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Abstract

Aimed at describing the harmonic acoustic waves passage through an exhaust system, the two-tailpipes terminal

muffler may be seen as an acoustic element defined by eight quantities (usually arranged in a 2 by 4 matrix).

The quantities make up a complex functions depending on the frequency of the wave motion. The engine speed

is a variable that can be regarded as another parameter. This contribution presents a procedure how to establish

the quantities coming from the suggested mathematical model and using the finite element method. In addition,

formulae are derived for calculation of the terminal muffler attenuation based on the indicated characteristics.

Finally, the attenuation characteristics of the terminal muffler are presented and mutually compared for several

design options of the mufflers which indeed are different with respect to their geometry but have identical topology

of the chambers and tailpipes.
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1. Introduction

Pollution of environment by the noise of automotive transport service raises a requirement for

enhanced optimization of the whole of exhaust systems. Here the mathematical modelling

becomes an indispensable tool which not only speeds up the development procedures but, in

particular, it decreases the number of alternatives needed for giving effect to the prototype. The

developmental acoustic computational works covering both the suction and exhaust systems

including the engine as a whole are of the 1D type and include the necessity of knowing the

thermo-dynamical and flow parameters of the medium. In case of transients, the solution is

searched over the time domain. The harmonic analysis and the method of transfer matrices

are successfully made use of in the steady running conditions. Current requirements on the

precision of the calculation prediction lead to the necessity to determine the transfer matrices of

the terminal mufflers using 3D models.

The specialized field of acoustics is voluminous. The Munjal’s monopgraph [7] is designed

to fill the need for a comprehensive resource on acoustics of mufflers and the extensive list of

references can be found in it. We can also mention books [6, 2]. Simultaneously, it is possible

to note that desired 3D problems are not sufficiently supported by FEM and BEM commercial

software. That is, the linked string of computations, its numerical demandingness as well as

capabilities to model the porous material and the perforated elements are most problematic.

Modelling of acoustic waves for the flowing medium emerges to be troublesome in the case of
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3D geometry and of the finite element method. Even further, the problems have not been suffi-

ciently elaborated in specialized literature from the theoretical point of view and computations

for the 3D geometry of mufflers are performed considering a stationary medium. Therefore,

authors of the paper used an appropriate correction (see the subparagraph 5.2). Mufflers with

two tailpipes have not been enough discussed in the literature of acoustics as well.

The second and fourth paragraphs of this contribution deal with the calculation methodol-

ogy of the terminal muffler 3D models of the exhaust systems that contain two tailpipes. At

that, it is possible to cover the walls or the perforated plate pipes as well as the porous fibre ma-

terial that could fill up some muffler chamber. The formulae used for the corresponding sound

transmission impedance and acoustic properties are therefore mentioned in the third paragraph.

The mathematical formulation of the 3D model supposes a stationary medium. This is a feature

that indeed puts the calculation work ahead as it is not necessary to establish flow field but, on

the other hand, this procedure gets off partially from the real propagation of the acoustic waves

in the muffler. That is why we propose a suitable and simple manipulation of the transfer ma-

trices which eliminates the inaccuracy for the most part. Fifth paragraph presents an overview

of three methods that are used preferably for the assessment of the mufflers acoustic efficiency.

And finally, sixth paragraph presents and compares the results of the calculations made for the

design version of terminal mufflers with two and three chambers and two tailpipes.

2. Three-dimensional waves in mufflers with a stationary medium

If the run of the engine is steady, that is its speed and power output are constant, we can consider

both the flow of the combustion products and the appropriate distribution of the temperature,

density and (adiabatic) sound speed unchangeable. Since the values of the Mach number are

markedly less than 0.2, it is sufficient to use the methods of the linear acoustics (see e.g. [7,

6]). It can be assumed that, owing to the previously mentioned steady running condition, the

transferred acoustic waves are sum of their harmonic components. The components can be

expressed in terms of the acoustic pressure (scalar array) and the acoustic velocity (vector array)

in the form

p(r) eiωt , v(r) eiωt , (1)

where r denotes a position vector, t time, ω = 2πf is an angular frequency, and i is the

imaginary unit. Generally, the quantities p and v are complex functions of the position vector r

as it is necessary to keep also a watch on the harmonic waves phase shift. Then the principle of

mass conservation and the law of impulse conservation give the equations

i ω p + ρ c2 ∇ · v = 0 , i ρ ω v + ∇p = 0 , (2)

where ρ denotes the density of the medium, c the sonic speed, ∇ is the nabla operator, ∇p is

a gradient of the acoustic pressure, and ∇ · v is a divergence of the acoustic velocity. It is the

elimination of the acoustic velocity from (2) that gives the Helmholtz equation

k2 p(r) + △p(r) = 0 , (3)

which holds for each point r in the examined region Ω. Here k = 2πf/c means the wave

number. The specification of the boundary conditions must correspond to the “topology” of the

muffler which in our instance has one inlet and two outlet pipes (see Fig. 1).

The pipes are terminated by planar sections Γ0, Γ1, Γ2. Let us denote the investigated

acoustic quantities on a section Γi by pi, vi. In the following it is possible to investigate only
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Fig. 1. Chart of the terminal muffler with one inlet and two outlet pipes

Fig. 2. Chart of the perforated wall between the muffler chambers

those acoustic waves that are planar in the pipes mentioned above, i.e. pi, vi are constant on Γi

and only normal component of the vector vi is non-zero. By analogy, let us denote it vi. The

assumption of the planeness may be seen as rightful by the fact that the waves corresponding

to the higher harmonic components with non-constant profile at the section Γi are absorbed

rapidly in the exhaust system as [7] has shown.

Second equality in (2) offers a base for the mathematical formulation of the boundary con-

ditions. If n would denote a normal vector,
∂

∂n
= n · ∇ a derivative in the normal direction,

and vn = n · v a normal component of the acoustic velocity, we receive
∂p

∂n
= −iωρvn. For a

stiff wall ∂Ω\(Γ0 ∪ Γ1 ∪ Γ2) we apparently have vn = 0 while for anechoic outlet is vn = p/ρc
and in the general case vn = p/Z with an acoustic impedance Z.

The muffler chambers are separated by thin metal sheets that are usually perforated in their

good part. Such can also be the portions of the pipes that find themselves inside the muffler.

Since a detailed modelling of each of the perforation holes is unrealistic (the task would be too

demanding from the computational point of view), the perforation is characterized by sound

transmission impedance

Zβα = (pβ − pα)/vnβ , (4)

where pα, pβ denotes the acoustic pressure on opposed sides of the perforated walls (pα on the

surface Γαβ and pβ on the surface Γβα), see Fig. 2. vnβ is the fictive “average” acoustic velocity

through the wall area with the normal to ∂Ωβ . Obviously, Zβα = Zαβ because vnβ = −vnα.

With respect to (4) we obtain

∂pβ

∂nβ

= −i
ωρ

Z
(pβ − pα) for Γβα , (5)

∂pα

∂nα

= −i
ωρ

Z
(pα − pβ) for Γαβ . (6)

3. Acoustic impedance

The value of the sound transmission impedance Z appearing in the relation (4) was an object

of the research and measuring at a number of acoustic workplaces. One of the very often used
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relations presented by Sullivan et al. [10]. Kirby and Cummings [4] extended it to cover even

the situation when the sheet is surrounded by an absorbing porous material and have proposed

the formula

Z = ρ c

[
0, 006 + ik

{
tw + 0, 375 dh

(
1 +

ρ̃c̃

ρc

k̃

k

)}]
/Φ . (7)

The symbol tw denotes the wall thickness, dh diameter of the holes and Φ is a porosity of the

sheet. Further the complex values of the characteristic impedance ρ̃c̃ and wave number k̃ of the

absorbing material were used. Since the structure of the materials is complicated, their acoustic

properties are being preferably determined in an experimental way. With this fact in view, we

use the relations from the Huff’s work [3] that comes out from the measurements carried out in

the Owens Corming Laboratories made for the automobile mufflers absorbing materials

ρ̃c̃/ρc =
[
1 + 0, 085 5 (f/R)−0,754

]
+ i

[
−0, 076 5 (f/R)−0,732

]
, (8)

k̃/k =
[
1 + 0, 1472 (f/R)−0,577

]
+ i

[
−0, 173 4 (f/R)−0,595

]
. (9)

The quantities ρ̃ c̃ and k̃ are consequently dependent on the acoustic waves frequency f when

R denotes the flow resistivity of the filling material.

4. Finite element method discretization

We obtain the weak solution of the Helmholtz equation (3) by multiplying it by the test function

ξ and by applying the first Green formula
∫
Ω

ξ △ p dv =
∫

∂Ω
ξ

∂p

∂n
dS −

∫

Ω

∇ξ · ∇p dr. Next

we replace the normal derivative
∂p

∂n
by the expressions for the specified boundary conditions

that were derived in the second article. If the anechoic output is the case, we obtain the relation
∫

Ω

(
k̂2ξ p −∇ξ · ∇p

)
dr − iω

∫

Γ1

1

c
ξ p dS − iω

∫

Γ2

1

c
ξ p dS + iω

∫

Γβα

ρ̂

Z
ξβ (pβ − pα) dS

−iω

∫

Γαβ

ρ̂

Z
ξα (pα − pβ) dS = iωρ

∫

Γ0

ξ v0n dS

(10)

at the sections Γ1 a Γ2, where ξα, pα resp. ξβ, pβ denote traces of the functions ξ and p on the

boundary ∂Ωα resp. ∂Ωβ of the corresponding regions. k̂ replaces k or k̃ depending on whether

the position vector r denotes a point of the subregion Ω\Ω̃ without absorption material or of

the subregion Ω̃ with absorption material; ρ̂ has a similar meaning.

To discretize the equation (10), let us consider the functions ξ(r) and p(r) as linear combi-

nations of shape functions Nj(r) involved in the finite element method

p (r) =
∑

j

pjNj (r) , ξ (r) =
∑

j

ξjNj(r), (11)

where we write pj = p (rj), ξj = ξ (rj) for the j-th node of the discretization with a position

vector rj. We then receive a system of linear algebraic equations

[
−K − ik B1 − ik B2 + i

ρ̂ĉ

Z
k̂ Dβα + i

ρc

Z
k Dαβ + k2 MΩ−

eΩ + k̃2 MeΩ

]
p = iρck B0V0n .

(12)
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In doing so, we supposed that the quantities ρ̂, ĉ, k̂ are constant over the subregions Ω̃ and

Ω − Ω̃ which is a satisfactory approximation of the situation in the terminal mufflers. This

simplification however saves a lot of computational time when setting up the stiffness matrix.

Among the presented matrices the matrices K, B1, B2, MΩ−
eΩ and MeΩ are symmetric with

K = [kij] with kij =

∫

Ω

∇Ni(r) · ∇Nj(r) dr ,

B1 = [bij ] with bij =

∫

Γ1

Ni(r) Nj(r) dS ,

B2 = [bij ] with bij =

∫

Γ2

Ni(r)Nj(r) dS ,

B0 = [bij ] with bij =

∫

Γ0

Ni(r)Nj(r) dS ,

M∗ = [mij ] with mij =

∫

∗

Ni(r) Nj(r) dr , ∗ ≡ Ω − Ω̃, Ω̃ .

(13)

Next p = (. . . , pj, . . . )
T is a vector of unknown values of acoustic pressure at the mesh

nodes rj and V0n = (. . . , v0ni
, . . . )T with v0ni

= v0n for a node i fulfilling ri ∈ Γ0 or otherwise

v0ni
= 0. It holds

Dβα =
[
(−1)f(β,∗)diβ, j∗

]
, Dαβ =

[
(−1)f(α,∗)diα, j∗

]
, (14)

for the matrices representing the sound transmission impedance of the performed walls where

∗ = α, β and f(β, ∗) =

{
1 for ∗ = β ,

0 for ∗ = α ,
f(α, ∗) =

{
0 for ∗ = β ,

1 for ∗ = α ,
(15)

with the position vector ri being processed with the pair of conjugate nodes iα, iβ of the finite

element mesh when the first of which lies on the surface Γαβ and the other on Γβα. Finally

di∗, j# =
∫
Γ
∗#

Ni(r)Nj(r)dS and the sum Dβα + Dαβ creates a symmetric matrix. Conse-

quently, the matrix of the system (12) is symmetric for a muffler without absorption material.

A way of verifying the implementation of the mathematical model and numerical discretiza-

tion is described in [5]. It may be stated that the agreement of the calculation results with the

known analytic relations and also with the experimental results (see e.g. SAE [9]) is excellent

in case of motionless medium.

5. The exhaust muffler as an acoustic filter

5.1. The transfer matrix

It is useful to represent the exhaust system by analogy with electric circuit by means of the

acoustic filters theory (see e.g. [6, 7]). The terminal muffler is then one of the acoustic elements

of such “circuit”. This element is described mathematically by a so called transfer matrix which

is of the order 2x4 in case of two tailpipes. Consequently it is defined by eight complex numbers

A, B, C, D, E, F, G, H (let us throw in a remark that this is true for specified engine revolution

speed and selected wave frequency). Following the notation of the Fig. 1, the relation between
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the acoustic quantities p0, v0 on input and the quantities p1, v1, p2, v2 on output is as follows

[
p0

v0

]
=

[
A B C D
E F G H

]



p1

v1

p2

v2


 . (16)

In case of anechoic conditions v1 = p1/ρc, v2 = p2/ρc in the tailpipes and with the choice

v0 = 1, we can rewrite the relation (16) to the form

[
1p0

1

]
=

[
A B C D
E F G H

]



1p1
1p1/ρc

1p2
1p2/ρc


 . (17)

Having solved the task (12) we obtain the values of acoustic pressures 1p0, 1p1, 1p2. It is useful

to remain aware of the fact that all that is necessary is only single choice of the input value v0

of the sound speed. The relation (17) is a linear system of two equations for eight unknowns

A, B, . . . , H . It is therefore necessary to get additional information for setting up the transfer

matrix. We can partly insert stiff impermeable walls (then vi = 0) at the sections Γ0, Γ1, Γ2

or we can prescribe even non-zero values of the sound speed at these sections. We can again

formulate the associated problems of establishing the acoustic pressures at the sections Γ0, Γ1,

Γ2 in the form (12) where B1, B2 can be zero or the matrix B0 can belong to some different

section Γi. It involves only a simple modification of the input data, not a modification of the

program code solver. We can therefore add

[
2p0

1

]
=

[
A B C D
E F G H

]



2p1

0
2p2

0


 ,

[
3p0

1

]
=

[
A B C D
E F G H

]



3p1
3p1/cρ

3p2

0


 ,

[
4p0

0

]
=

[
A B C D
E F G H

]



4p1

0
4p2

−1




(18)

to (17). Of here, a direct way leads to the equation systems




1p1
1p1/ρc 1p2

1p2/ρc
2p1 0 2p2 0
3p1

3p1/ρc 3p2 0
4p1 0 4p2 −1







A
B
C
D


 =




1p0
2p0
3p0
4p0


 , (19)




1p1
1p1/ρc 1p2

1p2/ρc
2p1 0 2p2 0
3p1

3p1/ρc 3p2 0
4p1 0 4p2 −1







E
F
G
H


 =




1
1
1
0


 , (20)

the solution of which provides all terms A, B, . . . , H of the transfer matrix searched after.
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5.2. Waves in a circular duct with moving medium and the modification of the transfer matrix

Let us consider a pipe of circular section the length of which is L and the moving medium

is characterized by the Mach number M . The flowing of the medium may be assumed to be

inviscid for our purposes owing to the diameters of the terminal mufflers pipes. The planar

harmonic wave at a distance of x from the beginning of the pipe is described by the relations

(for a theoretical background, see for example [5,6])

p(x) eiωt =
(
p+ e−

ik
1+M

x + p− e
ik

1−M
x
)

eiωt ,

v(x) eiωt =
1

ρc

(
p+ e−

ik
1+M

x − p− e
ik

1−M
x
)

eiωt .
(21)

First term containing p+ represents an input incident wave while the other term containing p−
describes a reflection wave. The transfer matrix 2x2 of the pipe under consideration with the

length of L and Mach number M is then (see e.g. [5,6])

Q(L, M) =




e
ik

1+M
L + e−

ik
1−M

L ρc
(
e

ik
1+M

L − e−
ik

1−M
L
)

1

ρc

(
e

ik
1+M

L − e−
ik

1−M
L
)

e
ik

1+M
L + e−

ik
1−M

L


 . (22)

The sections of separate terminal mufflers chambers are in size several fold greater than the

input and output pipes. On the contrary, the Mach numbers of the chambers are substantially

less than is the case with the pipes. We can therefore conclude that the influence of the flow of

the medium through the chambers on the change of acoustic waves transfer is much less than

the influence of the flow in the muffler pipe contrary to the case of motionless medium. For this

reason, for the flowing medium, we modify the transfer matrix appearing in the relation (16) as

follows
[

A B C D
E F G H

]
:=

Q(M0, L0)Q
−1(0, L0)

[
A B C D
E F G H

] [
Q−1(0, L1)Q(M1, L1) 0

0 Q−1(0, L2)Q(M2, L2)

]
.

5.3. Muffler performance parameters

If the coordinate has the value x = 0, the acoustic pressure and acoustic speed of the wave

motion are given by the formulae

p(0) = p+ + p−, v(0) = (p+ − p−)/ρc . (23)

Acoustic power output transferred by the pipe is (see e.g. [6])

W (M) =
1

2

S|p+|
2

ρc

(
(1 + M)2 − |R|2 (1 − M)2) , (24)

where R = p−/p+ is a reflection factor, S is the size of the pipe section. The input power

transferred by the actual incidental wave is then

Win(M) =
1

2

S|p+|
2

ρc
(1 + M)2 . (25)
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Fig. 3. Chart of an acoustic system with a source without a terminal muffler and a system including it

As a rule, the efficiency of the acoustic mufflers is evaluated by one of the following parameters:

– Insertion loss, IL;

– Transmission loss, TL;

– Level difference, LD.

First of the parameters, the insertion loss, is defined as a difference between the level of the

radiated acoustic power of a system with the evaluated acoustic e lement missing (terminal

muffler in our instance) and a system including it (see Fig. 3)

IL = LW0
− LW1+W2

= 10 log
W0

W1 + W2
[dB] . (26)

The corresponding radiation impedance ZR, i.e. pi = viZR, i = 1, 2 (see e.g. [7, 6]) can

be determined up to the termination of the tailpipes. The knowledge of the transfer matrix of

a muffler as an acoustic element certainly does not enable to determine IL because we don’t

know the impedance of the source. Different design options of the mufflers can nevertheless

be mutually compared provided that the acoustic pressure of the source is constant. It is not

necessary to have knowledge of the source if the transmission loss TL should be determined.

This parameter is defined as a difference between the acoustic power level of the incident wave

and the level of the output power at the anechoic termination of the pipes (pi = ρc vi, i = 1, 2)

TL = LWin
− LW1+W2

= 10 log
Win

W1 + W2
[dB] . (27)

Denoting q = p1/p2 we derive

TL = 10 log
1

4

S0

S

ρc

ρ0c0

|Aq + Bq/ρc + C + D/ρc + Eq ρ0c0 + Fq ρ0c0/ρc |2

(1 + M1)2 |q|2 + (1 + M2)2
(28)

using (16), (23), (24), (25) (26) and an anechoic condition. Here we assume that both output

pipes have equal cross sections S as well as the medium impedances ρc. S0 resp. ρ0c0 de-

notes the cross section size of the input pipe resp. the impedance of the medium at the input.

Parameter TL however cannot give fully satisfactory answer to the question about the muffler

behaviour in a real exhaust system given a specified engine and other aggregates. It is in line

with the non-necessity to use the formula (28), that is all elements of the transfer matrix, for de-

termining TL. It leads to four-fold solution of the system of the form (12) for the corresponding
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Fig. 4. Terminal mufflers

problems (17), (18), (19) and (20). Considering TL, the system (12) can be solved only once

and then we use the values 1p0, 1p1, 1p2 of the problem (17) of the acoustic pressure in another

suitably selected point of the input pipe (analogy of the so called 3-pole method [5]).

The third parameter for the evaluation of the acoustic mufflers efficiency is the level differ-

ence, LD. It is the difference of acoustic pressure levels at selected sections of the inlet and

outlet pipe

LD = 20 log |
p0

p1

| [dB] . (29)

But accurate comparison between two mufflers by the parameter LD requires the knowledge of

the source impedance.

6. Comparison of selected design options of the mufflers

The presented computational methodology and evaluation of the efficiency were applied in the

problems of terminal mufflers comprising two or three chambers and two tailpipes as is shown

in the Fig. 4.
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Table 1. Inherent parameters of mufflers in view

Muffler Capacity Lengths of chambers Diameter Third chamber

[dm3] [mm] [mm]

M1 15.4 200/135/110 206 porous material

M2 15.4 280/195/140 176 porous material

M3 15.4 155/108/72 236 porous material

M4 15.4 280/195/140 360/86 porous material

M5 15.4 155/108/72 373/105 porous material

M6 13.4 200/135/110 192 porous material

M7 17.5 200/135/110 220 porous material

M8 13.4 200/135/110 192 exhaust gas

M9 17.5 200/135/110 220 exhaust gas

M10 15.4 2 chambers, 335/110 206 porous material

Base parameters of mufflers under consideraton are given in the Tab. 1. The chambers are

separated by perforated sheets with the thickness tw = 1.2 mm, diameter dh = 3.5 mm and

the porosity Φ = 0.26. Curves with their transmission loss TL in the frequency interval from

30 Hz to 400 Hz are depicted in the Fig. 5. Parameters of flowing medium correspond to a car

four-cylinder engine under the extremely low revolutions 1 000 rpm. The acoustic attenuation

for the one-octave band 63 Hz is in our interest above all (see Fig. 6). The reason is that car

factories have some troubles with this octave band in the case of four-cylinder engines. We can

see that mufflers with porous material in the third chamber are better than the same mufflers

without it. Further, the muffler capacity and lengths of chambers are crucial parameters as far

as the transmission loss is concerned.

7. Conclusion

The work deals with the calculation methodology of the terminal muffler 3D models of the ex-

haust systems that contain two tailpipes. Computational procedure based on FEM is proposed

with the aim to be of utmost low-cost. A suitable modification of the computed transfer ma-

trix is then suggested because FEM calculations are carried out for the steady medium. The

modificated transfer matrix is wanted description of the muffler as an acoustic filter.

To illustrate the calculation methodology, the transmission loss versus frequency are shown

in Fig. 5 and 6 for several mufflers on an car four-cylinder engine operating at 1 000 prm. We

can see obvious impact of the muffler capacity (see the muffler M7) and of the chambers lengths

on an acoustic attenuation (see the mufflers M2, M4) for the one-octave band 63 Hz which is

first of all in our interest. We can also see the impact of the tailpipes length and diameter.

Reducing the diameter is the cause of increasing the Mach number of the flowing medium and

consequently the acoustic attenuation.

Comparing pairs of mufflers M8–M6 and M9–M7 we can quantify the positive influence of

porous material filling their third chambers. M2 and M4 are the best ones if the front muffler

(not considered in the paper) of an exhaust system damps down amplitudes of acoustic waves

in the interval of frequences from 300 Hz.
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Fig. 5. Transmission loss versus frequency for the mufflers M1–M10 from tab. 1

Fig. 6. Transmission loss versus frequency for the mufflers M1–M10 from tab. 1

131



R. Matas et al. / Applied and Computational Mechanics 3 (2009) 121–132

Acknowledgements

The paper is based on work supported by the Czech Ministry of Education under the research

project 1M06031.

References

[1] M. E. Delany, E. N. Bazley, Acoustical properties of fibrous absorbent materials, Applied Acous-

tics 3(1970), pp. 105–116.

[2] Handbook of Noise and Vibration Control, edited by Crocker, M. J., John Wiley & Sons, 2007.

[3] N. T. Huff, Materials for absoptive silencer systems, SAE Technical Paper Series, 2001-01-1458.

Reprinted from: Proceedings of the 2001 Noise and Vibration Conference, Traverse City, Michi-

gan.

[4] R. Kirby, A. Cummings, The impendance of perforated plates subjected to grazing gas flow and

backed by porous media, J. Sound and Vibration 217(4)(1998), pp. 619–636.
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