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Abstract 

A parallel algorithm of a numeric procedure based on a method of trigonometric collocation is presented for 

investigating an unbalance response of a rotor supported by journal bearings. After a condensation process 

the trigonometric collocation method results in a set of nonlinear algebraic equations which is solved by 

the Newton-Raphson method. The order of the set is proportional to the number of nonlinear bearing coordinates 

and terms of the finite Fourier series. The algorithm, realized in the MATLAB parallel computing environment 

(DCT/DCE), uses message passing technique for interacting among processes on nodes of a parallel computer. 

This technique enables portability of the source code both on parallel computers with distributed and shared 

memory. Tests, made on a Beowulf cluster and a symmetric multiprocessor, have revealed very good speed-up 

and scalability of this algorithm. 
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1. Introduction 

A periodic steady-state response of rotors supported by journal bearings can be 

determined by the approximate trigonometric collocation method. This method expects 

the periodic response in a form of the finite Fourier series and results in a set of nonlinear 

algebraic equations, see [3] or [5] for details. Significant advantage of the trigonometric 

collocation method is its wide possibility of parallelism. 

This contribution reports a parallel algorithm which is realized in the MATLAB parallel 

computing environment � Distributed Computing Toolbox/Engine (DCT/DCE). Proposed 

algorithm uses message passing technique for interacting among processes on computational 

nodes of a parallel computer. This technique enables portability of the source code both on 

parallel computers with distributed and shared memory. Tests have been made on both types 

of parallel computers, namely on the 8-node Beowulf cluster and on the symmetric 

multiprocessor with two dual cores CPUs. They have revealed very good speed-up and 

scalability of this algorithm. 

2. Steady-state response of rotor on periodic excitation 

A model rotor, discretized into finite elements, is assumed to have the following 

properties: (i) the shaft is linearly flexible and axis symmetric, (ii) discs are axis symmetric 

rigid bodies, (iii) inertia and gyroscopic effects of rotating parts are taken into account, 
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(iv) the stationary part is rigid and fixed, (v) material damping of the shaft is viscous, external 

damping is proportional to the mass matrix, (vi) the rotor rotates at constant angular velocity, 

(vii) journal bearings are considered by nonlinear force couplings. Matrices of used finite 

elements can be found in [6] and [7]. 

Lateral vibrations of the rotor are described by an equation of motion (after applying 

boundary conditions) 

 ),()()()( xxfffxKKxGKBxM BESTCSH
&&&& ++=�++�+++ tν , (1) 

where M, B, KSH, G, K, KC are mass, external damping, stiffness of the shaft, gyroscopic, 

stiffness and circulation matrices, fST is the vector of generalized static forces, fE(t) is 

the vector of generalized periodic external forces (excitation), )( x,xfB
& is the nonlinear vector 

of hydraulic forces, x&& , x& , x are vectors of generalized accelerations, velocities and 

displacements of the rotor, ν is the coefficient of viscous damping, is angular velocity and 

t is time. 

For simplicity let�s denote 

 C0 KKA �+= , GKBA SH1 �++= ν . (2) 

For other operations it is useful to reorder degrees of freedom of (1), so that the first 

p degrees are associated with linear components and the rest q degrees are associated with 

nonlinear bearing components. Then (1) with respect to (2) is transformed into 
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The trigonometric collocation method assumes the periodic response in a form of the finite 

Fourier series and is expressed by the equation (after reordering degrees of freedom) 
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where LF is the number of considered harmonic terms of the series and x0p, x0q, xjpc, xjqc, xjps,

xjqs are vectors of Fourier coefficients. The period of the response T is assumed to be a real 

multiple of the excitation period. 

The trigonometric collocation method requires to specify 12 +≥ FLN collocation points 

 )1( −= k
N

T
tk , Nk ,...,2,1= . (5) 

A substitution of the assumed solution (4) and its first and second derivatives with respect 

to time into the reordered equation of motion (3) for all collocation points (5) arrives at the set 

of nonlinear algebraic equations expressed in the matrix form 
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Because only �q components� in (6) are nonlinear it is suitable to reduce the complexity of 

the set by eliminating of �p components� using 

 ( )
qpqp

1

ppp sSfSs −= − . (7) 
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Then (6) is reduced into the set of nonlinear algebraic equations of lower order, which is 

proportional to the number of bearing coordinates and coefficients of the finite Fourier series  

 0sfrsR qqq =−+ )( , (8) 

where 

 pq

1

ppqpqq SSSSR
−−= , qLp

1

ppqp ffSSr −= − . (9) 

The nonlinear set (8) is expected to be solved by the Newton-Raphson method. With 

respect to (9) the Newton-Raphson method is expressed by equations 
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where λ is the deceleration parameter and i is the iteration number. 

If the condition (12) is satisfied, the iteration process terminates. 5101 −⋅=ε was used. 

 ε≤−+ )( iii qqq sfrsR (12) 

3. Reynolds equation and calculation of bearing forces 

According to the classic lubrication theory, the 

pressure distribution into the journal bearing is described 

by the Reynolds equation. Assumptions of the Reynolds 

equation can be found e.g. in [4]: (i) the lubricant is 

massless, incompressible and adheres to bearing 

surfaces, (ii) the lubricant is Newtonian and its viscosity 

is constant, (iii) the flow is laminar, (iv) the pressure is 

constant in the radial direction, (v) the flow velocity in 

the radial direction is neglected, (vi) velocity gradients in 

the radial direction are large in relation to those in 

the tangential and axial directions, (vii) the oil-film 

thickness is small compared to the journal radius, 

(viii) the curvature of the oil-film is negligible and (ix) bearing surfaces are stiff and smooth. 

Then the Reynolds equation can be written in the form 
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where φ, Z are circumferential and axial coordinates (fig. 1), R is the radius of journal, η is 

dynamical viscosity of the lubricant. According to fig. 1, the oil-film thickness is in form (14), 

where h0 is the oil-film thickness at the centric position, e is the eccentricity of the journal 

centre and γ is the position angle of the line of centres. 

 0( , ) ( ) ( ) cos[ ( )]h t h e t tϕ ϕ ϕ γ= − ⋅ −  (14) 

Boundary conditions and the axial symmetry condition of (13) can be given by 

 ),2(),0( ZpZp π= , apLZp =±= )2/,(ϕ , (15) 
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Fig. 1. Journal bearing.
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where L is the bearing length and pa is atmospheric pressure. 

The Reynolds equation (13) is valid only for pressures which are higher than the 

cavitation pressure. Realized calculations considered this phenomenon approximately by the 

Gümbel�s boundary condition, i.e. pressures calculated from the Reynolds equation (here 

numerically by using finite difference method), which are lower than cavitation pressure, are 

replaced by the magnitude in the cavitation. More details about this phenomenon can be 

found in [1]. 

Components of the nonlinear coupling vector fB in directions of y and z axes (fig. 1) are 

obtained numerically by integration of the pressure function over the journal surface 
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4. Description of parallel algorithm 

Before the parallel algorithm was written some tests were made on a serial algorithm of 

the trigonometric collocation method. They have revealed that almost all execution time is 

needed for the numerical evaluation of the Jacobi matrix (11). 

With respect to (13) and (14) the pressure distribution into the journal bearing and thus 

components (17) depends only on the displacement and the velocity of the node at the place 

of bearing. Therefore elements of (11) and fq(sq) can be calculated in a parallel manner. 

The evaluation of hydraulic forces components (17) are set as an elemental parallel task. 

Fig. 2. Block diagram of the master process execution. 

As it was reported earlier, the parallel algorithm uses the message passing technique. 

The algorithm establishes a master process on one computation node of a parallel computer. 

The master process manages the Newton-Raphson algorithm and also sends and receives 

messages from slave processes. These are established on the rest of computational nodes. 

Slave processes only receive a message from the master process, execute a task and send 
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results back to the master process. If it is necessary to calculate e.g. (11), the master process 

proceeds according to the block diagram in fig. 2. 

Regarding nature of the Newton-Raphson method (iterations execute sequentially), it is 

assured, during calling functions for the parallel evaluation of the Jacobi matrix (11) and 

the nonlinear vector fq(sq), that slave processes are idling. That is why the master process in 

fig. 2 sends messages to all slave processes at first. This avoids the master process to 

redundantly test the incoming buffer. In the other cases the master process periodically tests 

the incoming buffer. If there is a message from any slave process, the master process receives 

it and immediately sends to the slave process another one (of course if it is necessary to 

execute any messages yet). If there is no message, the master process starts execute one 

parallel task and then again tests the incoming buffer. This feature enables increasing of 

the algorithm efficiency. Also programming complexity is lower because there is no need to 

handle how many messages are to be executed by the certain slave process. Therefore load 

balancing of CPUs is fully dynamical, i.e. before calculation it is not known computational 

load of particular CPUs. On the other hand certain fluctuation of execution times must be 

expected due to dynamical load balancing. 

5. Scalability analysis, obtained results 

The algorithm, realized in the MATLAB parallel environment (DCT/DCE), was tested on 

two different parallel computers. The first was 8-node Beowulf cluster THEA. Each node 

dispose of CPU AMD Athlon 1.4 GHz and 1.5 GB RAM. The second one was the symmetric 

multiprocessor equipped with two dual-cores CPUs AMD Opteron 2.4 GHz, 4 GB of shared 

RAM. Installed operating system was LINUX in Debian and Ubuntu distribution. There are 

schemes of both parallel computers in fig. 3. 

1 2 3 4 5 6 7 8

switch

file
server

interactive

node

computational

nodes

internet/intranet

Gigabit Ethernet
Fast Ethernet

CPU

RAM
0

Core

RAM

Core

CPU 1
Core Core

CPU 2

Fig. 3. Schemes of used parallel computers. 

The investigated rotor in fig. 4 consists of the shaft 

discretized into 26 identical shaft elements and three 

rigid discuses (D1, D2, D3). During tests the rotor was 

successively supported by two (JB1, JB2), three (JB1,

JB2, JB3) and four (JB1, JB2, JB3, JB4) identical two-

lobe journal bearings of the finite length. This was 

done in order to test a reaction of the algorithm to 

increasing size of the problem. 

The rotor was excited by an unbalance of discuses 

and the steady-state response was approximated by an 

absolute and the first four harmonic terms of the 

Fourier series. It was assumed that the period of the 

response is equal to the period of the excitation. 

Fig. 4. Model of the rotor. 
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MATLAB�s functions �tic� and �toc� were utilized for the measurement of execution 

times. Each measurement was repeated for 10 times for all combinations of CPUs and cores. 

Obtained execution times showed out quite high fluctuation � up to 20% (probably due to 

dynamic load balancing). Only the best results were taken into account of graphics 

processing. For reaching the convergence criterion (12) between 7 and 8 Newton-Raphson�s 

iterations (depends on the rotor configuration) were needed if the initial guess was zero 

vector. 

The parallel algorithm was evaluated in terms of achieved speed-up and efficiency (fig. 5 

and fig. 6). Another important indicator is a scalability of the algorithm, i.e. its ability to 

increase speed-up proportionally to the number of used CPUs. According to [2] the speed-up 

is defined by the rate of execution times of the serial and parallel algorithm and its efficiency 

is obtained by the rate of the speed-up and number of CPUs. It is evident that the parallel 

algorithm has reached very good speed-up and efficiency which is always higher then 80%. 

Slightly better absolute execution times are obtained by using the symmetric multiprocessor. 

Absolute times are mentioned in tab. 1 in case of using all CPUs of the parallel computer. 

Finally execution times per one Newton-Raphson�s iteration are in fig. 7. 
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Fig. 5. Speed-up of the parallel algorithm. 
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Fig. 6. Efficiency of the parallel algorithm. 

Execution times [min] Number of journal 

bearings Beowulf cluster Symmetric multiprocessor 

2 bearings 8.8 7.7 

3 bearings 19.3 15.4 

4 bearings 29.2 25.6 

Tab. 1. Execution times (all CPUs used). 
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Fig. 7. Execution times per one Newton-Raphson�s iteration. 

By reason of the lucidity only results for the rotor supported by two journal bearings are 

presented bellow. Orbits of the shaft centre at places of bearings are illustrated in fig. 8. 

Shapes of these orbits resemble circle in case of JB1 and ellipse (JB2). 

 

Fig. 8. Orbits of the shaft centre at places of journal bearings (left JB1, right JB2). 

Next four figures record horizontal and vertical components of the displacement, velocity, 

acceleration and hydraulic forces at places of journal bearings over one period of 

the response. Discrete Fourier transformation in fig. 13 reveals influence of particular terms 

of the Fourier series. It is not surprise that the greatest influence has the first term; vice versa 

influence of the fourth term is almost insignificant. Figures are depictured in the horizontal 

direction and again at places of bearings. In the vertical direction the situation is analogical. 

 

Fig. 9. Displacements in horizontal and vertical directions (left JB1, right JB2). 
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Fig. 10. Velocities in horizontal and vertical directions (left JB1, right JB2). 

 

Fig. 11. Accelerations in horizontal and vertical directions (left JB1, right JB2). 

 

Fig. 12. Hydraulic forces in horizontal and vertical directions (left JB1, right JB2). 

 

Fig. 13. Discrete Fourier transformation in horizontal direction (left JB1, right JB2). 
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The accuracy of the solution was assessed by the MAC. Its running over one period is 

depictured in fig. 14 left. In collocation points MAC takes the value nearly one. The minimum 

takes the value 0.977. In the same figure on right hand side it can be seen the steady-state 

response of the rotor�s shaft. 

Results obtained by the trigonometric collocation method are compared to the steady-state 

response calculated by the Runge-Kutta method (ODE45). Figures 15 and 16 contain 

comparison in terms of hydraulic forces because they are a function of the displacement and 

velocity. Apparently the error of the trigonometric collocation method is low, so 

the approximation by the absolute and the first four harmonic terms of the Fourier series 

seems to be sufficient. 

 

Fig. 14. MAC and steady-state response of the shaft. 

 

Fig. 15. Comparison of hydraulic forces JB1 (left horizontal, right vertical direction). 

 

Fig. 16. Comparison of hydraulic forces JB2 (left horizontal, right vertical direction). 
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6. Conclusion 

This contribution is dealing with the parallel algorithm of the trigonometric collocation 

method in the dynamics of the rotors supported by journal bearings. The algorithm was 

realized in the MATLAB parallel computing environment (DCT/DCE) and uses message 

passing technique for interacting among processes. This algorithm was successfully tested on 

two different types of parallel computers � the Beowulf cluster THEA and the symmetric 

multiprocessor (two dual-cores CPUs). 

Performed tests have revealed very good speed-up, scalability and also efficiency of this 

algorithm. Values of obtained speed-up on THEA (8 processing units) were 7.4, 7.1 and 7.2, 

on the symmetric multiprocessor (4 processing units) were 3.3, 3.6 and 3.4 for the rotor 

supported by two, three and four journal bearings respectively. These results correspond to 

absolute times 8.8, 19.3 and 29.2 minutes on THEA and 7.7, 15.4 and 25.6 minutes on the 

multiprocessor. The efficiency of the algorithm was not lower then 83% on both parallel 

computers. 

Advantage of the approximate trigonometric collocation method is its wide possibility of 

parallelism. Therefore results are obtained much faster compared to the equation of motion 

integration methods. 

Future work is going to be dedicated to implementation of more appropriate boundary 

conditions for the Reynolds equation, namely the Reynolds boundary condition. Also 

the universal cavitation algorithm proposed by Elrod will be tested. This algorithm preserves 

mass conservation within the entire flow domain (directly incorporates so called JFO model). 
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