuclide positions: 1 4 5 3816 3820 2 3 6 3817 3818 3819 zaid identifiers: 10010 10020 10030 1102711 1102720 1102730 1102791 1112720 fuel inventory: 2.73618E-11 2.18002E-12 4.72788E-09 0.00000E+00 0.00000E+00 0.00000E+00 clad inventory: 4.87614E-11 5.62398E-14 1.62970E-11.... 0.00000E+00 0.00000E+00 0.00000E+00

1235.72 sec: depletion calculation finished

depletion calculation for depletion step 2 / 43
```
depletion calculation for depletion step 43 / 43
fuel burnup: 50000.0 MWd/MTU
nuclide positions: 1
                                             5
                         2
                               3
                                      4
                                                   6
                                                             3816
                                                                      3817
                                                                              3818
                                                                                       3819
                                                                                               3820
                                                        ....
zaid identifiers: 10010
                       10020
                               10030 .... 1102711 1102720 1102730 1102791
                                                                                     1112720
fuel inventory: 9.76638E-07 4.57360E-09 7.98032E-06 .... 0.00000E+00 0.00000E+00 0.00000E+00
clad inventory: 8.91067E-08 1.22014E-10 2.69638E-08.... 0.00000E+00 0.00000E+00 0.00000E+00
```

1512.09 sec: depletion calculation finished

Ve čtvrtém kroku (*stage 4/5 depletor started*) dochází k výpočtu složení paliva a odhadu koeficientu násobení během vyhoření.

1512.09 sec: stage 5/5 estimator started

1512.09 sec: final k-eff table: burnup (MWd/MTU) k-eff (-) 0.00 1.28509 40.00 1.26755 80.00 1.26492 120.00 1.26487 160.00 1.26495 200.00 1.26503 400.00 1.26532 600.00 1.26552 800.00 1.26541 42500.00 0.97467 0.96400 45000.00 47500.00 0.95407 50000.00 0.94485 1512.09 sec: calculation finished

Poslední část (*stage 5/5 estimator started*) slouží k porovnání počáteční a koncové hodnoty k_{eff} vypočítané transportním výpočtem s jejich odhadem. Konečným výstupem je pak tabulka, ve které je znázorněna závislost k_{eff} na vyhoření. [25]

5 Výpočet vyhoření jednotlivých prvků

V následující kapitole jsou vypočteny průběhy vyhoření pro 7 vybraných prvků z kapitoly 3. Jedná se o prvky Cd, Hf, Gd, Dy, Sm, Xe, Eu.

Výpočty jsou prováděny pro reaktor typu VVER 1000, jehož geometrie je zadána v tabulce 6. Veškeré výpočty jsou uvažovány pro obohacení ${}^{235}_{92}U = 5\%$. Pokrytí palivových tyčí je tvořeno slitinou E-110, která obsahuje 98,99 %wt. zirkonia, 1 %wt niobu. Typicky se v této sloučenině objevuje ještě 0,01 %wt. hafnia, které v přírodě doprovází zirkonium. Jako moderátor je použita lehká voda s kyselinou boritou o hustotě 0.723 g/cm³ s 600 ppm boru.

5.1 Kadmium

Hmotnostní podíly kadmia byly zvoleny na základě zkušebních výpočtů v rozmezí od 0,01 %wt. až do 0,5 %wt. Výsledná výstupní číselná data pro jednotlivé koncentrace přírodního kadmia a jejich dopočtené hodnoty jsou v příloze 1.

Graf 3 - Kadmium - závislost keff na vyhoření

Z grafu 3 a 4 je patrné, že se zvyšujícím se hmotnostním podílem kadmia v palivu klesá jeho počáteční reaktivita. Dále je patrné, že se jedná o BA s vysokým účinným průřezem, neboť rychle vyhořívá. Zvyšující se k_{eff} na konci vyhoření hmotnostního podílu Cd= 0,5 % wt. je pravděpodobně způsoben statistickou chybou výpočetního kódu U_wB₁. Tato chyba se vyskytuje v případech, kdy počáteční k_{eff} výrazněji klesne pod hodnotu rovnu 1.

Rozdíl hodnot reaktivity $\Delta \rho$ kadmia a paliva bez BA jsou vypočteny pomocí rovnice (5.1.1). Tento rozdíl by měl být při vyhoření 50000 MWd/MTU ideálně roven 0.

$$\Delta \rho = \left(\frac{k_{eff\ Cd} - 1}{k_{eff\ Cd}}\right) - \left(\frac{k_{eff\ nat.} - 1}{k_{eff\ nat.}}\right)$$
(5.1.1)

Graf 4 - Kadmium - Rozdíl reaktivit Cd a nat.

Pro úvahy použité v kapitole 6 je znázorněn graf 5 - průběh počátečního koeficientu násobení k_{eff} v závislosti na hmotnostním podílu.

Graf 5 - Kadmium - Průběh počátečního keff v závislosti na %wt.

5.2 Dysprosium

Druhým prvkem, který je v této práci vypočten je dysprosium. Průběh k_{eff} pro různé hmotnostní podíly zobrazuje graf 6. Výstupní číselná data a jejich dopočtené hodnoty jsou v příloze 2.

Graf 6 - Dysprosium - závislost keff na vyhoření

Jedná se o BA s pomalým vyhořením, který ale při vyhoření 50000 MWd/MTU dosahuje nižších hodnot k_{eff} než samotné palivo bez BA. To je nežádoucí jev, neboť se nám snižuje maximální využitelnost paliva. Pouze v případě hmotnostního podílu Dy = 0,03 %wt. došlo k přibližně rovnému koncovému k_{eff} jako u čistého paliva. Nicméně tento hmotnostní podíl

Graf 8 - Dysprosium - Rozdíl reaktivit Dy a nat

sníží počáteční koeficient násobení jen minimálně a to o 0,03. Průběh $\Delta \rho$ je vypočten stejně jako v předchozím případě dle rovnice 5.1.1. V důsledku nižších koncových k_{eff} dysprosia je $\Delta \rho < 0$.

Graf 7 - Dysprosium - Průběh počátečního keff v závislosti na %wt.

5.3 Europium

Europium je další vypočtený prvek, který je v současnosti používaný jako vyhořívající absorbátor. Jeho průběh k_{eff} na vyhoření je znázorněn v grafu 9. Ačkoliv je v tabulce 5 označeno europium jako rychlý BA, tak po provedení výpočtu a znázornění průběhu k_{eff} odpovídá spíše pomalému vyhoření.

Graf 9 - Europium - závislost keff na vyhoření

To je způsobeno neobvyklým vyhořením europia ve dvou stupních. První stupeň vychází z přeměny ¹⁵¹Eu na izotop ¹⁵³Eu, který není z počátku v palivu obsažen. Druhý stupeň je pak samotné vyhořívání ¹⁵³Eu s účinným průřezem 370b.

Koeficient násobení při vyhoření 50000 MWd/MTU se pro téměř všechny počítané hmotnostní koncentrace blíží ke k_{eff} čistého paliva. Vyjma hmotnostních podílů 0,5% wt. a 2% wt. Takto vysoký hmotnostní podíl není vhodný pro použití europia jako BA. Výstupní číselná data a dopočtené hodnoty jsou v příloze 3.

Graf 10- Europium - Rozdíl reaktivit Eu a nat

Průběh $\Delta \rho$ znázorňuje graf 10, z kterého je patrný téměř nulový rozdíl mezi reaktivitou čistého paliva a různých hmotnostních koncentrací europia. Z toho vyplývá, že takto použitý vyhořívající absorbátor nebude tvořit přebytečnou reaktivitu, která by mohla mít negativní vliv na pozdější skladování vyhořelého paliva.

Graf 11- Europium - Průběh počátečního keff v závislosti na %wt.

5.4 Gadolinium

Gadolinium je prvek, který již své uplatnění v příměsi jaderného paliva našel. Od roku 1990 se v jaderných reaktorech typu VVER 440 a 1000 se používají samostatné palivové proutky s obsahem Gd_2O_3 . Jedná se o prvek s nejvyšším účinným průřezem ze všech zde řešených prvků. Na úkor vysokého účinného průřezu se předpokládá rychlejší vyhoření, které ve vypočteném případě nastává kolem 37500 MWd/MTU. Koncový k_{eff} při vyhoření 50000MWd/MTU je vyšší než v případě čistého paliva, ale má klesající charakter. To by mohlo vést k lepší využitelnosti paliva a prodloužení doby provozu reaktoru.

Graf 12- Gadolinium - závislost keff na vyhoření

Jak je z grafu 12 vidět, hmotnostní koncentrace gadolinia větší než 0,2 %wt. nejsou vhodné, neboť jejich počáteční k_{eff} klesá hluboko pod hodnotu k_{eff} = 1. Rozdíl reaktivit $\Delta \rho$ (graf 13) je při koncovém vyhoření 50000 MWd/MTU vyšší než hodnota reaktivity čistého paliva. Číselná výstupní a dopočtená data kódu U_wB₁ obsahuje příloha 4.

Graf 13 - Gadolinium - Rozdíl reaktivit Gd a nat

V případě, že bychom takové vyhořelé palivo chtěli skladovat, budeme muset řešit problém s přebytečnou zbytkovou reaktivitou, která bude mít vliv jak na konstrukci skladovacího kontejneru, tak i na prodloužení doby jeho úplného vyhoření.

Graf 14 - Gadolinium - Průběh počátečního keff v závislosti na %wt.

5.5 Hafnium

Průběh vyhořívání hafnia, který je znázorněn v grafu 15, odpovídá pomalému BA. Ve všech řešených hmotnostních koncentracích se hodnota koncového k_{eff} nedostala na hodnotu k_{eff} čistého paliva, ale byla vždy nižší. Naopak počáteční hodnota k_{eff} se zmenšovala se zvyšující hmotnostní koncentrací hafnia.

Graf 15 - Hafnium - závislost keff na vyhoření

Hmotnostní koncentrace 3 a 4% wt. jsou nevhodné z hlediska počáteční a koncové hodnoty k_{eff} . Zároveň takto vysoký hmotnostní podíl hafnia má za následek snížení hmotnostního podílu uranu a tím snížení jeho obsahu v palivové tyči.

Graf 16 znázorňuje rozdíl reaktivit $\Delta \rho$ a jeho průběh je velmi podobný dysprosiu. Všechny hmotnostní koncentrace mají tento rozdíl $\Delta \rho < 0$. Nebude tak po celkovém vyhoření docházet ke vzniku zbytkové reaktivity.

Graf 16 - Hafnium - Rozdíl reaktivit Hf a nat

Číselné hodnoty z výstupního souboru U_wB_1 pro hafnium obsahuje příloha 5. Výpočet $\Delta \rho$ je stejně jako v předchozích případech proveden dosazením hodnot do rovnice 5.1.1. V grafu 17 je vidět téměř lineární závislost počátečního k_{eff} na hmotnostním podílu.

Graf 17- Hafnium - Průběh počátečního keff v závislosti na %wt.

5.6 Samarium

Posledním prvkem ze skupiny rychlých vyhořívajících absorbátorů je prvek samarium. Průběh závislosti k_{eff} na vyhoření je znázorněn na grafu 18. Koncové k_{eff} se vyjma hmotnostního podílu Sm = 0,5% wt. vždy blížily ke k_{eff} čistého paliva nebo byly vyšší. Pro hmotnostní koncentrace 0,5 a 0,3% wt. se počáteční k_{eff} pohybuje hluboko pod hodnotou = 1 a v obou těchto případech během vyhoření Sm hodnota k_{eff} tuto hodnotu nepřesáhne. Tyto koncentrace jsou nevhodné pro použití jako BA.

Graf 18 - Samarium - závislost keff na vyhoření

Jak již bylo uvedeno v kapitole 2.3.3, izotop samaria ¹⁴⁹Sm vzniká již během samotného provozu reaktoru a dochází k jeho hromadění. Možností zániku tohoto izotopu je absorpce tepelného neutronu s následnou přeměnou na ¹⁵⁰Sm. V případě použití samaria jako vyhořívajícího absorbátoru by muselo být zaručeno jeho úplné vyhoření, aby jeho případný přebytek nezvyšoval hodnotu nahromaděného samaria během provozu.

Graf 19 - Samarium - Rozdíl reaktivit Sm a nat

Úplné vyhoření ale v některých řešených případech zaručeno nebylo, neboť jak je z grafu 19 vidět, hodnota rozdílu reaktivity se po vyhoření 50000 MWd/MTU lehce zvyšuje nad hodnotu $\Delta \rho = 0$. Jedná se o hmotnostní koncentrace Sm = 0,1 a 0,05% wt. Přesné číselné hodnoty jsou v příloze 6.

Graf 20- Samarium - Průběh počátečního keff v závislosti na %wt.

5.7 Xenon

Xenon je prvek, který je často spojován s jeho izotopem ¹³⁵Xe, který vzniká při štěpení uranu. V přírodě je jeho zastoupení nulové - viz. tabulka 4. Tento izotop má vysoký účinný průřez 2964433b pro záchyt tepelných neutronů a při nedostatečné reaktivitě reaktoru může způsobit takzvanou xenonovou otravu, která je zmíněna v kapitole 2.3.3.

V mém případě jsem řešil xenon jako prvek s přírodním složením. Skládá se z devíti stabilních izotopů - ¹²⁴Xe, ¹²⁶Xe, ¹²⁸Xe, ¹²⁹Xe, ¹³⁰Xe, ¹³¹Xe, ¹³²Xe, ¹³⁴Xe, ¹³⁶Xe.

Graf 21 - Xenon - závislost keff na vyhoření

Jak plyne z grafu 21, příměs xenonu má podobnou charakteristiku vyhořívání jako čisté palivo, ale s tím rozdílem, že klesá jak počáteční, tak koncová hodnota k_{eff} . Přírodní xenon je jako příměs paliva nevyhovující z důvodu nízké hodnoty koncového k_{eff} a plynného skupenství, ve kterém se vyskytuje. Další negativní vlastností je potřebný hmotnostní poměr xenonu, který je nevyšší ze všech řešených prvků.

Graf 22 - Xenon - Rozdíl reaktivit Xe a nat

Průběh rozdílu reaktivit znázorňuje graf 22. Všechny hmotnostní koncentrace mají rozdíl reaktivit $\Delta \rho \ll 0$, tudíž by pro plynulý provoz reaktoru s maximálním konstantním výkonem bylo nutné část reaktivity dodávat, tzn. kompenzovat úbytek neutronů.

Graf 23- Xenon - Průběh počátečního keff v závislosti na %wt.

6 Výběr a výpočet vyhoření vhodné dvojice prvků

Tato kapitola se zabývá výběrem a výpočtem vyhoření vhodné dvojice prvků, které byly jednotlivě propočteny v kapitole 5. Vybraná dvojice vždy obsahuje jeden rychlý a jeden pomalý vyhořívající absorbátor, jejichž rozdělení nalezneme v tabulce 5. Porovnáním výsledků vyhoření jednotlivých prvků je potřeba nalézt takové prvky, které mají co nejshodnější charakteristiky průběhu vyhoření s charakteristikou čistého paliva. Zároveň je nutné, aby jejich koncový koeficient násobení k_{eff} byl v ideálním případě roven koncovému k_{eff} čistého paliva. Dále je nutno přihlédnout i na samotný hmotnostní podíl vybrané dvojice v palivu. Počáteční k_{eff} by měl lineárně klesat s přidaným hmotnostním podílem BA v palivu.

Vzhledem k vysokému hmotnostnímu podílu v řádech i desítek procent, možnému problému xenonové otravy a nízkému koncovému k_{eff} je naprosto nevyhovující prvek xenon a proto již není dále uvažován.

6.1 Kombinace - Kadmium / Hafnium

Výběr první dvojice je zvolen ve složení vzájemných hmotnostních kombinací prvků kadmia a hafnia. Kadmium představuje rychlý BA, hafnium pak pomalý BA.

Průběh vyhořívání kadmia se vyznačuje příznivým koncovým k_{eff} a zároveň malým hmotnostním podílem v palivu. Počáteční průběh k_{eff} postupně narůstá do maximální hodnoty odkud pak jeho hodnota klesá téměř shodně s průběhem k_{eff} čistého paliva. Tímto průběhem se vyznačují všechny rychlé BA řešené v této práci. Počáteční průběh k_{eff} hafnia je téměř lineární a jeho průběh je velmi podobný čistému palivu. Hodnoty počátečního k_{eff} lineárně klesají s přidaným hmotnostním podílem BA. Reaktivita hafnia na konci vyhoření je $\Delta \rho < 0$, nemusíme proto řešit problém s koncovou přebytečnou reaktivitou.

Následující řešené případy jsou rozděleny do tří skupin a to tak, aby vždy hmotnostní podíl dvojice Cd/Hf kompenzoval počáteční k_{eff} čistého paliva na hodnotu $k_{eff} = 1,2$; 1,1; 1,0. Průběh závislosti počátečního k_{eff} jednotlivých prvků na hmotnostním podílu znázorňuje pro *Cd* graf 5 a pro *Hf* - graf 17 v kapitole 5. Číselné hodnoty hmotnostních podílů jednotlivých prvků pro skupiny kompenzace k_{eff} jsou uvedeny v tabulce 8.

Prvek	k-eff	1,2	k-eff	1,1	k-eff	1,0
Rychlé vyhoření						
Cd	0,045	5 %wt.	0,1	. %wt.	0,17	%wt.
Eu	0,04	₩wt.	0,1	. %wt.	0,2	%wt.
Gd	0,015	5 %wt.	0,025	5 %wt.	0,042	% wt.
Sm	0,03	8 %wt.	0,062	2 %wt.	0,11	L%wt.
Pomalé vyhoření						
Хе	2,4	↓%wt.	5,8	3 %wt.	10,6	%wt.
Hf	0,4	₩wt.	0,95	5 %wt.	1,92	%wt.
Dy	0,2	2 %wt.	0,44	↓%wt.	0,725	%wt.

Tabulka 8 - Hmotnostní podíly jednotlivých prvků pro skupiny k-eff

Hmotnostní podíly dvojice prvků jsou rozděleny pro řešenou skupinu dle podílů uvedených v tabulce 9 tak, aby vždy výsledný hmotnostní podíl dvojice zajistil snížení počátečního k_{eff} na požadovanou hodnotu. Výsledné hmotnostní podíly dvojice Cd/Hf jsou znázorněny v tabulce 9.

Cd	Hf	k-eff 1,2	k-eff 1,1	k-eff 1,0
Podí	Cd/Hf	Výsledný h	odíl dvojice	
0	1	0,4 %wt.	0,95 %wt.	1,92 %wt.
0,2	0,8	0,329 %wt.	0,78 %wt.	1,57 %wt.
0,4	0,6	0,258 %wt.	0,61 %wt.	1,22 %wt.
0,6	0,4	0,187 %wt.	0,44 %wt.	0,87 %wt.
0,8	0,2	0,116 %wt.	0,27 %wt.	0,52 %wt.
1	0	0,045 %wt.	0,1 %wt.	0,17 %wt.

Tabulka 9 - Hmotnostní podíly dvojice Cd/Hf

6.1.1 Kompenzace počátečního k_{eff} na hodnotu k_{eff} = 1,2

Pro kompenzaci počátečního k_{eff} čistého paliva na hodnotu rovnu 1,2 uvažujeme hmotnostní podíly BA dvojice Cd/Hf od 0,045 %wt. do 0,4 %wt. dle sloupce *k-eff 1,2* v tabulce 9. Charakteristiky vyhoření dvojice Cd/Hf jsou znázorněny v grafu 24.

Graf 24- Cd/Hf kompenzace k-eff = 1,2

Z grafu 24 je patrná značná nelinearita v počátku vyhořívání. Ta je způsobena hmotnostním podílem kadmia, které má tendenci rychle vyhořet. Zvýšením podílu hafnia se tato nelinearita snižuje, ale zároveň se snižuje i konečný k_{eff} . Průběh vyhoření je od dosažení maxima k_{eff} podobný průběhu vyhoření čistého paliva. S ohledem na maximální dosažený k_{eff} a dosažený koncový k_{eff} dosahuje nejlepších výsledků, z výše uvedených hmotnostních koncentrací, hmotnostní koncentrace *0,116 %wt*. s podílem *0,8 Cd / 0,2 Hf*. Výběr vhodné kombinace vychází ze zvoleného numerického výpočtu uvedeného v kapitole 6.3. Maximální hodnota k_{eff} této koncentrace nepřekročí hodnotu rovnu 1,2 a zároveň dosáhne nepatrně vyšší hodnoty konečného k_{eff} než čisté palivo. Samotné kadmium dosahuje na počátku vyhoření příliš vysokého zvýšení k_{eff} , což je nežádoucí, stejně jako nízká hodnota koncového k_{eff} samotného hafnia. Zvolené kombinace tyto nechtěné jevy minimalizují. Porovnání hmotnostních podílů dvojice Cd/Hf nalezneme v příloze 8.1.

6.1.2 Kompenzace počátečního k_{eff} na hodnotu k_{eff} = 1,1

V případě kompenzace počátečního k_{eff} na hodnotu rovnu 1,1 uvažujeme hmotnostní koncentrace Cd/Hf od 0,1 %wt. do 0,95 %wt. Tyto hmotnostní koncentrace nalezneme v příslušném sloupci tabulky 9.

Graf 25 - Cd/Hf kompenzace k-eff = 1,1

Průběh vyhoření dvojice Cd/Hf znázorňuje graf 25. Na tomto grafu je viditelná vyšší nelinearita v počátku vyhořívání než v případě kompenzace na hodnotu $k_{eff} = 1,2$. Nelinearitu a vyšší vrchol maxima způsobuje vyšší hmotnostní podíl kadmia v palivu, který zvyšujícím se hmotnostním podílem bude rychleji vyhořívat. Stejně jako v předchozím případě dochází se zvýšením podílu hafnia k linearizaci průběhu vyhoření a ke snížení koncového k_{eff} . Dle

numerického výpočtu (kap. 6.3) nejlepších vlastností dosahuje hmotnostní koncentrace 0,61 %*wt*. s podílem 0,4 Cd / 0,6 Hf. V příloze 8.2 nalezneme srovnání zvolených kombinací.

6.1.3 Kompenzace počátečního k_{eff} na hodnotu k_{eff} = 1,0

Pro kompenzaci počátečního k_{eff} na hodnotu 1,0 jsou použity hmotnostní koncentrace v rozmezí od 0,17 % wt. do 1,92 % wt. Stejně jako v předchozích případech je provedeno stejné rozdělení hmotnostních koncentrací, které opět nalezneme v tabulce 9.

S rostoucími hmotnostními koncentracemi dochází k citelné nelinearitě celého průběhu vyhořívání. Projevují se zde dominantní vlastnosti jednotlivých prvků. V případě kadmia se jedná o vysoký nárůst maxima k_{eff} z počáteční hodnoty. Naopak v případě hafnia dochází k prudkému poklesu koncového k_{eff} . Z tohoto důvodu není vhodné pro kompenzaci počáteční hodnoty $k_{eff} = 1,0$ použít kombinaci dvojice Cd/Hf. Průběhy vyhoření jednotlivých kombinací dvojice Cd/Hf jsou znázorněny v grafu 26.

Graf 26 - Cd/Hf kompenzace k-eff = 1,0

6.2 Kombinace - Europium / Hafnium

Druhou zvolenou kombinací dvojice BA jsou prvky europium a hafnium. Záměna europia za kadmium je provedena z důvodu plynulejšího průběhu počátečního k_{eff} , který netvoří tak vysoké špičky maximálního k_{eff} jako kadmium v předchozím případě. Europium je prvek, který má nižší účinný průřez než kadmium a proto vyhořívá pomaleji.

Postup při výpočtu je obdobný jako při výpočtu dvojice Cd/Hf. Výsledné hmotnostní podíly dvojice prvků Eu/Hf jsou uvedeny v tabulce 10.

Eu	Hf	k-eff 1,2	k-eff 1,1	k-eff 1,0
Podí	l Cd/Hf	Výsledný h	odíl dvojice	
0	1	0,4 %wt.	0,95 %wt.	1,92 %wt.
0,2	0,8	0,328 %wt.	0,78 %wt.	1,576 %wt.
0,4	0,6	0,256 %wt.	0,61 %wt.	1,232 %wt.
0,6	0,4	0,184 %wt.	0,44 %wt.	0,888 %wt.
0,8	0,2	0,112 %wt.	0,27 %wt.	0,544 %wt.
1	0	0,04 %wt.	0,1 %wt.	0,2 %wt.

Tabulka 10 - Hmotnostní podíly dvojice Eu/Hf

6.2.1 Kompenzace počátečního k_{eff} na hodnotu k_{eff} = 1,2

Pro výpočet kompenzace počátečního k_{eff} na hodnotu 1,2 pomocí dvojice Eu/Hf jsou využity jejich výsledné hmotnostní podíly uvedené v tabulce 10. Hodnota těchto podílů se příliš neliší od podílů dvojice Cd/Hf, neboť potřebný hmotnostní podíl kadmia a europia pro kompenzaci počátečního k_{eff} je přibližně stejný.

Použitím europia došlo k linearizaci počátečního průběhu vyhořívání a k odstranění špiček maxima k_{eff} , které tvořilo kadmium. Maximální hodnoty dosahuje k_{eff} vždy v počátku vyhořívání. Příměsí hafnia dochází, jako v předchozím případě dvojice Cd/Hf, ke snížení hodnoty koncového k_{eff} pod hodnotu čistého paliva. Nejlepších vlastností, dle grafu 27 a numerického výpočtu, dosahuje samotné europium v hmotnostní koncentraci 0,04 %wt. Pokles koncového k_{eff} v kombinacích Eu/Hf je zanedbatelný ($\Delta k_{eff} \le 0,01$), tudíž je možné i jejich použití. Porovnání těchto kombinací nalezneme v příloze 9.1.

Graf 27- Eu/Hf kompenzace k-eff = 1,2

6.2.2 Kompenzace počátečního k_{eff} na hodnotu k_{eff} = 1,1

Potřebná hmotnostní koncentrace dvojice Eu/Hf pro kompenzaci počátečního k_{eff} na hodnotu 1,1 je v rozmezí od 0,1 %wt. do 0,95 %wt. v závislosti na jejich vzájemné kombinaci. Podíly a výsledné hmotnostní koncentrace jsou zobrazeny v příslušném sloupci tabulky 10.

Jak je z grafu 28 patrné, zvýšení hmotnostní koncentrace dvojice Eu/Hf způsobuje opět nelinearitu a pokles koncového k_{eff} . Tento pokles není zanedbatelný jako v případě kompenzace počátečního $k_{eff} = 1,2$. Maximálního k_{eff} je dosaženo přibližně při vyhoření 6000 MWd/MTU. V tomto případě nejlepších vlastností opět dosahuje koncentrace samotného europia v hmotnostní koncentraci 0,1 %wt. Porovnání těchto kombinací nalezneme v příloze 9.2.

Graf 28 - Eu/Hf kompenzace k-eff = 1,1

6.2.3 Kompenzace počátečního k_{eff} na hodnotu k_{eff} = 1,0

Hmotnostní koncentrace pro kompenzaci počátečního $k_{eff} = 1,0$ jsou uvedeny v tabulce 10. Při použití těchto koncentrací dvojice Eu/Hf došlo k celkovému poklesu průběhu vyhoření pod hodnotu $k_{eff} < 1$. Výjimku tvoří pouze koncentrace samotného europia - 0,2 %wt., která dosáhne svého maxima při hodnotě $k_{eff} = 1,015$. Koncový k_{eff} dosahuje poklesu až o 20 % vůči koncové hodnotě k_{eff} čistého paliva. Průběhy vyhoření nalezneme v grafu 29 a jejich vzájemné porovnání v příloze 9.3.

Graf 29 - Eu/Hf kompenzace k-eff = 1,0

Tyto hmotnostní koncentrace jsou nevhodné pro použití jako BA, neboť by způsobovaly zastavování štěpné reakce a bylo by nutné dodávat potřebnou reaktivitu jinými zdroji. Průběh počátečního k_{eff} je značně nelineární a zvyšující se podíl europia způsobuje špičky maxima k_{eff} .

6.3 Numerické vyhodnocení podílů dvojice prvků

Vzorec 6.3 je složen ze tří částí, které jsou zaměřeny na rozdíly průběhů vyhoření k_{eff} jednotlivých hmotnostních podílů dvojice prvků a čistého paliva.

$$x = \left[1 + \left(k_{eff \ poč.} - k_{eff \ 2500 \frac{MWd}{MTU}}\right)\right] \times \left[1 - \left(k_{eff \ nat. 50000 \frac{MWd}{MTU}} - k_{eff \ 50000 \frac{MWd}{MTU}}\right)\right] \times \left[1 - \left(k_{eff \ nat. \ 25000 \frac{MWd}{MTU}} - k_{eff \ 25000 \frac{MWd}{MTU}}\right)\right]$$

$$(6.3)$$

0,258 %wt.	0,329 %wt.	0,4 %wt.	0,187 %wt.	0,116 %wt.	0,045 %wt.
[0,4 Cd/0,6 Hf]	[0,2 Cd/0,8 Hf]	[0 Cd/1 Hf]	[0,6 Cd/0,4 Hf]	[0,8 Cd/0,2 Hf]	[1 Cd/0 Hf]
1,0155	1,02081	1,02735	1,00289	0,99358	0,9761
0,99683	0,98866	0,98463	1,00139	1,00694	1,01134
0,97038	0,96379	0,95867	0,97787	0,98306	0,99158
x= 0,982297106	0,972689651	0,969751871	0,982059212	0,983527391	0,978857011

Tabulka 11- Vyhodnocení Cd/Hf, poč. k-eff=1,2

První část vzorce se zabývá rozdílem požadovaného počátečního k_{eff} a dosaženého k_{eff} v oblasti maximálního vyhoření. Tato oblast byla zvolena pro vyhoření 2500 MWd/MTU. Druhá část vzorce řeší rozdíl koncových k_{eff} čistého paliva a daného podílu dvojice prvků. Ve třetí části je uvažován rozdíl k_{eff} v polovině vyhoření, což je 25000 MWd/MTU. Výsledky jednotlivých částí jsou mezi sebou vynásobeny a jejich cílem je získat co nejvyšší hodnotu. Hmotnostní podíl s nejvyšší dosaženou hodnotou je považován za nejlepší.

Eu/Hf	Počáteční k-eff = 1,2				
0,256 %wt.	0,328 %wt. [0,2	0,4 %wt. [0	0,184 %wt.	0,112 %wt.	0,04 %wt. [1
[0,4 Eu/0,6 Hf]	Eu/0,8 Hf]	Eu/1 Hf]	[0,6 Eu/0,4 Hf]	[0,8 Eu/0,2 Hf]	Eu/0 Hf]
x= 0,97701	0,97255	0,96975	0,98335	0,98523	0,98837
Eu/Hf	Počáteční k-eff = 1,1				
0,95 %wt.	0,78 %wt.	0,1 %wt.	0,44 %wt.	0,27 %wt.	0,61 %wt.
[0 Eu/1 Hf]	[0,2 Eu/0,8 Hf]	[1 Eu/0 Hf]	[0,6 Eu/0,4 Hf]	[0,8 Eu/0,2 Hf]	[0,4 Eu/0,6 Hf]
x= 0,89217	0,90867	0,95283	0,93490	0,94312	0,92292
Cd/Hf	Počáteční k-eff = 1,1				
0,95 %wt.	0,78 %wt.	0,1 %wt.	0,44 %wt.	0,27 %wt.	0,61 %wt.
[0 Cd/1 Hf]	[0,2 Cd/0,8 Hf]	[1 Cd/0 Hf]	[0,6 Cd/0,4 Hf]	[0,8 Cd/0,2 Hf]	[0,4 Cd/0,6 Hf]
x= 0,89217	0,90503	0,92790	1,01881	0,99556	1,03826

Tabulka 12 - Vyhodnocení Eu/Hf a Cd/Hf, počáteční keff = 1,2 a 1,1

6.4 Směr dalšího výzkumu - kombinace Gadolinium / Dysprosium

Výběr vhodných vyhořívajících absorbátorů a jejich optimálního složení není z výše uvedených kombinací jednoduchá záležitost. Navrhuji pro další výzkum dvojici prvků gadolinium / dysprosium, jejichž orientační průběh vyhoření je znázorněn v grafu 30. Zároveň by bylo vhodné uvažovat i vyšší procentní obohacení ²³⁵U, než zde použitých 5% a nerozdělovat hmotnostní podíly dvojice prvků pouze v podílu od 0 do 1. Je nutné se zaměřit i na konkrétní chování daného prvku.

Je zapotřebí naleznout takový podíl prvků, který odstraní především počáteční nelinearitu rychle vyhořívajících absorbátorů. Tato nelinearita roste s nároky na požadovanou hodnotou kompenzace počátečního k_{eff} . Při kompenzaci počátečního k_{eff} na hodnotu 1,0 se nepodařilo naleznout vhodnou dvojici BA. Naopak při kompenzaci počátečního $k_{eff} = 1,2$, pro případ dvojice Eu/Hf, bylo dosaženo velmi příznivých výsledků.

Graf 30 - Gd/Dy kompenzace k-eff = 1,1

7 Návrh zlepšení kódu U_WB₁

Vzhledem ke stálým inovacím a zlepšením kódu U_WB_1 ze strany jeho vývojářů je tento bod diplomové práce pojat především z pohledu uživatele. V prosinci roku 2012 byla spuštěna první verze U_WB_1 , která nyní prošla již pátou aktualizací. V aktualizacích došlo k podstatným změnám v samotném řešení výpočtu, které měly podstatný vliv na zrychlení a zpřesnění výpočtu. Tyto změny jsou zmíněny v kapitole 4 - Výpočetní kód U_WB_1 . Nejnovější verze kódu U_WB_1 nese označení February 2015. Jak již bylo řečeno, všechny výpočty řešené v této práci jsou provedeny ve verzi předchozí - December 2014. Rozdíl mezi těmito verzemi je především v možnosti výpočtu profilu vyhoření reaktoru typu CANDU.

Z pohledu uživatele je zadávání vstupních dat řešeno přehledně a srozumitelně. Možné vylepšení by mohlo v budoucnosti zahrnovat grafickou nadstavbu a to jak při zadávání vstupních dat, tak i při zpracování výstupních dat, kde by výstupem mohla být nejen tabulka hodnot, ale i zvolený graf. Při řešení této práce bylo nutné vzhledem k rychlosti výpočtu, který je vázán velikostí operační paměti, využít operační systém Ubuntu. Tento systém není příliš rozšířen, a tak by bylo přínosné spuštění kódu na známých operačních systémech, jako je například MS Windows. Postupnými aktualizacemi kódu došlo ke snížení náročnosti výpočetního hardwaru. Řešené výpočty v této práci byly provedeny na notebooku s procesorem Intel Core i5-2450M, 2900 MHz. Operační paměť musela být navýšena z původních 4 na 8 GB. Při této konfiguraci se výpočetní doba jednoho výpočtu pohybovala v rozmezí 35 - 40 min. Pro případ dlouhodobého výzkumu je nutné použít vyšší operační paměť nebo výpočetní server.

Snížení výpočetní doby kódu U_WB_1 by mohlo být docíleno tzv. paralelizací výpočtů. Paralelizace spočívá v rozdělení výpočetní práce mezi více výpočetních jednotek. Tím dojde ke snížení výpočetní doby a zároveň je možné řešit i složitější úlohy. Přidáním více výpočetních jednotek s vlastní pamětí vzroste objem celkové paměti, což je daleko efektivnější a levnější, než drahé navyšování výkonu jedné výpočetní jednotky. V případě použití paralelizace kódu U_WB_1 je potřeba paralelizovat řešení transportních rovnic pomocí Monte Carlo solveru, které je časově nejnáročnější. [26]

8 Závěr

Diplomová práce je věnována problematice vyhořívajících absorbátorů, jejichž použití je nezbytnou součástí dnešních návrhů jaderných paliv. Požadavky na zvýšení obohacení paliva 235 U na hranici 5% s sebou nesou problémy týkající se dlouhodobé regulace reaktivity v reaktoru, které kromě kyseliny borité v chladivu řeší právě vyhořívající absorbátory jako příměsi jaderného paliva. Cílem této diplomové práce je navržení dvojice současně působících vyhořívajících absorbátorů pomocí výpočetního kódu U_wB₁.

Tato práce je rozdělena na čtyři stěžejní časti, které na sebe navazují a úzce spolu souvisí. První část se zabývá přehledem fyzikálních vztahů a rovnic týkajících se problematiky vyhoření paliva, na které navazuje přehled konkrétních vyhořívajících absorbátorů. Následuje část výběru vhodných vyhořívajících absorbátorů s ohledem na přírodní zastoupení a velikost účinného průřezu pro záchyt neutronů. V této části je vybráno 7 vhodných prvků, které jsou rozděleny dle účinného průřezu na rychlé a pomalé vyhořívající absorbátory. U všech sedmi prvků je spočítán jejich profil vyhoření, který je zde graficky zobrazen. Hlavní částí práce je výběr vhodné dvojice prvků a jejich výpočet v různých hmotnostních koncentracích. Jsou zde vybrány dvě dvojice - kadmium / hafnium a europium / hafnium. Vše je řešeno ve výpočetním kódu U_wB_1 , jemuž je také věnována část této práce.

Dosažené výsledky prokazatelně zobrazují chování jednotlivých prvků a jejich dvojic v průběhu vyhoření jaderného paliva. S ohledem na velikost počátečního koeficientu násobení jsou výpočty rozděleny do tří skupin. Pro skupiny kompenzace počátečního $k_{eff} = 1,0$ je velmi obtížné dosáhnout uspokojivých výsledků, a proto je zde uvedena kapitola 6.4, ve které je nastíněn další možný postup ve výzkumu dvojic vyhořívajících absorbátorů. Pro kompenzaci počátečního koeficientu násobení na hodnotu $k_{eff} = 1,2$ nejlépe vyhověla dvojice prvků europium / hafnium a jejich vzájemné hmotnostní podíly (kapitola 6.2.1). V případě kompenzace počátečního k_{eff} na hodnotu $k_{eff} = 1,1$ dosahuje nejlepších výsledků dvojice prvků Cd/Hf (kapitola 6.1.2).

Tato práce může sloužit jako podklad pro další detailnější studie dvojic vyhořívajících absorbátorů, kterým není v dostupné literatuře věnována patřičná pozornost.

Seznam literatury a informačních zdrojů

- [1] FRÝBORT, Jan. Využití erbia jako vyhořívajícího absorbátoru. Praha: Česká nukleární společnost, 2012. ISBN 978-80-02-02360-9.
- [2] LOVECKÝ, Martin, Radek ŠKODA a Jan PREHRADNÝ. *Burnable absorber comparison between VVER, PWR and SFR with UWB1 and SERPENT codes*. In: Proceedings of the 2014 22nd International Conference on Nuclear Engineering. Prague, Czech Republic, 7-11 July 2014 [cit. 2014-10-08].
- [3] *Chemické prvky: Gadolinium*. Dostupné z: http://amapro.cz/datove_zdroje/stranky/chemicke_prvky/chemicprvek_64.php
- [4] *Gadolinium*. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikimedia Foundation, 2001- [cit. 2014-10-08]. Dostupné z: http://cs.wikipedia.org/wiki/Gadolinium
- [5] BURKET, Daneš. *Palivové vsázky se zdokonaleným palivem na Jaderné elektrárně Dukovany* Dukovany, 2003 [cit. 2014-10-08]. Dizertační práce. ČVUT.
- [6] JEŽEK, Martin. *Palivový cyklus jaderné elektrárny Temelín*. [online]. Brno, 2012 [cit. 2014-10-08]. Bakalářská práce. Vysoké učení technické v Brně.
- [7] *Erbium*. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikimedia Foundation, 2001- [cit. 2014-10-09]. Dostupné z: http://cs.wikipedia.org/wiki/Erbium
- [8] LOVECKÝ, Martin, Jan PREHRADNÝ, Radek ŠKODA a A.P. JATI. *Testing of UWB1 fast nuclear fuel depletion code performance for burnable absorbers*. [cit. 2014-10-15]
- [9] LOVECKÝ, Martin, Jan PREHRADNÝ a Radek ŠKODA. *Burnable absorber selection with UWB1 depletion code*. In: Proceedings of the 2014 22nd International Conference on Nuclear Engineering. Prague, Czech Republic, 7-11 July 2014 . [cit. 2014-10-15]
- [10] GUPTA, C a N KRISHNAMURTHY. *Extractive metallurgy of rare earths. Boca Raton*, Fla.: CRC Press, c2005, xvii, 484 p. ISBN 04-153-3340-7
- [11] SIMNAD, Massoud T. *Nuclear Reactor Materials and Fuels*. s. 775-814. San Diego: University of California [cit. 2014-10-20]
- [12] Jurkevičius A., Remeikis V. (2002) *Evolution of the hafnium isotopic composition in the RBMK-1500 reactor.* Environmental and Chemical Physics, Vilnius, 24, 4, s. 178-185
- [13] *AZO Materials: Boron Carbide (B4C)* [online]. [cit. 2014-10-21]. Dostupné z: http://www.azom.com/article.aspx?ArticleID=75
- [14] *Answer: Neutron poison*. [online]. [cit. 2014-10-21]. Dostupné z: http://www.answers.com/topic/neutron-poison
- [15] M. Schlieck, H.-D. Berger, A. Neufert, *Optimized gadolinia concepts for advanced in-core fuel management in PWRs*, Nuclear Engineering and Design 205 (1-2) (2001) 191 198
- [16] *Reaktorová fyzika I.* In: [online]. [cit. 2014-11-06]. Dostupné z: www.fjfi.cvut.cz/reaktorova_fyzika1/

- [17] *Reaktorová fyzika I.* In: [online]. [cit. 2014-11-06]. Dostupné z: http://www.fjfi.cvut.cz/reaktorova_fyzika1/kap411.htm
- [18] CHAPLIN, R.A. *Nuclear reactor kinetics*. [online]. s. 7 [cit. 2014-11-11]. Dostupné z: http://www.eolss.net/sample-chapters/c08/e3-06-01-05.pdf
- [19] *Pružný a nepružný rozptyl.* [online]. [cit. 2015-02-25]. Dostupné z: http://enpedie.cz/wiki/Pru%C5%BEn%C3%BD_a_nepru%C5%BEn%C3%BD_rozptyl
- [20] LOVECKÝ, Martin, Jan PREHRADNÝ, Radek ŠKODA a Jana JIŘIČKOVÁ. *Monte Carlo solver for UWB1 nuclear fuel depletion code*. Annals of Nuclear Energy, (v recenzním řízení).
- [21] MARGARET EMMETT, B. ORNL/TM-1999/207 Computational Physics and Engineering Division (10) Calculational Benchmark Problems For VVER-1000 Mixed Oxide Fuel Cycle. [online]. 3/2000, s. 110 [cit. 2015-03-09]. Dostupné z: http://web.ornl.gov/~webworks/cpr/v823/rpt/104607.pdf
- [22] JANOŠEK, Radek. Studium zastruskování a otravy energetického jaderného reaktoru [online]. Brno, 2014 [cit. 2015-04-01]. Dostupné z: https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=87217. Bakalářská práce. VUT Brno. Vedoucí práce ing. Karel Katovský, PhD
- [23] CERADYNE. Ceradyne, Inc. Announces \$18.3 Million Contract Award for Enriched Zirconium Diboride. [online]. 2011 [cit. 2015-04-13]. Dostupné z: http://www.ceradyneboron.com/news/newsreleasedetails.aspx?id=221
- [24] SKLENKA, L.: Provozní reaktorová fyzika, učební texty vysokých škol, Vydavatelství ČVUT, 2000
- [25] LOVECKÝ, Martin. ZČU PLZEŇ. UWB1 User's Manual. Plzeň, 2015, 53 s.
- [26] ŠÍP, Viktor. Numerická simulace proudění stlačitelných tekutin pomocí paralelních výpočtů. Praha, 2011. Diplomová práce. Univerzita Karlova v Praze. Vedoucí práce doc. RNDr. Vít Dolejší, Ph.D., DSc.

Přílohy

1 Kadmium

Vyhoření MWd/MTU	Cd 0,5% wt.	Cd 0,2% wt.	Cd0,1% wt.	Cd 0,05%wt.	Cd 0,01%wt.	nat.
0	0,76126	0,96382	1,10055	1,18839	1,28509	1,32185
40	0,75841	0,95828	1,09124	1,17548	1,26755	1,30148
80	0,76021	0,96213	1,09397	1,17608	1,26492	1,29755
120	0,76291	0,96747	1,09851	1,17879	1,26487	1,2965
160	0,76619	0,97294	1,10299	1,18147	1,26495	1,29564
200	0,76989	0,97843	1,10733	1,18402	1,26503	1,29486
400	0,79297	1,00105	1,12317	1,19278	1,26532	1,29235
600	0,81898	1,02474	1,13889	1,20118	1,26552	1,28997
800	0,84693	1,04511	1,15111	1,20729	1,26541	1,28802
1000	0,87496	1,06202	1,16044	1,21163	1,26501	1,28628
1500	0,9258	1,08708	1,17291	1,21676	1,26349	1,28293
2000	0,96233	1,10247	1,17941	1,21834	1,26062	1,27883
2500	0,98245	1,10976	1,18142	1,21747	1,25707	1,27452
3000	0,99311	1,11284	1,18113	1,21532	1,25309	1,27001
3500	0,99906	1,11383	1,17965	1,21248	1,24884	1,26533
4000	1,00276	1,11376	1,17755	1,20926	1,24441	1,26052
4500	1,00537	1,11315	1,1751	1,2058	1,23985	1,25562
5000	1,00742	1,11223	1,17246	1,20222	1,23522	1,25065
5500	1,00914	1,11113	1,1697	1,19855	1,23054	1,24564
6000	1,01065	1,10992	1,16687	1,19484	1,22584	1,24061
6500	1,01202	1,10863	1,16399	1,1911	1,22112	1,23558
7000	1,01328	1,10729	1,1611	1,18736	1,21642	1,23056
7500	1,01444	1,10591	1,15819	1,18363	1,21174	1,22556
8000	1,01553	1,1045	1,15529	1,17991	1,20708	1,22059
8500	1,01654	1,10307	1,15238	1,1762	1,20246	1,21565
9000	1,01748	1,10162	1,14949	1,17253	1,19788	1,21074
9500	1,01837	1,10015	1,14662	1,16888	1,19334	1,20589
10000	1,0192	1,09868	1,14375	1,16526	1,18884	1,20107
12500	1,02124	1,09222	1,13227	1,1512	1,17168	1,18258
15000	1,02378	1,08461	1,11859	1,13426	1,15089	1,16023
17500	1,02589	1,0772	1,10554	1,11819	1,13123	1,13905
20000	1,02712	1,06965	1,09284	1,10278	1,11257	1,11888
22500	1,02767	1,06202	1,08048	1,08801	1,09486	1,09965
25000	1,02775	1,05439	1,06853	1,07391	1,07831	1,08156
27500	1,02392	1,0452	1,05633	1,06041	1,06309	1,06463
30000	1,01852	1,03381	1,04189	1,04463	1,04585	1,0455
32500	1,01397	1,02308	1,02776	1,029	1,02836	1,02671
35000	1,00951	1,0133	1,01511	1,01512	1,01289	1,01008
37500	1,00539	1,00441	1,00373	1,00263	0,99901	0,99517
40000	1,00197	0,99637	0,9933	0,99115	0,98626	0,98156
42500	0,99893	0,98898	0,98367	0,98063	0,97467	0,96925
45000	0,99623	0,98205	0,97475	0,97094	0,964	0,958
47500	0,99371	0,97565	0,96652	0,96198	0,95407	0,94764
50000	0,99134	0,96985	0,95894	0,95368	0,94485	0,93812

Příloha 1 - Kadmium - Průběh keff

2 Dysprosium

Vyhoření MWd/MTU	Dy 3% wt.	Dy 1% wt.	Dy 0,5% wt.	Dy 0,3% wt.	Dy 0,03% wt.	nat.
0	0,6166	0,91603	1,07244	1,15312	1,29437	1,32185
40	0,61347	0,90758	1,06036	1,13884	1,27593	1,30148
80	0,6128	0,90587	1,05795	1,136	1,27228	1,29755
120	0,61284	0,9056	1,05744	1,13533	1,2713	1,2965
160	0,613	0,90548	1,0571	1,13485	1,27052	1,29564
200	0,61322	0,90544	1,05683	1,13443	1,26982	1,29486
400	0,61439	0,90566	1,05622	1,13328	1,26758	1,29235
600	0,61598	0,90627	1,05593	1,13239	1,26548	1,28997
800	0,61756	0,90699	1,05584	1,13178	1,26376	1,28802
1000	0,6191	0,90773	1,05584	1,13126	1,2622	1,28628
1500	0,62226	0,90927	1,05587	1,13029	1,25919	1,28293
2000	0,62555	0,91067	1,05557	1,12888	1,25548	1,27883
2500	0,62848	0,91166	1,05491	1,12713	1,25155	1,27452
3000	0,63109	0,9123	1,05392	1,12509	1,24739	1,27001
3500	0,63343	0,91263	1,05265	1,12279	1,24306	1,26533
4000	0,63554	0,9127	1,05115	1,12029	1,23859	1,26052
4500	0,63746	0,91256	1,04946	1,11762	1,23401	1,25562
5000	0,6392	0,91224	1,04762	1,11482	1,22936	1,25065
5500	0,6408	0,91177	1,04565	1,11192	1,22466	1,24564
6000	0,64227	0,91118	1,04358	1,10894	1,21993	1,24061
6500	0,64363	0,91049	1,04143	1,1059	1,21519	1,23558
7000	0,6449	0,90971	1,03922	1,10282	1,21046	1,23056
7500	0,64608	0,90885	1,03697	1,09971	1,20574	1,22556
8000	0,64718	0,90793	1,03467	1,09658	1,20105	1,22059
8500	0,64822	0,90697	1,03235	1,09344	1,19638	1,21565
9000	0,6492	0,90596	1,03001	1,09029	1,19175	1,21074
9500	0,65013	0,90491	1,02766	1,08716	1,18716	1,20589
10000	0,65101	0,90383	1,02529	1,08402	1,18261	1,20107
12500	0,65478	0,89972	1,01618	1,07195	1,16523	1,18258
15000	0,6579	0,89371	1,00448	1,0569	1,14415	1,16023
17500	0,66035	0,88752	0,99303	1,0424	1,1242	1,13905
20000	0,66236	0,8813	0,98195	1,02848	1,10528	1,11888
22500	0,66406	0,87514	0,97126	1,01515	1,08733	1,09965
25000	0,66556	0,86938	0,96126	1,00274	1,07063	1,08156
27500	0,66757	0,86439	0,95225	0,99143	1,0553	1,06463
30000	0,66934	0,85813	0,94179	0,97827	1,03815	1,0455
32500	0,66952	0,85058	0,93025	0,9645	1,02061	1,02671
35000	0,66957	0,84403	0,92019	0,95238	1,00508	1,01008
37500	0,67003	0,83838	0,91125	0,9415	0,9911	0,99517
40000	0,67059	0,83322	0,90303	0,9315	0,97825	0,98156
42500	0,67134	0,82866	0,89561	0,92244	0,96658	0,96925
45000	0,67231	0,82453	0,88878	0,91408	0,95583	0,958
47500	0,67328	0,82063	0,88236	0,90624	0,94579	0,94764
50000	0,67425	0,81694	0,87631	0,89888	0,93644	0,93812

Příloha 2 - Dysprosium - Průběh keff

3 Europium

Vyhoření	Eu 0.001% wt	Eu 0 01% wt	Eu 0 1% w/t	Eu 29/14t	E., 0.0E% wt	Eu 0 E% wt	nat
	1 21110	1 29590	1 00252		1 19044	0 7029	1 2210E
0	1,51119	1,26569	1,09252	0,59614	1,10944	0,7038	1,52165
40	1,29224	1,26762	1,07933	0,39673	1,1/383	0,69821	1,30148
80	1,28849	1,26404	1,07658	0,39503	1,17076	0,69553	1,29755
120	1,28747	1,2631	1,07592	0,39384	1,17004	0,69417	1,2965
160	1,28666	1,26237	1,07546	0,39282	1,16951	0,69302	1,29564
200	1,28592	1,261/1	1,07511	0,39188	1,16908	0,69202	1,29486
400	1,28356	1,25967	1,07454	0,38988	1,16799	0,69032	1,29235
600	1,28132	1,25787	1,07472	0,38679	1,16747	0,68859	1,28997
800	1,27948	1,25647	1,0756	0,3842	1,16748	0,68819	1,28802
1000	1,27781	1,25527	1,07696	0,38225	1,16779	0,68906	1,28628
1500	1,27459	1,25304	1,08083	0,38143	1,16896	0,69503	1,28293
2000	1,27066	1,25028	1,08582	0,38125	1,1704	0,70428	1,27883
2500	1,2665	1,24726	1,09072	0,38296	1,17156	0,71572	1,27452
3000	1,26213	1,24396	1,09517	0,38633	1,17227	0,72829	1,27001
3500	1,25759	1,2404	1,09895	0,39096	1,17246	0,74114	1,26533
4000	1,25291	1,23662	1,10199	0,39653	1,17212	0,75367	1,26052
4500	1,24812	1,23265	1,10426	0,40266	1,17127	0,76547	1,25562
5000	1,24327	1,22852	1,10579	0,40912	1,16996	0,77632	1,25065
5500	1,23837	1,22427	1,10663	0,41582	1,16823	0,7861	1,24564
6000	1,23345	1,21993	1,10686	0,42264	1,16615	0,79482	1,24061
6500	1,22852	1,21551	1,10655	0,42945	1,16375	0,80254	1,23558
7000	1,2236	1,21106	1,10577	0,43617	1,1611	0,80929	1,23056
7500	1,21869	1,20657	1,10457	0,44273	1,15825	0,81514	1,22556
8000	1,21382	1,20208	1,10305	0,44908	1,15523	0,82019	1,22059
8500	1,20898	1,19758	1,10126	0,45519	1,15208	0,82457	1,21565
9000	1,20418	1,1931	1,09926	0,46104	1,14883	0,82836	1,21074
9500	1,19942	1,18864	1,09709	0,46662	1,1455	0,83163	1,20589
10000	1,19471	1,18421	1,09478	0,47195	1,14212	0,83445	1,20107
12500	1,17676	1,16722	1,08484	0,4911	1,12852	0,84216	1,18258
15000	1,15504	1,14656	1,07225	0,50997	1,11177	0,84873	1,16023
17500	1,13453	1,12705	1,06035	0,52473	1,09595	0,85383	1,13905
20000	1,11512	1,10858	1,0491	0,53713	1,081	0,8583	1,11888
22500	1,09674	1,09108	1,03843	0,54855	1,06685	0,8627	1,09965
25000	1,07964	1,07476	1,0283	0,55965	1,05349	0,86708	1,08156
27500	1,06397	1,05977	1,01849	0,5708	1,04107	0,87047	1,06463
30000	1,04652	1,04275	1,00661	0,58171	1,02636	0,87217	1,0455
32500	1,02852	1,0254	0,99469	0,59247	1,01155	0,8738	1,02671
35000	1,01262	1,01008	0,98406	0,60346	0,99841	0,87552	1,01008
37500	0,99834	0,99636	0,97444	0,61511	0,98658	0,87735	0,99517
40000	0,98524	0,98377	0,96551	0,62702	0,97564	0,87917	0,98156
42500	0,97334	0,97233	0,95722	0,63861	0,96559	0,88069	0,96925
45000	0,96239	0,96178	0,94946	0,64986	0,95628	0,88184	0,958
47500	0,95218	0,95194	0,94216	0,66065	0,94756	0,88278	0,94764
50000	0,94268	0,94279	0,9353	0,67096	0,93941	0,88351	0,93812

Příloha 3 - Europium - Průběh keff

4 Gadolinium

Vyhoření						_
MWd/MTU	Gd 0,5% wt.	Gd 0,2% wt.	Gd 0,05% wt.	Gd 0,02%wt	Gd 0,01%wt	nat.
0	0,5876	0,70571	0,95796	1,11539	1,19836	1,32185
40	0,57703	0,70117	0,96	1,11291	1,19025	1,30148
80	0,55112	0,69102	0,97048	1,12264	1,19562	1,29755
120	0,52732	0,68651	0,98416	1,13337	1,20207	1,2965
160	0,51013	0,69015	0,99915	1,14305	1,20753	1,29564
200	0,50071	0,70131	1,01405	1,15138	1,21198	1,29486
400	0,55943	0,78757	1,05905	1,17223	1,22219	1,29235
600	0,65492	0,85442	1,08201	1,1818	1,22626	1,28997
800	0,72158	0,88338	1,09191	1,18558	1,22743	1,28802
1000	0,74725	0,89849	1,09767	1,18745	1,22764	1,28628
1500	0,78326	0,9231	1,10506	1,18908	1,22696	1,28293
2000	0,81888	0,9421	1,10937	1,18893	1,22499	1,27883
2500	0,84626	0,95371	1,11124	1,18763	1,22232	1,27452
3000	0,86297	0,96066	1,11179	1,18566	1,2192	1,27001
3500	0,87303	0,96528	1,11163	1,1833	1,21581	1,26533
4000	0,87984	0,96877	1,11106	1,18069	1,21223	1,26052
4500	0,88513	0,97168	1,11025	1,17791	1,20852	1,25562
5000	0,88965	0,97423	1,10927	1,17503	1,20473	1,25065
5500	0,89374	0,97654	1,10816	1,17208	1,20089	1,24564
6000	0,89754	0,97867	1,10696	1,16907	1,19701	1,24061
6500	0,90112	0,98065	1,1057	1,16603	1,19312	1,23558
7000	0,90453	0,9825	1,10438	1,16298	1,18923	1,23056
7500	0,90779	0,98424	1,10302	1,15991	1,18535	1,22556
8000	0,91092	0,98588	1,10163	1,15685	1,18148	1,22059
8500	0,91392	0,98743	1,10021	1,1538	1,17764	1,21565
9000	0,91682	0,98889	1,09877	1,15076	1,17383	1,21074
9500	0,91961	0,99028	1,09731	1,14774	1,17005	1,20589
10000	0,9223	0,9916	1,09584	1,14473	1,1663	1,20107
12500	0,93133	0,99528	1,08925	1,13276	1,15172	1,18258
15000	0,94193	0,99969	1,08145	1,1184	1,13418	1,16023
17500	0,95151	1,00339	1,07378	1,10467	1,11753	1,13905
20000	0,95964	1,00597	1,06588	1,09133	1,10157	1,11888
22500	0,96656	1,00759	1,0578	1,07837	1,08626	1,09965
25000	0,97213	1,00849	1,04964	1,06588	1,07178	1,08156
27500	0,97388	1,00648	1,04077	1,05372	1,05813	1,06463
30000	0,97426	1,00198	1,02943	1,0392	1,04204	1,0455
32500	0,97488	0,99797	1,01812	1,0247	1,02597	1,02671
35000	0,97452	0,99362	1,00778	1,01175	1,01171	1,01008
37500	0,97399	0,98954	0,99838	1,00008	0,99891	0,99517
40000	0,97436	0,98636	0,98988	0,98937	0,98713	0,98156
42500	0,97493	0,98362	0,98209	0,97952	0,97637	0,96925
45000	0,97571	0,98128	0,97485	0,97047	0,96649	0,958
47500	0,97669	0,97931	0,96819	0,96212	0,95733	0,94764
50000	0,97786	0,97756	0,96213	0,95441	0,94884	0,93812

Příloha 4 - Gadolinium - Průběh keff

5 Hafnium

Vyhoření					
MWd/MTU	Hf 3% wt.	Hf 1% wt.	Hf 0,5% wt.	Hf 4% wt.	nat.
0	0,89691	1,09253	1,17877	0,83161	1,32185
40	0,88845	1,07965	1,16365	0,82445	1,30148
80	0,88668	1,07722	1,16081	0,8229	1,29755
120	0,88629	1,07675	1,16021	0,82258	1,2965
160	0,88604	1,07645	1,15979	0,82239	1,29564
200	0,88586	1,07622	1,15944	0,82226	1,29486
400	0,88605	1,0759	1,15857	0,82265	1,29235
600	0,88615	1,07588	1,15805	0,82294	1,28997
800	0,88638	1,07613	1,15783	0,82333	1,28802
1000	0,88687	1,0765	1,15774	0,82384	1,28628
1500	0,88906	1,07761	1,1577	0,82597	1,28293
2000	0,89096	1,07854	1,15735	0,82764	1,27883
2500	0,89271	1,07915	1,15665	0,82919	1,27452
3000	0,89441	1,07949	1,15561	0,83088	1,27001
3500	0,89608	1,07958	1,15427	0,83265	1,26533
4000	0,8977	1,07942	1,15265	0,83443	1,26052
4500	0,89928	1,07905	1,1508	0,83621	1,25562
5000	0,90082	1,07848	1,14875	0,83801	1,25065
5500	0,90232	1,07772	1,14652	0,8398	1,24564
6000	0,90376	1,07681	1,14414	0,84159	1,24061
6500	0,90516	1,07574	1,14163	0,84337	1,23558
7000	0,90649	1,07453	1,13902	0,84514	1,23056
7500	0,90776	1,0732	1,13631	0,84688	1,22556
8000	0,90896	1,07175	1,13351	0,84858	1,22059
8500	0,91008	1,07019	1,13065	0,85024	1,21565
9000	0,91112	1,06854	1,12774	0,85185	1,21074
9500	0,91208	1,06679	1,12477	0,8534	1,20589
10000	0,91294	1,06496	1,12177	0,85489	1,20107
12500	0,91616	1,05731	1,10972	0,861	1,18258
15000	0,91649	1,04602	1,09406	0,86467	1,16023
17500	0,91456	1,034	1,07849	0,86595	1,13905
20000	0,91075	1,02159	1,06313	0,86509	1,11888
22500	0,90544	1,00905	1,04791	0,86237	1,09965
25000	0,89901	0,99649	1,0331	0,85818	1,08156
27500	0,89186	0,98406	1,01913	0,85292	1,06463
30000	0,88439	0,97191	1,00518	0,84702	1,0455
32500	0,87673	0,95952	0,99056	0,84072	1,02671
35000	0,86923	0,94739	0,9769	0,83419	1,01008
37500	0,8623	0,93656	0,96463	0,82807	0,99517
40000	0,85513	0,92672	0,95338	0,82227	0,98156
42500	0,8481	0,91759	0,94303	0,8163	0,96925
45000	0,84137	0,90904	0,93339	0,81031	0,958
47500	0,83499	0,90103	0,92438	0,80454	0,94764
50000	0,82895	0,89353	0,91594	0,79904	0,93812

Příloha 5 - Hafnium - Průběh keff

6 Samarium

Vyhoření	0 0 404	c	0.0050/	0 0 50/ 1	
MWd/MTU	Sm 0,1% wt.	Sm 0,3% wt.	Sm 0,05% wt.	Sm 0,5% wt.	nat.
0	1,01286	0,78219	1,13196	0,68119	1,32185
40	1,00876	0,78068	1,12363	0,67909	1,30148
80	1,01485	0,78297	1,12794	0,67737	1,29755
120	1,02256	0,78683	1,13393	0,67693	1,2965
160	1,03035	0,79206	1,13965	0,67811	1,29564
200	1,038	0,79839	1,14499	0,6807	1,29486
400	1,06647	0,83628	1,16261	0,71245	1,29235
600	1,091	0,87754	1,1764	0,75175	1,28997
800	1,10718	0,91391	1,18455	0,79532	1,28802
1000	1,11709	0,94073	1,18906	0,83322	1,28628
1500	1,12619	0,96933	1,19238	0,87923	1,28293
2000	1,12852	0,97977	1,19188	0,89701	1,27883
2500	1,12831	0,98354	1,18996	0,90337	1,27452
3000	1,12725	0,98545	1,18748	0,90669	1,27001
3500	1,12581	0,98672	1,18472	0,90908	1,26533
4000	1,12414	0,98767	1,18176	0,91108	1,26052
4500	1,12231	0,9884	1,17867	0,91284	1,25562
5000	1,12037	0,98897	1,17548	0,91442	1,25065
5500	1,11834	0,98939	1,17223	0,91584	1,24564
6000	1,11624	0,9897	1,16893	0,91713	1,24061
6500	1,1141	0,98992	1,1656	0,9183	1,23558
7000	1,11192	0,99005	1,16225	0,91938	1,23056
7500	1,10972	0,99012	1,1589	0,92037	1,22556
8000	1,10751	0,99012	1,15555	0,92128	1,22059
8500	1,10529	0,99007	1,15222	0,92213	1,21565
9000	1,10306	0,98998	1,1489	0,92291	1,21074
9500	1,10084	0,98985	1,1456	0,92364	1,20589
10000	1,09863	0,98968	1,14232	0,92433	1,20107
12500	1,08958	0,98822	1,12941	0,92626	1,18258
15000	1,07878	0,98651	1,1139	0,92853	1,16023
17500	1,06845	0,98477	1,09915	0,93066	1,13905
20000	1,05834	0,98272	1,08496	0,93235	1,11888
22500	1,04847	0,98042	1,07128	0,93375	1,09965
25000	1,03888	0,97799	1,05821	0,93496	1,08156
27500	1,02904	0,97392	1,04571	0,93401	1,06463
30000	1,01693	0,9678	1,03092	0,93123	1,0455
32500	1,00497	0,96213	1,01614	0,92915	1,02671
35000	0,9943	0,95692	1,00302	0,92713	1,01008
37500	0,98475	0,95228	0,99127	0,92537	0,99517
40000	0,97605	0,94835	0,9805	0,92423	0,98156
42500	0,96803	0,94485	0,97061	0,92342	0,96925
45000	0,9606	0,94166	0,96151	0,92286	0,958
47500	0,95373	0,93865	0,95309	0,92234	0,94764
50000	0,94742	0,93595	0,9453	0,92187	0,93812

Příloha 6 - Samarium - Průběh keff
7 Xenon

Vyhoření						
MWd/MTU	Xe 4% wt.	Xe 6% wt.	Xe 10% wt.	Xe 20% wt.	Xe 2%wt.	nat.
0	1,15233	1,09698	1,00987	0,83363	1,21488	1,32185
40	1,13797	1,08405	0,99901	0,82637	1,19875	1,30148
80	1,13505	1,0814	0,99677	0,82487	1,19551	1,29755
120	1,13425	1,08067	0,99615	0,82447	1,19464	1,2965
160	1,13363	1,08011	0,99569	0,8242	1,19395	1,29564
200	1,13309	1,07963	0,9953	0,82399	1,19334	1,29486
400	1,13147	1,07823	0,99423	0,82356	1,19146	1,29235
600	1,12997	1,07695	0,99329	0,82328	1,18972	1,28997
800	1,12875	1,07591	0,99254	0,82309	1,1883	1,28802
1000	1,12765	1,07497	0,99186	0,82295	1,18703	1,28628
1500	1,12556	1,07321	0,99061	0,82277	1,1846	1,28293
2000	1,12287	1,07087	0,98884	0,82222	1,18154	1,27883
2500	1,11993	1,06828	0,98682	0,82143	1,17824	1,27452
3000	1,11679	1,06549	0,98459	0,82044	1,17474	1,27001
3500	1,11346	1,06253	0,98218	0,81927	1,17105	1,26533
4000	1,11	1,05942	0,97963	0,81797	1,16723	1,26052
4500	1,10643	1,0562	0,97696	0,81655	1,16329	1,25562
5000	1,10277	1,0529	0,9742	0,81504	1,15928	1,25065
5500	1,09906	1,04954	0,97138	0,81346	1,15522	1,24564
6000	1,09532	1,04614	0,96851	0,81181	1,15112	1,24061
6500	1,09155	1,04271	0,9656	0,81013	1,14701	1,23558
7000	1,08778	1,03928	0,96268	0,80841	1,14289	1,23056
7500	1,08401	1,03584	0,95974	0,80667	1,13877	1,22556
8000	1,08025	1,03241	0,95681	0,80491	1,13467	1,22059
8500	1,07651	1,029	0,95388	0,80315	1,1306	1,21565
9000	1,07279	1,02561	0,95096	0,80138	1,12655	1,21074
9500	1,0691	1,02224	0,94806	0,79961	1,12253	1,20589
10000	1,06544	1,0189	0,94518	0,79785	1,11855	1,20107
12500	1,05184	1,00655	0,93467	0,79167	1,10353	1,18258
15000	1,0349	0,99104	0,92121	0,78327	1,08504	1,16023
17500	1,01878	0,97626	0,90831	0,77509	1,06749	1,13905
20000	1,00354	0,96228	0,8961	0,76732	1,05084	1,11888
22500	0,98913	0,94906	0,88453	0,75992	1,03504	1,09965
25000	0,97579	0,93682	0,87385	0,753	1,02032	1,08156
27500	0,96376	0,92584	0,86437	0,74707	1,00688	1,06463
30000	0,95065	0,91401	0,8544	0,74109	0,99224	1,0455
32500	0,93674	0,90134	0,84355	0,7342	0,97677	1,02671
35000	0,92459	0,89018	0,83385	0,72783	0,96322	1,01008
37500	0,91393	0,88042	0,82544	0,72234	0,95123	0,99517
40000	0,90414	0,87148	0,81774	0,71732	0,94021	0,98156
42500	0,89525	0,86337	0,81077	0,7128	0,93019	0,96925
45000	0,887	0,85584	0,80428	0,70856	0,92093	0,958
47500	0,87924	0,84873	0,79812	0,70448	0,91224	0,94764
50000	0,87192	0,842	0,79225	0,70054	0,9041	0,93812

Příloha 7 - Xenon - Průběh keff

8 Kombinace Cd/Hf

8.1 Kompenzace počátečního k_{eff} = 1,2

Příloha 8.1 a) - Maximální k-eff, poč. k-eff = 1,2

Příloha 8.1 b) - Vyhoření při max. k-eff, poč. k-eff = 1,2

Příloha 8.1 c) - Vyhoření při k-eff = 1, poč. k-eff = 1,2

Cadmium + Hafnium - max. keff 1,4 1,2 1 0,8 k-eff 0,6 0,4 0,2 0 ■ 0,95 %wt. [0 Cd/1 Hf] 1,08734 0,78 %wt. [0,2 Cd/0,8 Hf] 1,09471 ■ 0,1 %wt. [1 Cd/0 Hf] 1,17746 0,44 %wt. [0,6 Cd/0,4 Hf] 1,12295 0,27 %wt. [0,8 Cd/0,2 Hf] 1,14432 0,61 %wt. [0,4 Cd/0,6 Hf] 1,10525 nat. 1,32185

8.2 Kompenzace počátečního k_{eff} = 1,1

Příloha 8.2 a) - Maximální k-eff, poč. k-eff = 1,1

Příloha 8.2 b) - Vyhoření při k-eff = max, poč. k-eff = 1,1

Příloha 8.2 c) - Vyhoření při k-eff = 1, poč. k-eff = 1,1

8.3 Kompenzace počátečního k_{eff} = 1,0

Příloha 8.3 a) - Maximální k-eff, poč. k-eff = 1,0

Příloha 8.3 b) - Vyhoření při k-eff = max, poč. k-eff = 1,0

Příloha 8.3 c) - Vyhoření při k-eff = 1, poč. k-eff = 1,0

9 Kombinace Eu/Hf

9.1 Kompenzace počátečního k_{eff} = 1,2

Příloha 9.1 a) - Maximální k-eff, poč. k-eff = 1,2

Příloha 9.1 b) - Vyhoření při max. k-eff, poč. k-eff = 1,2

Příloha 9.1 c) - Vyhoření při k-eff = 1, poč. k-eff = 1,2

9.2 Kompenzace počátečního k_{eff} = 1,1

Příloha 9.2 a) - Maximální k-eff, poč. k-eff = 1,1

Příloha 9.2 b) - Vyhoření při k-eff = max, poč. k-eff = 1,1

Příloha 9.2 c) - Vyhoření při k-eff = 1, poč. k-eff = 1,1

9.3 Kompenzace počátečního k_{eff} = 1,0

Příloha 9.3 a) - Maximální k-eff, poč. k-eff = 1,0

Příloha 9.3 b) - Vyhoření při k-eff = max, poč. k-eff = 1,0

Příloha 9.3 c) - Vyhoření při k-eff = 1, poč. k-eff = 1,0