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Abstract  

This paper presents the possibility of calculation of propagation of a shock wave generated during the bub-

ble collapse in water including the dissipation effect. The used semi-empirical model is based on an assumption 

of similarity between the shock pressure time profiles in different shock wave positions. This assumption leads 

to a system of two ordinary differential equations for pressure jump and energy at the shock front. The NIST 

data are used for the compilation of the equation of state, which is applied to the calculation of the shock wave 

energy dissipation. The initial conditions for the system of equations are obtained from the modified method of 

characteristics in the combination with the differential equations of cavitation bubble dynamics, which considers 

viscous compressible liquid with the influence of surface tension. The initial energy of the shock wave is esti-

mated from the energy between the energies of the bubble growth to the first and second maximum bubble radii.    
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1. Introduction  

 Cavitation is phenomenon which occurs in different kinds of systems working with liq-

uids. The cavitation damage can be caused by several effects, but the most important are the 

liquid jet and shock wave produced during the bubble collapse. The direct experimental detec-

tion of the shock wave is complicate because of its short duration. The measurement has to be 

supported by an appropriate numerical method in these situations. The basic method used for 

the calculation of the shock wave propagation is the method of characteristics, which does not 

include dissipation of energy. This results in that the energy of the shock wave is constant and 

only the peak pressure and shock wave velocity decrease with increasing radial position of the 

shock wave. This is caused by using isothermal equation of state, which is simple in use, but 

it disables any access to the energy dissipation, which usually causes temperature increase af-

ter passing the shock wave.  

The semi-empirical solution, which is presented here, was introduced by Brinkley and 

Kirkwood in [1]. It simplifies the solution of system of partial differential equations describ-

ing the shock wave propagation to set of two ordinary differential equations for the peak pres-

sure at the shock wave and the shock wave energy as a function of radial coordinate. The en-

ergy of the shock wave is usually determined from the pressure-time profile in one position of 

the shock wave, but it can also be obtained from the difference of the energies needed for the 

bubble growth to the first and to the second maximum radii. However, the position where the 

shock wave has developed has to be determined using the method of characteristics in the 

combination with the equation of bubble dynamics as it is presented in [4].  
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2. The equation of state and dissipated energy 

2.1. Tait´s equation of state 

The most common equation of state (EOS) for liquids is Tait´s equation, which represents 

the dependence between the liquid density and pressure. In the presented case, it is convenient 

to use the EOS in isoentropic form as (see e.g. [5]) 
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where for water n=7. The coefficient B(s) can be expressed as a function of the sound veloc-

ity c0 and the density ρ0 at pressure p0 as  
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For the calculation of the dissipated energy the heat capacity at the pressure p0 as function of 

temperature is needed as 
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The material relations used in this work were obtained by fitting data from NIST web data-

base [3]. The coefficients for the material relations are given in the Tab. 1. 

  k0 k1 k2 k3 k4

c0 -1.303670E+04 1.469587E+02 -5.629782E-01 9.801810E-04 -6.599914E-07

cp 4.040970E+04 -4.307597E+02 1.921642E+00 -3.815560E-03 2.828450E-06 

ρ0 1.120944E+03 2.378523E+01 -9.867555E-02 1.817291E-04 -1.288819E-07

Tab. 1. Coefficients for Eqs. (3), (4) and (5). 

  2.2. Evaluation of dissipated enthalpy at the shock wave  

If the shock wave passes through a position in liquid, which had temperature T0 and pres-

sure p0, the temperature and pressure increase up to the values p and T as it can be seen in 

Fig. 1. The specific enthalpy increment experienced by the fluid ∆H can be obtained from 

Rankine-Hugoniot conditions at the shock wave as (see e.g. [2]) 
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where ρ is liquid density at pressure p and ρ0 is density at pressure p0. Having passed the 

shock wave the pressure in the liquid reaches again the pressure p0 along an adiabatic curve 
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Fig. 1. Distribution of the total energy of the shock wave.  

but the temperature returns to a higher value T1 due to the dissipation process. The estimation 

of the temperature T1 is the key for obtaining the dissipated energy. Based on the considera-

tion, the enthalpy increment ∆H can be evaluated as a sum of undissipated and dissipated en-

thalpy as 

dishhH +=∆ . (7) 

The undissipated enthalpy h can be expressed using the equation of state (1) according to the 

Fig. 1. as 
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and dissipated enthalpy hdis can be evaluated from the specific heat data, which is known as 

an explicit function of temperatures T0 and T1 as 
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Having substituted Eqs. (6) and (8) into Eq. (7) one obtain 
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The dissipated enthalpy hdis is eliminated from the Eq. (10) using Eq. (9), where the heat ca-

pacity is obtained from Eq. (5). Finally, the ratio ρρ1 can be eliminated from Eq. (10) using 

Eqs. (1) and (2) as 
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For given pressure p, the temperature T1 can be obtained from the Eq. (4) which is then used 

in the Eq. (6) for the calculation of the dissipated enthalpy hdis. Note that the quantities evalu-
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ated at temperature T1 are marked with subscript “1”. Some results for the dissipated enthalpy 

hdis and temperature increase T1 compared with previously published data [5] are given in 

Tab. 2.  

T0=293K NIST Richardson[5]

p [MPa] ∆T1 [K] T1 [K] hdis [J/kg] hdis [J/kg] 

0 0.0 293.0 0.0 0.0 

250 0.2 293.2 1046.0 x 

500 1.2 294.2 5152.0 5570.0 

1000 5.4 298.4 22480.0 23450.0 

500 11.5 304.5 47978.0 49350.0 

2000 18.8 311.8 78484.0 80050.0 

2500 26.9 319.9 112547.0 115000.0 

Tab. 2. Dissipated enthalpy and temperature increase calculated as function of the pressure at the shock wave.  

3. Semi-empirical model - Similarity solution 

The model used in this work for the calculation of the shock wave propagation has been 

developed by Brinkley and Kirkwood and is available in works [1] and [2]. As the aim of this 

work is not reformulation of the theory, but the new definition of the dissipated enthalpy (9), 

which is included in the model, only the main idea of the derivation and the final relations 

will be given here. The aim of the solution is to find out how the pressure peak p varies with 

the shock wave position r.  

Propagation of spherical shock wave can be completely described by Euler’s equations in 

spherical coordinates. These two equations together with the Rankine-Hugoniot conditions at 

the shock front give set of three equations for four unknown partial derivatives of pressure 

and particle velocity ∂p/∂t, ∂p/∂r, ∂v/∂t and ∂v/∂r. If this set of equations is supplemented by 

one additional equation, it is possible to solve for each derivative and formulate two ordinary 

differential equations for the shock wave energy and shock pressure as functions of radial co-

ordinate r. This additional relation introduces into the model an empirical shape of  

Fig. 2. Bubble collapse (left) and the shock wave propagation (right) in water.  
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the pressure time profile, which is similar at each shock wave position. The resulting equa-

tions of the model are 
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where E is the shock wave energy, u is the shock wave velocity and c is speed of sound. For 

detail description of the model, the original report [1] has to be consulted.  

4. Calculation using the semi-empirical model 

The model will be tested on compression of spherical bubble filled with ideal gas of pres-

sure 2000 Pa from initial radius R1max = 0.75 mm and following expansion of the bubble on 

radius R2max = 0.22 mm as it is given in Fig. 2. The system of ordinary differential equations 

(12) and (13) require two boundary conditions. These conditions are the shock wave energy E

and shock pressure p at given position. The initial energy of the shock wave can be obtained 

from the difference between the energies needed for the bubble growth to the first and to the 

second maximum radii as (see e.g. [2])  
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The pressure of the shock wave at given position has to be calculated using method of charac-

teristics, which is described in [4]. For the given bubble radii, the results obtained from the 

model presented in [4] are given in Fig. 2. The boundary conditions for the solution of 

Eq. (12) and (13) are r = 4e-4 mm, E = 1.5e-4 J and p = 1.1e9 Pa. The results of the solution 

Fig. 3. Shock wave energy E and the shock wave pressure p as function of radial coordinate.  
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.

Fig.4. Dissipated enthalpy hdis and the temperature increase T1 as function of radial coordinate.  

are presented in Fig. 3 and Fig. 4. From the figures is obvious that the pressure decrease is 

caused rather by the spherical divergence then by the dissipation effect as the shock wave en-

ergy decrease is only several percent from its initial value. The temperature of the liquid after 

passing the shock wave decreases proportionally to the shock peak pressure and the dissipated 

energy is maximal at the maximum pressure.       

7. Conclusion 

The paper presented a possibility of simulation of the propagation of spherical shock wave 

including the energy dissipation. For the solution, the dissipated enthalpy based on the new 

material data derived from NIST material database was derived. The presented model for the 

energy dissipation can be used for any liquids when the coefficients for Eqs. (2) – (5) are 

known. The comparison of the dissipated energy calculated by Richardson in [5] and the pre-

sented data shows very good agreement.    
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